1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include "amdgpu_cs.h" 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_gmc.h" 39 #include "amdgpu_gem.h" 40 #include "amdgpu_ras.h" 41 42 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 43 struct amdgpu_device *adev, 44 struct drm_file *filp, 45 union drm_amdgpu_cs *cs) 46 { 47 struct amdgpu_fpriv *fpriv = filp->driver_priv; 48 49 if (cs->in.num_chunks == 0) 50 return -EINVAL; 51 52 memset(p, 0, sizeof(*p)); 53 p->adev = adev; 54 p->filp = filp; 55 56 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 57 if (!p->ctx) 58 return -EINVAL; 59 60 if (atomic_read(&p->ctx->guilty)) { 61 amdgpu_ctx_put(p->ctx); 62 return -ECANCELED; 63 } 64 65 amdgpu_sync_create(&p->sync); 66 return 0; 67 } 68 69 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 70 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 71 { 72 struct drm_sched_entity *entity; 73 unsigned int i; 74 int r; 75 76 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 77 chunk_ib->ip_instance, 78 chunk_ib->ring, &entity); 79 if (r) 80 return r; 81 82 /* 83 * Abort if there is no run queue associated with this entity. 84 * Possibly because of disabled HW IP. 85 */ 86 if (entity->rq == NULL) 87 return -EINVAL; 88 89 /* Check if we can add this IB to some existing job */ 90 for (i = 0; i < p->gang_size; ++i) 91 if (p->entities[i] == entity) 92 return i; 93 94 /* If not increase the gang size if possible */ 95 if (i == AMDGPU_CS_GANG_SIZE) 96 return -EINVAL; 97 98 p->entities[i] = entity; 99 p->gang_size = i + 1; 100 return i; 101 } 102 103 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 104 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 105 unsigned int *num_ibs) 106 { 107 int r; 108 109 r = amdgpu_cs_job_idx(p, chunk_ib); 110 if (r < 0) 111 return r; 112 113 ++(num_ibs[r]); 114 p->gang_leader_idx = r; 115 return 0; 116 } 117 118 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 119 struct drm_amdgpu_cs_chunk_fence *data, 120 uint32_t *offset) 121 { 122 struct drm_gem_object *gobj; 123 struct amdgpu_bo *bo; 124 unsigned long size; 125 int r; 126 127 gobj = drm_gem_object_lookup(p->filp, data->handle); 128 if (gobj == NULL) 129 return -EINVAL; 130 131 bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 132 p->uf_entry.priority = 0; 133 p->uf_entry.tv.bo = &bo->tbo; 134 /* One for TTM and two for the CS job */ 135 p->uf_entry.tv.num_shared = 3; 136 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(bo); 140 if (size != PAGE_SIZE || (data->offset + 8) > size) { 141 r = -EINVAL; 142 goto error_unref; 143 } 144 145 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 146 r = -EINVAL; 147 goto error_unref; 148 } 149 150 *offset = data->offset; 151 152 return 0; 153 154 error_unref: 155 amdgpu_bo_unref(&bo); 156 return r; 157 } 158 159 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 160 struct drm_amdgpu_bo_list_in *data) 161 { 162 struct drm_amdgpu_bo_list_entry *info; 163 int r; 164 165 r = amdgpu_bo_create_list_entry_array(data, &info); 166 if (r) 167 return r; 168 169 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 170 &p->bo_list); 171 if (r) 172 goto error_free; 173 174 kvfree(info); 175 return 0; 176 177 error_free: 178 kvfree(info); 179 180 return r; 181 } 182 183 /* Copy the data from userspace and go over it the first time */ 184 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 185 union drm_amdgpu_cs *cs) 186 { 187 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 188 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 189 struct amdgpu_vm *vm = &fpriv->vm; 190 uint64_t *chunk_array_user; 191 uint64_t *chunk_array; 192 uint32_t uf_offset = 0; 193 unsigned int size; 194 int ret; 195 int i; 196 197 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 198 GFP_KERNEL); 199 if (!chunk_array) 200 return -ENOMEM; 201 202 /* get chunks */ 203 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 204 if (copy_from_user(chunk_array, chunk_array_user, 205 sizeof(uint64_t)*cs->in.num_chunks)) { 206 ret = -EFAULT; 