xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * Copyright 2008 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *    Jerome Glisse <glisse@freedesktop.org>
26  */
27 #include <linux/list_sort.h>
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 #define AMDGPU_CS_MAX_PRIORITY		32u
34 #define AMDGPU_CS_NUM_BUCKETS		(AMDGPU_CS_MAX_PRIORITY + 1)
35 
36 /* This is based on the bucket sort with O(n) time complexity.
37  * An item with priority "i" is added to bucket[i]. The lists are then
38  * concatenated in descending order.
39  */
40 struct amdgpu_cs_buckets {
41 	struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
42 };
43 
44 static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
45 {
46 	unsigned i;
47 
48 	for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
49 		INIT_LIST_HEAD(&b->bucket[i]);
50 }
51 
52 static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
53 				  struct list_head *item, unsigned priority)
54 {
55 	/* Since buffers which appear sooner in the relocation list are
56 	 * likely to be used more often than buffers which appear later
57 	 * in the list, the sort mustn't change the ordering of buffers
58 	 * with the same priority, i.e. it must be stable.
59 	 */
60 	list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
61 }
62 
63 static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
64 				       struct list_head *out_list)
65 {
66 	unsigned i;
67 
68 	/* Connect the sorted buckets in the output list. */
69 	for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
70 		list_splice(&b->bucket[i], out_list);
71 	}
72 }
73 
74 int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
75 		       u32 ip_instance, u32 ring,
76 		       struct amdgpu_ring **out_ring)
77 {
78 	/* Right now all IPs have only one instance - multiple rings. */
79 	if (ip_instance != 0) {
80 		DRM_ERROR("invalid ip instance: %d\n", ip_instance);
81 		return -EINVAL;
82 	}
83 
84 	switch (ip_type) {
85 	default:
86 		DRM_ERROR("unknown ip type: %d\n", ip_type);
87 		return -EINVAL;
88 	case AMDGPU_HW_IP_GFX:
89 		if (ring < adev->gfx.num_gfx_rings) {
90 			*out_ring = &adev->gfx.gfx_ring[ring];
91 		} else {
92 			DRM_ERROR("only %d gfx rings are supported now\n",
93 				  adev->gfx.num_gfx_rings);
94 			return -EINVAL;
95 		}
96 		break;
97 	case AMDGPU_HW_IP_COMPUTE:
98 		if (ring < adev->gfx.num_compute_rings) {
99 			*out_ring = &adev->gfx.compute_ring[ring];
100 		} else {
101 			DRM_ERROR("only %d compute rings are supported now\n",
102 				  adev->gfx.num_compute_rings);
103 			return -EINVAL;
104 		}
105 		break;
106 	case AMDGPU_HW_IP_DMA:
107 		if (ring < 2) {
108 			*out_ring = &adev->sdma[ring].ring;
109 		} else {
110 			DRM_ERROR("only two SDMA rings are supported\n");
111 			return -EINVAL;
112 		}
113 		break;
114 	case AMDGPU_HW_IP_UVD:
115 		*out_ring = &adev->uvd.ring;
116 		break;
117 	case AMDGPU_HW_IP_VCE:
118 		if (ring < 2){
119 			*out_ring = &adev->vce.ring[ring];
120 		} else {
121 			DRM_ERROR("only two VCE rings are supported\n");
122 			return -EINVAL;
123 		}
124 		break;
125 	}
126 	return 0;
127 }
128 
129 struct amdgpu_cs_parser *amdgpu_cs_parser_create(struct amdgpu_device *adev,
130                                                struct drm_file *filp,
131                                                struct amdgpu_ctx *ctx,
132                                                struct amdgpu_ib *ibs,
133                                                uint32_t num_ibs)
134 {
135 	struct amdgpu_cs_parser *parser;
136 	int i;
137 
138 	parser = kzalloc(sizeof(struct amdgpu_cs_parser), GFP_KERNEL);
139 	if (!parser)
140 		return NULL;
141 
142 	parser->adev = adev;
143 	parser->filp = filp;
144 	parser->ctx = ctx;
145 	parser->ibs = ibs;
146 	parser->num_ibs = num_ibs;