207 goto free_chunk; 208 } 209 210 p->nchunks = cs->in.num_chunks; 211 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 212 GFP_KERNEL); 213 if (!p->chunks) { 214 ret = -ENOMEM; 215 goto free_chunk; 216 } 217 218 for (i = 0; i < p->nchunks; i++) { 219 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; 220 struct drm_amdgpu_cs_chunk user_chunk; 221 uint32_t __user *cdata; 222 223 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 224 if (copy_from_user(&user_chunk, chunk_ptr, 225 sizeof(struct drm_amdgpu_cs_chunk))) { 226 ret = -EFAULT; 227 i--; 228 goto free_partial_kdata; 229 } 230 p->chunks[i].chunk_id = user_chunk.chunk_id; 231 p->chunks[i].length_dw = user_chunk.length_dw; 232 233 size = p->chunks[i].length_dw; 234 cdata = u64_to_user_ptr(user_chunk.chunk_data); 235 236 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 237 GFP_KERNEL); 238 if (p->chunks[i].kdata == NULL) { 239 ret = -ENOMEM; 240 i--; 241 goto free_partial_kdata; 242 } 243 size *= sizeof(uint32_t); 244 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 245 ret = -EFAULT; 246 goto free_partial_kdata; 247 } 248 249 /* Assume the worst on the following checks */ 250 ret = -EINVAL; 251 switch (p->chunks[i].chunk_id) { 252 case AMDGPU_CHUNK_ID_IB: 253 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 254 goto free_partial_kdata; 255 256 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 257 if (ret) 258 goto free_partial_kdata; 259 break; 260 261 case AMDGPU_CHUNK_ID_FENCE: 262 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 263 goto free_partial_kdata; 264 265 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 266 &uf_offset); 267 if (ret) 268 goto free_partial_kdata; 269 break; 270 271 case AMDGPU_CHUNK_ID_BO_HANDLES: 272 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 273 goto free_partial_kdata; 274 275 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 276 if (ret) 277 goto free_partial_kdata; 278 break; 279 280 case AMDGPU_CHUNK_ID_DEPENDENCIES: 281 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 282 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 283 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 284 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 285 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 286 break; 287 288 default: 289 goto free_partial_kdata; 290 } 291 } 292 293 if (!p->gang_size) { 294 ret = -EINVAL; 295 goto free_partial_kdata; 296 } 297 298 for (i = 0; i < p->gang_size; ++i) { 299 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 300 num_ibs[i], &p->jobs[i]); 301 if (ret) 302 goto free_all_kdata; 303 } 304 p->gang_leader = p->jobs[p->gang_leader_idx]; 305 306 if (p->ctx->vram_lost_counter != p->gang_leader->vram_lost_counter) { 307 ret = -ECANCELED; 308 goto free_all_kdata; 309 } 310 311 if (p->uf_entry.tv.bo) 312 p->gang_leader->uf_addr = uf_offset; 313 kvfree(chunk_array); 314 315 /* Use this opportunity to fill in task info for the vm */ 316 amdgpu_vm_set_task_info(vm); 317 318 return 0; 319 320 free_all_kdata: 321 i = p->nchunks - 1; 322 free_partial_kdata: 323 for (; i >= 0; i--) 324 kvfree(p->chunks[i].kdata); 325 kvfree(p->chunks); 326 p->chunks = NULL; 327 p->nchunks = 0; 328 free_chunk: 329 kvfree(chunk_array); 330 331 return ret; 332 } 333 334 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 335 struct amdgpu_cs_chunk *chunk, 336 unsigned int *ce_preempt, 337 unsigned int *de_preempt) 338 { 339 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 340 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 341 struct amdgpu_vm *vm = &fpriv->vm; 342 struct amdgpu_ring *ring; 343 struct amdgpu_job *job; 344 struct amdgpu_ib *ib; 345 int r; 346 347 r = amdgpu_cs_job_idx(p, chunk_ib); 348 if (r < 0) 349 return r; 350 351 job = p->jobs[r]; 352 ring = amdgpu_job_ring(job); 353 ib = &job->ibs[job->num_ibs++]; 354 355 /* MM engine doesn't support user fences */ 356 if (p->uf_entry.tv.bo && ring->funcs->no_user_fence) 357 return -EINVAL; 358 359 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 360 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 361 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 362 (*ce_preempt)++; 363 else 364 (*de_preempt)++; 365 366 /* Each GFX command submit allows only 1 IB max 367 * preemptible for CE & DE */ 368 if (*ce_preempt > 1 || *de_preempt > 1) 369 return -EINVAL; 370 } 371 372 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 373 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 374 375 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 376 chunk_ib->ib_bytes : 0, 377 AMDGPU_IB_POOL_DELAYED, ib); 378 if (r) { 379 DRM_ERROR("Failed to get ib !\n"); 380 return r; 381 } 382 383 ib->gpu_addr = chunk_ib->va_start; 384 ib->length_dw = chunk_ib->ib_bytes / 4; 385 ib->flags = chunk_ib->flags; 386 return 0; 387 } 388 389 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 390 struct amdgpu_cs_chunk *chunk) 391 { 392 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 393 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 394 unsigned num_deps; 395 int i, r; 396 397 num_deps = chunk->length_dw * 4 / 398 sizeof(struct drm_amdgpu_cs_chunk_dep); 399 400 for (i = 0; i < num_deps; ++i) { 401 struct amdgpu_ctx *ctx; 402 struct drm_sched_entity *entity; 403 struct dma_fence *fence; 404 405 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 406 if (ctx == NULL) 407 return -EINVAL; 408 409 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 410 deps[i].ip_instance, 411 deps[i].ring, &entity); 412 if (r) { 413 amdgpu_ctx_put(ctx); 414 return r; 415 } 416 417 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 418 amdgpu_ctx_put(ctx); 419 420 if (IS_ERR(fence)) 421 return PTR_ERR(fence); 422 else if (!fence) 423 continue; 424 425 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 426 struct drm_sched_fence *s_fence; 427 struct dma_fence *old = fence; 428 429 s_fence = to_drm_sched_fence(fence); 430 fence = dma_fence_get(&s_fence->scheduled); 431 dma_fence_put(old); 432 } 433 434 r = amdgpu_sync_fence(&p->sync, fence); 435 dma_fence_put(fence); 436 if (r) 437 return r; 438 } 439 return 0; 440 } 441 442 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 443 uint32_t handle, u64 point, 444 u64 flags) 445 { 446 struct dma_fence *fence; 447 int r; 448 449 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 450 if (r) { 451 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 452 handle, point, r); 453 return r; 454 } 455 456 r = amdgpu_sync_fence(&p->sync, fence); 457 dma_fence_put(fence); 458 return r; 459 } 460 461 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 462 struct amdgpu_cs_chunk *chunk) 463 { 464 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 465 unsigned num_deps; 466 int i, r; 467 468 num_deps = chunk->length_dw * 4 / 469 sizeof(struct drm_amdgpu_cs_chunk_sem); 470 for (i = 0; i < num_deps; ++i) { 471 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 472 if (r) 473 return r; 474 } 475 476 return 0; 477 } 478 479 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 480 struct amdgpu_cs_chunk *chunk) 481 { 482 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 483 unsigned num_deps; 484 int i, r; 485 486 num_deps = chunk->length_dw * 4 / 487 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 488 for (i = 0; i < num_deps; ++i) { 489 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 490 syncobj_deps[i].point, 491 syncobj_deps[i].flags); 492 if (r) 493 return r; 494 } 495 496 return 0; 497 } 498 499 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 500 struct amdgpu_cs_chunk *chunk) 501 { 502 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 503 unsigned num_deps; 504 int i; 505 506 num_deps = chunk->length_dw * 4 / 507 sizeof(struct drm_amdgpu_cs_chunk_sem); 508 509 if (p->post_deps) 510 return -EINVAL; 511 512 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 513 GFP_KERNEL); 514 p->num_post_deps = 0; 515 516 if (!p->post_deps) 517 return -ENOMEM; 518 519 520 for (i = 0; i < num_deps; ++i) { 521 p->post_deps[i].syncobj = 522 drm_syncobj_find(p->filp, deps[i].handle); 