147 	for (i = 0; i < num_ibs; i++)
148 		ibs[i].ctx = ctx;
149 
150 	return parser;
151 }
152 
153 int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
154 {
155 	union drm_amdgpu_cs *cs = data;
156 	uint64_t *chunk_array_user;
157 	uint64_t *chunk_array;
158 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
159 	unsigned size, i;
160 	int ret;
161 
162 	if (cs->in.num_chunks == 0)
163 		return 0;
164 
165 	chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
166 	if (!chunk_array)
167 		return -ENOMEM;
168 
169 	p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
170 	if (!p->ctx) {
171 		ret = -EINVAL;
172 		goto free_chunk;
173 	}
174 
175 	p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
176 
177 	/* get chunks */
178 	INIT_LIST_HEAD(&p->validated);
179 	chunk_array_user = (uint64_t __user *)(cs->in.chunks);
180 	if (copy_from_user(chunk_array, chunk_array_user,
181 			   sizeof(uint64_t)*cs->in.num_chunks)) {
182 		ret = -EFAULT;
183 		goto put_bo_list;
184 	}
185 
186 	p->nchunks = cs->in.num_chunks;
187 	p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
188 			    GFP_KERNEL);
189 	if (!p->chunks) {
190 		ret = -ENOMEM;
191 		goto put_bo_list;
192 	}
193 
194 	for (i = 0; i < p->nchunks; i++) {
195 		struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
196 		struct drm_amdgpu_cs_chunk user_chunk;
197 		uint32_t __user *cdata;
198 
199 		chunk_ptr = (void __user *)chunk_array[i];
200 		if (copy_from_user(&user_chunk, chunk_ptr,
201 				       sizeof(struct drm_amdgpu_cs_chunk))) {
202 			ret = -EFAULT;
203 			i--;
204 			goto free_partial_kdata;
205 		}
206 		p->chunks[i].chunk_id = user_chunk.chunk_id;
207 		p->chunks[i].length_dw = user_chunk.length_dw;
208 
209 		size = p->chunks[i].length_dw;
210 		cdata = (void __user *)user_chunk.chunk_data;
211 		p->chunks[i].user_ptr = cdata;
212 
213 		p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
214 		if (p->chunks[i].kdata == NULL) {
215 			ret = -ENOMEM;
216 			i--;
217 			goto free_partial_kdata;
218 		}
219 		size *= sizeof(uint32_t);
220 		if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
221 			ret = -EFAULT;
222 			goto free_partial_kdata;
223 		}
224 
225 		switch (p->chunks[i].chunk_id) {
226 		case AMDGPU_CHUNK_ID_IB:
227 			p->num_ibs++;
228 			break;
229 
230 		case AMDGPU_CHUNK_ID_FENCE:
231 			size = sizeof(struct drm_amdgpu_cs_chunk_fence);
232 			if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) {
233 				uint32_t handle;
234 				struct drm_gem_object *gobj;
235 				struct drm_amdgpu_cs_chunk_fence *fence_data;
236 
237 				fence_data = (void *)p->chunks[i].kdata;
238 				handle = fence_data->handle;
239 				gobj = drm_gem_object_lookup(p->adev->ddev,
240 							     p->filp, handle);
241 				if (gobj == NULL) {
242 					ret = -EINVAL;
243 					goto free_partial_kdata;
244 				}
245 
246 				p->uf.bo = gem_to_amdgpu_bo(gobj);
247 				p->uf.offset = fence_data->offset;
248 			} else {
249 				ret = -EINVAL;
250 				goto free_partial_kdata;
251 			}
252 			break;
253 
254 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
255 			break;
256 
257 		default:
258 			ret = -EINVAL;
259 			goto free_partial_kdata;
260 		}
261 	}
262 
263 
264 	p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
265 	if (!p->ibs) {
266 		ret = -ENOMEM;
267 		goto free_all_kdata;
268 	}
269 
270 	kfree(chunk_array);
271 	return 0;
272 
273 free_all_kdata:
274 	i = p->nchunks - 1;
275 free_partial_kdata:
276 	for (; i >= 0; i--)
277 		drm_free_large(p->chunks[i].kdata);
278 	kfree(p->chunks);
279 put_bo_list:
280 	if (p->bo_list)
281 		amdgpu_bo_list_put(p->bo_list);
282 	amdgpu_ctx_put(p->ctx);
283 free_chunk:
284 	kfree(chunk_array);
285 
286 	return ret;
287 }
288 
289 /* Returns how many bytes TTM can move per IB.