523 if (!p->post_deps[i].syncobj) 524 return -EINVAL; 525 p->post_deps[i].chain = NULL; 526 p->post_deps[i].point = 0; 527 p->num_post_deps++; 528 } 529 530 return 0; 531 } 532 533 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 534 struct amdgpu_cs_chunk *chunk) 535 { 536 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 537 unsigned num_deps; 538 int i; 539 540 num_deps = chunk->length_dw * 4 / 541 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 542 543 if (p->post_deps) 544 return -EINVAL; 545 546 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 547 GFP_KERNEL); 548 p->num_post_deps = 0; 549 550 if (!p->post_deps) 551 return -ENOMEM; 552 553 for (i = 0; i < num_deps; ++i) { 554 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 555 556 dep->chain = NULL; 557 if (syncobj_deps[i].point) { 558 dep->chain = dma_fence_chain_alloc(); 559 if (!dep->chain) 560 return -ENOMEM; 561 } 562 563 dep->syncobj = drm_syncobj_find(p->filp, 564 syncobj_deps[i].handle); 565 if (!dep->syncobj) { 566 dma_fence_chain_free(dep->chain); 567 return -EINVAL; 568 } 569 dep->point = syncobj_deps[i].point; 570 p->num_post_deps++; 571 } 572 573 return 0; 574 } 575 576 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 577 { 578 unsigned int ce_preempt = 0, de_preempt = 0; 579 int i, r; 580 581 for (i = 0; i < p->nchunks; ++i) { 582 struct amdgpu_cs_chunk *chunk; 583 584 chunk = &p->chunks[i]; 585 586 switch (chunk->chunk_id) { 587 case AMDGPU_CHUNK_ID_IB: 588 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 589 if (r) 590 return r; 591 break; 592 case AMDGPU_CHUNK_ID_DEPENDENCIES: 593 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 594 r = amdgpu_cs_p2_dependencies(p, chunk); 595 if (r) 596 return r; 597 break; 598 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 599 r = amdgpu_cs_p2_syncobj_in(p, chunk); 600 if (r) 601 return r; 602 break; 603 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 604 r = amdgpu_cs_p2_syncobj_out(p, chunk); 605 if (r) 606 return r; 607 break; 608 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 609 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 610 if (r) 611 return r; 612 break; 613 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 614 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 615 if (r) 616 return r; 617 break; 618 } 619 } 620 621 return 0; 622 } 623 624 /* Convert microseconds to bytes. */ 625 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 626 { 627 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 628 return 0; 629 630 /* Since accum_us is incremented by a million per second, just 631 * multiply it by the number of MB/s to get the number of bytes. 632 */ 633 return us << adev->mm_stats.log2_max_MBps; 634 } 635 636 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 637 { 638 if (!adev->mm_stats.log2_max_MBps) 639 return 0; 640 641 return bytes >> adev->mm_stats.log2_max_MBps; 642 } 643 644 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 645 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 646 * which means it can go over the threshold once. If that happens, the driver 647 * will be in debt and no other buffer migrations can be done until that debt 648 * is repaid. 649 * 650 * This approach allows moving a buffer of any size (it's important to allow 651 * that). 652 * 653 * The currency is simply time in microseconds and it increases as the clock 654 * ticks. The accumulated microseconds (us) are converted to bytes and 655 * returned. 656 */ 657 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 658 u64 *max_bytes, 659 u64 *max_vis_bytes) 660 { 661 s64 time_us, increment_us; 662 u64 free_vram, total_vram, used_vram; 663 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 664 * throttling. 665 * 666 * It means that in order to get full max MBps, at least 5 IBs per 667 * second must be submitted and not more than 200ms apart from each 668 * other. 669 */ 670 const s64 us_upper_bound = 200000; 671 672 if (!adev->mm_stats.log2_max_MBps) { 673 *max_bytes = 0; 674 *max_vis_bytes = 0; 675 return; 676 } 677 678 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 679 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 680 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 681 682 spin_lock(&adev->mm_stats.lock); 683 684 /* Increase the amount of accumulated us. */ 685 time_us = ktime_to_us(ktime_get()); 686 increment_us = time_us - adev->mm_stats.last_update_us; 687 adev->mm_stats.last_update_us = time_us; 688 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 689 us_upper_bound); 690 691 /* This prevents the short period of low performance when the VRAM 692 * usage is low and the driver is in debt or doesn't have enough 693 * accumulated us to fill VRAM quickly. 694 * 695 * The situation can occur in these cases: 696 * - a lot of VRAM is freed by userspace 697 * - the presence of a big buffer causes a lot of evictions 698 * (solution: split buffers into smaller ones) 699 * 700 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 701 * accum_us to a positive number. 702 */ 703 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 704 s64 min_us; 705 706 /* Be more aggressive on dGPUs. Try to fill a portion of free 707 * VRAM now. 708 */ 709 if (!(adev->flags & AMD_IS_APU)) 710 min_us = bytes_to_us(adev, free_vram / 4); 711 else 712 min_us = 0; /* Reset accum_us on APUs. */ 713 714 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 715 } 716 717 /* This is set to 0 if the driver is in debt to disallow (optional) 718 * buffer moves. 719 */ 720 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 721 722 /* Do the same for visible VRAM if half of it is free */ 723 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 724 u64 total_vis_vram = adev->gmc.visible_vram_size; 725 u64 used_vis_vram = 726 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 727 728 if (used_vis_vram < total_vis_vram) { 729 u64 free_vis_vram = total_vis_vram - used_vis_vram; 730 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 731 increment_us, us_upper_bound); 732 733 if (free_vis_vram >= total_vis_vram / 2) 734 adev->mm_stats.accum_us_vis = 735 max(bytes_to_us(adev, free_vis_vram / 2), 736 adev->mm_stats.accum_us_vis); 737 } 738 739 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 740 } else { 741 *max_vis_bytes = 0; 742 } 743 744 spin_unlock(&adev->mm_stats.lock); 745 } 746 747 /* Report how many bytes have really been moved for the last command 748 * submission. This can result in a debt that can stop buffer migrations 749 * temporarily. 750 */ 751 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 752 u64 num_vis_bytes) 753 { 754 spin_lock(&adev->mm_stats.lock); 755 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 756 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 757 spin_unlock(&adev->mm_stats.lock); 758 } 759 760 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 761 { 762 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 763 struct amdgpu_cs_parser *p = param; 764 struct ttm_operation_ctx ctx = { 765 .interruptible = true, 766 .no_wait_gpu = false, 767 .resv = bo->tbo.base.resv 768 }; 769 uint32_t domain; 770 int r; 771 772 if (bo->tbo.pin_count) 773 return 0; 774 775 /* Don't move this buffer if we have depleted our allowance 776 * to move it. Don't move anything if the threshold is zero. 777 */ 778 if (p->bytes_moved < p->bytes_moved_threshold && 779 (!bo->tbo.base.dma_buf || 780 list_empty(&bo->tbo.base.dma_buf->attachments))) { 781 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 782 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 783 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 784 * visible VRAM if we've depleted our allowance to do 785 * that. 786 */ 787 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 788 domain = bo->preferred_domains; 789 else 790 domain = bo->allowed_domains; 791 } else { 792 domain = bo->preferred_domains; 793 } 794 } else { 795 domain = bo->allowed_domains; 796 } 797 798 retry: 799 amdgpu_bo_placement_from_domain(bo, domain); 800 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 