290  */
291 static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
292 {
293 	u64 real_vram_size = adev->mc.real_vram_size;
294 	u64 vram_usage = atomic64_read(&adev->vram_usage);
295 
296 	/* This function is based on the current VRAM usage.
297 	 *
298 	 * - If all of VRAM is free, allow relocating the number of bytes that
299 	 *   is equal to 1/4 of the size of VRAM for this IB.
300 
301 	 * - If more than one half of VRAM is occupied, only allow relocating
302 	 *   1 MB of data for this IB.
303 	 *
304 	 * - From 0 to one half of used VRAM, the threshold decreases
305 	 *   linearly.
306 	 *         __________________
307 	 * 1/4 of -|\               |
308 	 * VRAM    | \              |
309 	 *         |  \             |
310 	 *         |   \            |
311 	 *         |    \           |
312 	 *         |     \          |
313 	 *         |      \         |
314 	 *         |       \________|1 MB
315 	 *         |----------------|
316 	 *    VRAM 0 %             100 %
317 	 *         used            used
318 	 *
319 	 * Note: It's a threshold, not a limit. The threshold must be crossed
320 	 * for buffer relocations to stop, so any buffer of an arbitrary size
321 	 * can be moved as long as the threshold isn't crossed before
322 	 * the relocation takes place. We don't want to disable buffer
323 	 * relocations completely.
324 	 *
325 	 * The idea is that buffers should be placed in VRAM at creation time
326 	 * and TTM should only do a minimum number of relocations during
327 	 * command submission. In practice, you need to submit at least
328 	 * a dozen IBs to move all buffers to VRAM if they are in GTT.
329 	 *
330 	 * Also, things can get pretty crazy under memory pressure and actual
331 	 * VRAM usage can change a lot, so playing safe even at 50% does
332 	 * consistently increase performance.
333 	 */
334 
335 	u64 half_vram = real_vram_size >> 1;
336 	u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
337 	u64 bytes_moved_threshold = half_free_vram >> 1;
338 	return max(bytes_moved_threshold, 1024*1024ull);
339 }
340 
341 int amdgpu_cs_list_validate(struct amdgpu_device *adev,
342 			    struct amdgpu_vm *vm,
343 			    struct list_head *validated)
344 {
345 	struct amdgpu_bo_list_entry *lobj;
346 	struct amdgpu_bo *bo;
347 	u64 bytes_moved = 0, initial_bytes_moved;
348 	u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
349 	int r;
350 
351 	list_for_each_entry(lobj, validated, tv.head) {
352 		bo = lobj->robj;
353 		if (!bo->pin_count) {
354 			u32 domain = lobj->prefered_domains;
355 			u32 current_domain =
356 				amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
357 
358 			/* Check if this buffer will be moved and don't move it
359 			 * if we have moved too many buffers for this IB already.
360 			 *
361 			 * Note that this allows moving at least one buffer of
362 			 * any size, because it doesn't take the current "bo"
363 			 * into account. We don't want to disallow buffer moves
364 			 * completely.
365 			 */
366 			if ((lobj->allowed_domains & current_domain) != 0 &&
367 			    (domain & current_domain) == 0 && /* will be moved */
368 			    bytes_moved > bytes_moved_threshold) {
369 				/* don't move it */
370 				domain = current_domain;
371 			}
372 
373 		retry:
374 			amdgpu_ttm_placement_from_domain(bo, domain);
375 			initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
376 			r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
377 			bytes_moved += atomic64_read(&adev->num_bytes_moved) -
378 				       initial_bytes_moved;
379 
380 			if (unlikely(r)) {
381 				if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
382 					domain = lobj->allowed_domains;
383 					goto retry;
384 				}
385 				return r;
386 			}
387 		}
388 		lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
389 	}
390 	return 0;
391 }
392 
393 static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
394 {
395 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
396 	struct amdgpu_cs_buckets buckets;
397 	struct list_head duplicates;
398 	bool need_mmap_lock = false;
399 	int i, r;
400 
401 	if (p->bo_list) {
402 		need_mmap_lock = p->bo_list->has_userptr;
403 		amdgpu_cs_buckets_init(&buckets);
404 		for (i = 0; i < p->bo_list->num_entries; i++)
405 			amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
406 								  p->bo_list->array[i].priority);
407 
408 		amdgpu_cs_buckets_get_list(&buckets, &p->validated);
409 	}
410 
411 	p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
412 				      &p->validated);
413 
414 	if (need_mmap_lock)
415 		down_read(&current->mm->mmap_sem);
416 
417 	INIT_LIST_HEAD(&duplicates);
418 	r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
419 	if (unlikely(r != 0))
420 		goto error_reserve;
421 
422 	r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated);
423 	if (r)
424 		goto error_validate;
425 
426 	r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates);
427 
428 error_validate:
429 	if (r)
430 		ttm_eu_backoff_reservation(&p->ticket, &p->validated);
431 
432 error_reserve:
433 	if (need_mmap_lock)
434 		up_read(&current->mm->mmap_sem);
435 
436 	return r;
437 }
438 
439 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
440 {
441 	struct amdgpu_bo_list_entry *e;
442 	int r;
443 
444 	list_for_each_entry(e, &p->validated, tv.head) {
445 		struct reservation_object *resv = e->robj->tbo.resv;
446 		r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
447 
448 		if (r)
449 			return r;
450 	}
451 	return 0;
452 }
453 
454 static int cmp_size_smaller_first(void *priv, struct list_head *a,
455 				  struct list_head *b)
456 {
457 	struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
458 	struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
459 
460 	/* Sort A before B if A is smaller. */
461 	return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
462 }
463 
464 static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff)
465 {
466 	if (!error) {
467 		/* Sort the buffer list from the smallest to largest buffer,
468 		 * which affects the order of buffers in the LRU list.
469 		 * This assures that the smallest buffers are added first
470 		 * to the LRU list, so they are likely to be later evicted
471 		 * first, instead of large buffers whose eviction is more
472 		 * expensive.
473 		 *
474 		 * This slightly lowers the number of bytes moved by TTM
475 		 * per frame under memory pressure.
476 		 */
477 		list_sort(NULL, &parser->validated, cmp_size_smaller_first);
478 
479 		ttm_eu_fence_buffer_objects(&parser->ticket,
480 				&parser->validated,
481 				&parser->ibs[parser->num_ibs-1].fence->base);
482 	} else if (backoff) {
483 		ttm_eu_backoff_reservation(&parser->ticket,
484 					   &parser->validated);
485 	}
486 }
487 
488 static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser)
489 {
490 	unsigned i;
491 	if (parser->ctx)
492 		amdgpu_ctx_put(parser->ctx);
493 	if (parser->bo_list)
494 		amdgpu_bo_list_put(parser->bo_list);
495 
496 	drm_free_large(parser->vm_bos);
497 	for (i = 0; i < parser->nchunks; i++)
498 		drm_free_large(parser->chunks[i].kdata);
499 	kfree(parser->chunks);
500 	if (!amdgpu_enable_scheduler)
501 	{
502 		if (parser->ibs)
503 			for (i = 0; i < parser->num_ibs; i++)
504 				amdgpu_ib_free(parser->adev, &parser->ibs[i]);
505 		kfree(parser->ibs);
506 		if (parser->uf.bo)
507 			drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base);
508 	}
509 
510 	kfree(parser);
511 }
512 
513 /**
514  * cs_parser_fini() - clean parser states
515  * @parser:	parser structure holding parsing context.