801 802 p->bytes_moved += ctx.bytes_moved; 803 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 804 amdgpu_bo_in_cpu_visible_vram(bo)) 805 p->bytes_moved_vis += ctx.bytes_moved; 806 807 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 808 domain = bo->allowed_domains; 809 goto retry; 810 } 811 812 return r; 813 } 814 815 static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p, 816 struct list_head *validated) 817 { 818 struct ttm_operation_ctx ctx = { true, false }; 819 struct amdgpu_bo_list_entry *lobj; 820 int r; 821 822 list_for_each_entry(lobj, validated, tv.head) { 823 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo); 824 struct mm_struct *usermm; 825 826 usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm); 827 if (usermm && usermm != current->mm) 828 return -EPERM; 829 830 if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) && 831 lobj->user_invalidated && lobj->user_pages) { 832 amdgpu_bo_placement_from_domain(bo, 833 AMDGPU_GEM_DOMAIN_CPU); 834 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 835 if (r) 836 return r; 837 838 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, 839 lobj->user_pages); 840 } 841 842 r = amdgpu_cs_bo_validate(p, bo); 843 if (r) 844 return r; 845 846 kvfree(lobj->user_pages); 847 lobj->user_pages = NULL; 848 } 849 return 0; 850 } 851 852 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 853 union drm_amdgpu_cs *cs) 854 { 855 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 856 struct amdgpu_vm *vm = &fpriv->vm; 857 struct amdgpu_bo_list_entry *e; 858 struct list_head duplicates; 859 unsigned int i; 860 int r; 861 862 INIT_LIST_HEAD(&p->validated); 863 864 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 865 if (cs->in.bo_list_handle) { 866 if (p->bo_list) 867 return -EINVAL; 868 869 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 870 &p->bo_list); 871 if (r) 872 return r; 873 } else if (!p->bo_list) { 874 /* Create a empty bo_list when no handle is provided */ 875 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 876 &p->bo_list); 877 if (r) 878 return r; 879 } 880 881 mutex_lock(&p->bo_list->bo_list_mutex); 882 883 /* One for TTM and one for the CS job */ 884 amdgpu_bo_list_for_each_entry(e, p->bo_list) 885 e->tv.num_shared = 2; 886 887 amdgpu_bo_list_get_list(p->bo_list, &p->validated); 888 889 INIT_LIST_HEAD(&duplicates); 890 amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd); 891 892 if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent) 893 list_add(&p->uf_entry.tv.head, &p->validated); 894 895 /* Get userptr backing pages. If pages are updated after registered 896 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 897 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 898 */ 899 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 900 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 901 bool userpage_invalidated = false; 902 int i; 903 904 e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, 905 sizeof(struct page *), 906 GFP_KERNEL | __GFP_ZERO); 907 if (!e->user_pages) { 908 DRM_ERROR("kvmalloc_array failure\n"); 909 r = -ENOMEM; 910 goto out_free_user_pages; 911 } 912 913 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 914 if (r) { 915 kvfree(e->user_pages); 916 e->user_pages = NULL; 917 goto out_free_user_pages; 918 } 919 920 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 921 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 922 userpage_invalidated = true; 923 break; 924 } 925 } 926 e->user_invalidated = userpage_invalidated; 927 } 928 929 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, 930 &duplicates); 931 if (unlikely(r != 0)) { 932 if (r != -ERESTARTSYS) 933 DRM_ERROR("ttm_eu_reserve_buffers failed.