516  * @error:	error number
517  *
518  * If error is set than unvalidate buffer, otherwise just free memory
519  * used by parsing context.
520  **/
521 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
522 {
523        amdgpu_cs_parser_fini_early(parser, error, backoff);
524        amdgpu_cs_parser_fini_late(parser);
525 }
526 
527 static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
528 				   struct amdgpu_vm *vm)
529 {
530 	struct amdgpu_device *adev = p->adev;
531 	struct amdgpu_bo_va *bo_va;
532 	struct amdgpu_bo *bo;
533 	int i, r;
534 
535 	r = amdgpu_vm_update_page_directory(adev, vm);
536 	if (r)
537 		return r;
538 
539 	r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
540 	if (r)
541 		return r;
542 
543 	r = amdgpu_vm_clear_freed(adev, vm);
544 	if (r)
545 		return r;
546 
547 	if (p->bo_list) {
548 		for (i = 0; i < p->bo_list->num_entries; i++) {
549 			struct fence *f;
550 
551 			/* ignore duplicates */
552 			bo = p->bo_list->array[i].robj;
553 			if (!bo)
554 				continue;
555 
556 			bo_va = p->bo_list->array[i].bo_va;
557 			if (bo_va == NULL)
558 				continue;
559 
560 			r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
561 			if (r)
562 				return r;
563 
564 			f = bo_va->last_pt_update;
565 			r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
566 			if (r)
567 				return r;
568 		}
569 	}
570 
571 	return amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
572 }
573 
574 static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
575 				 struct amdgpu_cs_parser *parser)
576 {
577 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
578 	struct amdgpu_vm *vm = &fpriv->vm;
579 	struct amdgpu_ring *ring;
580 	int i, r;
581 
582 	if (parser->num_ibs == 0)
583 		return 0;
584 
585 	/* Only for UVD/VCE VM emulation */
586 	for (i = 0; i < parser->num_ibs; i++) {
587 		ring = parser->ibs[i].ring;
588 		if (ring->funcs->parse_cs) {
589 			r = amdgpu_ring_parse_cs(ring, parser, i);
590 			if (r)
591 				return r;
592 		}
593 	}
594 
595 	mutex_lock(&vm->mutex);
596 	r = amdgpu_bo_vm_update_pte(parser, vm);
597 	if (r) {
598 		goto out;
599 	}
600 	amdgpu_cs_sync_rings(parser);
601 	if (!amdgpu_enable_scheduler)
602 		r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs,
603 				       parser->filp);
604 
605 out:
606 	mutex_unlock(&vm->mutex);
607 	return r;
608 }
609 
610 static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
611 {
612 	if (r == -EDEADLK) {
613 		r = amdgpu_gpu_reset(adev);
614 		if (!r)
615 			r = -EAGAIN;
616 	}
617 	return r;
618 }
619 
620 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
621 			     struct amdgpu_cs_parser *parser)
622 {
623 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
624 	struct amdgpu_vm *vm = &fpriv->vm;
625 	int i, j;
626 	int r;
627 
628 	for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
629 		struct amdgpu_cs_chunk *chunk;
630 		struct amdgpu_ib *ib;
631 		struct drm_amdgpu_cs_chunk_ib *chunk_ib;
632 		struct amdgpu_ring *ring;
633 
634 		chunk = &parser->chunks[i];
635 		ib = &parser->ibs[j];
636 		chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
637 
638 		if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
639 			continue;
640 
641 		r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
642 				       chunk_ib->ip_instance, chunk_ib->ring,
643 				       &ring);
644 		if (r)
645 			return r;
646 
647 		if (ring->funcs->parse_cs) {
648 			struct amdgpu_bo_va_mapping *m;
649 			struct amdgpu_bo *aobj = NULL;
650 			uint64_t offset;
651 			uint8_t *kptr;
652 
653 			m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
654 						   &aobj);
655 			if (!aobj) {
656 				DRM_ERROR("IB va_start is invalid\n");
657 				return -EINVAL;
658 			}
659 
660 			if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
661 			    (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
662 				DRM_ERROR("IB va_start+ib_bytes is invalid\n");
663 				return -EINVAL;
664 			}
665 
666 			/* the IB should be reserved at this point */
667 			r = amdgpu_bo_kmap(aobj, (void **)&kptr);
668 			if (r) {
669 				return r;
670 			}
671 
672 			offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
673 			kptr += chunk_ib->va_start - offset;
674 
675 			r =  amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
676 			if (r) {
677 				DRM_ERROR("Failed to get ib !\n");
678 				return r;
679 			}
680 
681 			memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
682 			amdgpu_bo_kunmap(aobj);
683 		} else {
684 			r =  amdgpu_ib_get(ring, vm, 0, ib);
685 			if (r) {
686 				DRM_ERROR("Failed to get ib !\n");
687 				return r;
688 			}
689 
690 			ib->gpu_addr = chunk_ib->va_start;
691 		}
692 
693 		ib->length_dw = chunk_ib->ib_bytes / 4;
694 		ib->flags = chunk_ib->flags;
695 		ib->ctx = parser->ctx;
696 		j++;
697 	}
698 
699 	if (!parser->num_ibs)
700 		return 0;
701 
702 	/* add GDS resources to first IB */
703 	if (parser->bo_list) {
704 		struct amdgpu_bo *gds = parser->bo_list->gds_obj;
705 		struct amdgpu_bo *gws = parser->bo_list->gws_obj;
706 		struct amdgpu_bo *oa = parser->bo_list->oa_obj;
707 		struct amdgpu_ib *ib = &parser->ibs[0];
708 
709 		if (gds) {
710 			ib->gds_base = amdgpu_bo_gpu_offset(gds);
711 			ib->gds_size = amdgpu_bo_size(gds);
712 		}
713 		if (gws) {
714 			ib->gws_base = amdgpu_bo_gpu_offset(gws);
715 			ib->gws_size = amdgpu_bo_size(gws);
716 		}
717 		if (oa) {
718 			ib->oa_base = amdgpu_bo_gpu_offset(oa);
719 			ib->oa_size = amdgpu_bo_size(oa);
720 		}
721 	}
722 	/* wrap the last IB with user fence */
723 	if (parser->uf.bo) {
724 		struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
725 
726 		/* UVD & VCE fw doesn't support user fences */
727 		if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
728 		    ib->ring->type == AMDGPU_RING_TYPE_VCE)
729 			return -EINVAL;
730 
731 		ib->user = &parser->uf;
732 	}
733 
734 	return 0;
735 }
736 
737 static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
738 				  struct amdgpu_cs_parser *p)
739 {
740 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
741 	struct amdgpu_ib *ib;
742 	int i, j, r;
743 
744 	if (!p->num_ibs)
745 		return 0;
746 
747 	/* Add dependencies to first IB */
748 	ib = &p->ibs[0];
749 	for (i = 0; i < p->nchunks; ++i) {
750 		struct drm_amdgpu_cs_chunk_dep *deps;
751 		struct amdgpu_cs_chunk *chunk;
752 		unsigned num_deps;
753 
754 		chunk = &p->chunks[i];
755 
756 		if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
757 			continue;
758 
759 		deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
760 		num_deps = chunk->length_dw * 4 /
761 			sizeof(struct drm_amdgpu_cs_chunk_dep);
762 
763 		for (j = 0; j < num_deps; ++j) {
764 			struct amdgpu_ring *ring;