\n"); 934 goto out_free_user_pages; 935 } 936 937 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 938 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 939 940 e->bo_va = amdgpu_vm_bo_find(vm, bo); 941 } 942 943 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 944 &p->bytes_moved_vis_threshold); 945 p->bytes_moved = 0; 946 p->bytes_moved_vis = 0; 947 948 r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm, 949 amdgpu_cs_bo_validate, p); 950 if (r) { 951 DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n"); 952 goto error_validate; 953 } 954 955 r = amdgpu_cs_list_validate(p, &duplicates); 956 if (r) 957 goto error_validate; 958 959 r = amdgpu_cs_list_validate(p, &p->validated); 960 if (r) 961 goto error_validate; 962 963 if (p->uf_entry.tv.bo) { 964 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo); 965 966 r = amdgpu_ttm_alloc_gart(&uf->tbo); 967 if (r) 968 goto error_validate; 969 970 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(uf); 971 } 972 973 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 974 p->bytes_moved_vis); 975 976 for (i = 0; i < p->gang_size; ++i) 977 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 978 p->bo_list->gws_obj, 979 p->bo_list->oa_obj); 980 return 0; 981 982 error_validate: 983 ttm_eu_backoff_reservation(&p->ticket, &p->validated); 984 985 out_free_user_pages: 986 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 987 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 988 989 if (!e->user_pages) 990 continue; 991 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 992 kvfree(e->user_pages); 993 e->user_pages = NULL; 994 e->range = NULL; 995 } 996 mutex_unlock(&p->bo_list->bo_list_mutex); 997 return r; 998 } 999 1000 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1001 { 1002 int i, j; 1003 1004 if (!trace_amdgpu_cs_enabled()) 1005 return; 1006 1007 for (i = 0; i < p->gang_size; ++i) { 1008 struct amdgpu_job *job = p->jobs[i]; 1009 1010 for (j = 0; j < job->num_ibs; ++j) 1011 trace_amdgpu_cs(p, job, &job->ibs[j]); 1012 } 1013 } 1014 1015 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1016 struct amdgpu_job *job) 1017 { 1018 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1019 unsigned int i; 1020 int r; 1021 1022 /* Only for UVD/VCE VM emulation */ 1023 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1024 return 0; 1025 1026 for (i = 0; i < job->num_ibs; ++i) { 1027 struct amdgpu_ib *ib = &job->ibs[i]; 1028 struct amdgpu_bo_va_mapping *m; 1029 struct amdgpu_bo *aobj; 1030 uint64_t va_start; 1031 uint8_t *kptr; 1032 1033 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1034 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1035 if (r) { 1036 DRM_ERROR("IB va_start is invalid\n"); 1037 return r; 1038 } 1039 1040 if ((va_start + ib->length_dw * 4) > 1041 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1042 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1043 return -EINVAL; 1044 } 1045 1046 /* the IB should be reserved at this point */ 1047 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1048 if (r) { 1049 return r; 1050 } 1051 1052 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1053 1054 if (ring->funcs->parse_cs) { 1055 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1056 amdgpu_bo_kunmap(aobj); 1057 1058 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1059 if (r) 1060 return r; 1061 } else { 1062 ib->ptr = (uint32_t *)kptr; 1063 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1064 amdgpu_bo_kunmap(aobj); 1065 if (r) 1066 return r; 1067 } 1068 } 1069 1070 return 0; 1071 } 1072 1073 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1074 { 1075 unsigned int i; 1076 int r; 1077 1078 for (i = 0; i < p->gang_size; ++i) { 1079 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1080 if (r) 1081 return r; 1082 } 1083 return 0; 1084 } 1085 1086 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1087 { 1088 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1089 struct amdgpu_job *job = p->gang_leader; 1090 struct amdgpu_device *adev = p->adev; 1091 struct amdgpu_vm *vm = &fpriv->vm; 1092 struct amdgpu_bo_list_entry *e; 1093 struct amdgpu_bo_va *bo_va; 1094 struct amdgpu_bo *bo; 1095 unsigned int i; 1096 int r; 1097 1098 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1099 if (r) 1100 return r; 1101 1102 