765 			struct amdgpu_ctx *ctx;
766 			struct fence *fence;
767 
768 			r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
769 					       deps[j].ip_instance,
770 					       deps[j].ring, &ring);
771 			if (r)
772 				return r;
773 
774 			ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
775 			if (ctx == NULL)
776 				return -EINVAL;
777 
778 			fence = amdgpu_ctx_get_fence(ctx, ring,
779 						     deps[j].handle);
780 			if (IS_ERR(fence)) {
781 				r = PTR_ERR(fence);
782 				amdgpu_ctx_put(ctx);
783 				return r;
784 
785 			} else if (fence) {
786 				r = amdgpu_sync_fence(adev, &ib->sync, fence);
787 				fence_put(fence);
788 				amdgpu_ctx_put(ctx);
789 				if (r)
790 					return r;
791 			}
792 		}
793 	}
794 
795 	return 0;
796 }
797 
798 static int amdgpu_cs_free_job(struct amdgpu_job *job)
799 {
800 	int i;
801 	if (job->ibs)
802 		for (i = 0; i < job->num_ibs; i++)
803 			amdgpu_ib_free(job->adev, &job->ibs[i]);
804 	kfree(job->ibs);
805 	if (job->uf.bo)
806 		drm_gem_object_unreference_unlocked(&job->uf.bo->gem_base);
807 	return 0;
808 }
809 
810 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
811 {
812 	struct amdgpu_device *adev = dev->dev_private;
813 	union drm_amdgpu_cs *cs = data;
814 	struct amdgpu_cs_parser *parser;
815 	bool reserved_buffers = false;
816 	int i, r;
817 
818 	down_read(&adev->exclusive_lock);
819 	if (!adev->accel_working) {
820 		up_read(&adev->exclusive_lock);
821 		return -EBUSY;
822 	}
823 
824 	parser = amdgpu_cs_parser_create(adev, filp, NULL, NULL, 0);
825 	if (!parser)
826 		return -ENOMEM;
827 	r = amdgpu_cs_parser_init(parser, data);
828 	if (r) {
829 		DRM_ERROR("Failed to initialize parser !\n");
830 		kfree(parser);
831 		up_read(&adev->exclusive_lock);
832 		r = amdgpu_cs_handle_lockup(adev, r);
833 		return r;
834 	}
835 
836 	r = amdgpu_cs_parser_relocs(parser);
837 	if (r == -ENOMEM)
838 		DRM_ERROR("Not enough memory for command submission!\n");
839 	else if (r && r != -ERESTARTSYS)
840 		DRM_ERROR("Failed to process the buffer list %d!\n", r);
841 	else if (!r) {
842 		reserved_buffers = true;
843 		r = amdgpu_cs_ib_fill(adev, parser);
844 	}
845 
846 	if (!r) {
847 		r = amdgpu_cs_dependencies(adev, parser);
848 		if (r)
849 			DRM_ERROR("Failed in the dependencies handling %d!\n", r);
850 	}
851 
852 	if (r)
853 		goto out;
854 
855 	for (i = 0; i < parser->num_ibs; i++)
856 		trace_amdgpu_cs(parser, i);
857 
858 	r = amdgpu_cs_ib_vm_chunk(adev, parser);
859 	if (r)
860 		goto out;
861 
862 	if (amdgpu_enable_scheduler && parser->num_ibs) {
863 		struct amdgpu_job *job;
864 		struct amdgpu_ring * ring =  parser->ibs->ring;
865 		job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
866 		if (!job)
867 			return -ENOMEM;
868 		job->base.sched = &ring->sched;
869 		job->base.s_entity = &parser->ctx->rings[ring->idx].entity;
870 		job->adev = parser->adev;
871 		job->ibs = parser->ibs;
872 		job->num_ibs = parser->num_ibs;
873 		job->base.owner = parser->filp;
874 		mutex_init(&job->job_lock);
875 		if (job->ibs[job->num_ibs - 1].user) {
876 			memcpy(&job->uf,  &parser->uf,
877 			       sizeof(struct amdgpu_user_fence));
878 			job->ibs[job->num_ibs - 1].user = &job->uf;
879 		}
880 
881 		job->free_job = amdgpu_cs_free_job;
882 		mutex_lock(&job->job_lock);
883 		r = amd_sched_entity_push_job(&job->base);
884 		if (r) {
885 			mutex_unlock(&job->job_lock);
886 			amdgpu_cs_free_job(job);
887 			kfree(job);
888 			goto out;
889 		}
890 		cs->out.handle =
891 			amdgpu_ctx_add_fence(parser->ctx, ring,
892 					     &job->base.s_fence->base);
893 		parser->ibs[parser->num_ibs - 1].sequence = cs->out.handle;
894 
895 		list_sort(NULL, &parser->validated, cmp_size_smaller_first);
896 		ttm_eu_fence_buffer_objects(&parser->ticket,
897 				&parser->validated,
898 				&job->base.s_fence->base);
899 
900 		mutex_unlock(&job->job_lock);
901 		amdgpu_cs_parser_fini_late(parser);
902 		up_read(&adev->exclusive_lock);
903 		return 0;
904 	}
905 
906 	cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence;
907 out:
908 	amdgpu_cs_parser_fini(parser, r, reserved_buffers);
909 	up_read(&adev->exclusive_lock);
910 	r = amdgpu_cs_handle_lockup(adev, r);
911 	return r;
912 }
913 
914 /**
915  * amdgpu_cs_wait_ioctl - wait for a command submission to finish
916  *
917  * @dev: drm device
918  * @data: data from userspace
919  * @filp: file private
920  *
921  * Wait for the command submission identified by handle to finish.
922  */
923 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
924 			 struct drm_file *filp)
925 {
926 	union drm_amdgpu_wait_cs *wait = data;
927 	struct amdgpu_device *adev = dev->dev_private;
928 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
929 	struct amdgpu_ring *ring = NULL;
930 	struct amdgpu_ctx *ctx;
931 	struct fence *fence;
932 	long r;
933 
934 	r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
935 			       wait->in.ring, &ring);
936 	if (r)
937 		return r;
938 
939 	ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
940 	if (ctx == NULL)
941 		return -EINVAL;
942 
943 	fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
944 	if (IS_ERR(fence))
945 		r = PTR_ERR(fence);
946 	else if (fence) {
947 		r = fence_wait_timeout(fence, true, timeout);
948 		fence_put(fence);
949 	} else
950 		r = 1;
951 
952 	amdgpu_ctx_put(ctx);
953 	if (r < 0)
954 		return r;
955 
956 	memset(wait, 0, sizeof(*wait));
957 	wait->out.status = (r == 0);
958 
959 	return 0;
960 }
961 
962 /**
963  * amdgpu_cs_find_bo_va - find bo_va for VM address
964  *
965  * @parser: command submission parser context
966  * @addr: VM address
967  * @bo: resulting BO of the mapping found
968  *
969  * Search the buffer objects in the command submission context for a certain
970  * virtual memory address. Returns allocation structure when found, NULL
971  * otherwise.
972  */
973 struct amdgpu_bo_va_mapping *
974 amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
975 		       uint64_t addr, struct amdgpu_bo **bo)
976 {
977 	struct amdgpu_bo_list_entry *reloc;
978 	struct amdgpu_bo_va_mapping *mapping;
979 
980 	addr /= AMDGPU_GPU_PAGE_SIZE;
981 
982 	list_for_each_entry(reloc, &parser->validated, tv.head) {
983 		if (!reloc->bo_va)
984 			continue;
985 
986 		list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
987 			if (mapping->it.start > addr ||
988 			    addr > mapping->it.last)
989 				continue;
990 
991 			*bo = reloc->bo_va->bo;
992 			return mapping;
993 		}
994 
995 		list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
996 			if (mapping->it.start > addr ||
997 			    addr > mapping->it.last)
998 				continue;
999 
1000 			*bo = reloc->bo_va->bo;
1001 			return mapping;
1002 		}
1003 	}
1004 
1005 	return NULL;
1006 }
1007