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1103 if (r) 1104 return r; 1105 1106 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update); 1107 if (r) 1108 return r; 1109 1110 if (fpriv->csa_va) { 1111 bo_va = fpriv->csa_va; 1112 BUG_ON(!bo_va); 1113 r = amdgpu_vm_bo_update(adev, bo_va, false); 1114 if (r) 1115 return r; 1116 1117 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1118 if (r) 1119 return r; 1120 } 1121 1122 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1123 /* ignore duplicates */ 1124 bo = ttm_to_amdgpu_bo(e->tv.bo); 1125 if (!bo) 1126 continue; 1127 1128 bo_va = e->bo_va; 1129 if (bo_va == NULL) 1130 continue; 1131 1132 r = amdgpu_vm_bo_update(adev, bo_va, false); 1133 if (r) 1134 return r; 1135 1136 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1137 if (r) 1138 return r; 1139 } 1140 1141 r = amdgpu_vm_handle_moved(adev, vm); 1142 if (r) 1143 return r; 1144 1145 r = amdgpu_vm_update_pdes(adev, vm, false); 1146 if (r) 1147 return r; 1148 1149 r = amdgpu_sync_fence(&p->sync, vm->last_update); 1150 if (r) 1151 return r; 1152 1153 for (i = 0; i < p->gang_size; ++i) { 1154 job = p->jobs[i]; 1155 1156 if (!job->vm) 1157 continue; 1158 1159 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1160 } 1161 1162 if (amdgpu_vm_debug) { 1163 /* Invalidate all BOs to test for userspace bugs */ 1164 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1165 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1166 1167 /* ignore duplicates */ 1168 if (!bo) 1169 continue; 1170 1171 amdgpu_vm_bo_invalidate(adev, bo, false); 1172 } 1173 } 1174 1175 return 0; 1176 } 1177 1178 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1179 { 1180 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1181 struct drm_gpu_scheduler *sched; 1182 struct amdgpu_bo_list_entry *e; 1183 struct dma_fence *fence; 1184 unsigned int i; 1185 int r; 1186 1187 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1188 if (r) { 1189 if (r != -ERESTARTSYS) 1190 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1191 return r; 1192 } 1193 1194 list_for_each_entry(e, &p->validated, tv.head) { 1195 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1196 struct dma_resv *resv = bo->tbo.base.resv; 1197 enum amdgpu_sync_mode sync_mode; 1198 1199 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1200 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1201 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1202 &fpriv->vm); 1203 if (r) 1204 return r; 1205 } 1206 1207 for (i = 0; i < p->gang_size; ++i) { 1208 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1209 if (r) 1210 return r; 1211 } 1212 1213 sched = p->gang_leader->base.entity->rq->sched; 1214 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1215 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1216 1217 /* 1218 * When we have an dependency it might be necessary to insert a 1219 * pipeline sync to make sure that all caches etc are flushed and the 1220 * next job actually sees the results from the previous one 1221 * before we start executing on the same scheduler ring. 1222 */ 1223 if (!s_fence || s_fence->sched != sched) 1224 continue; 1225 1226 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence); 1227 if (r) 1228 return r; 1229 } 1230 return 0; 1231 } 1232 1233 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1234 { 1235 int i; 1236 1237 for (i = 0; i < p->num_post_deps; ++i) { 1238 if (p->post_deps[i].chain && p->post_deps[i].point) { 1239 drm_syncobj_add_point(p->post_deps[i].syncobj, 1240 p->post_deps[i].chain, 1241 p->fence, p->post_deps[i].point); 1242 p->post_deps[i].chain = NULL; 1243 } else { 1244 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1245 p->fence); 1246 } 1247 } 1248 } 1249 1250 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1251 union drm_amdgpu_cs *cs) 1252 { 1253 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1254 struct amdgpu_job *leader = p->gang_leader; 1255 struct amdgpu_bo_list_entry *e; 1256 unsigned int i; 1257 uint64_t seq; 1258 int r; 1259 1260 for (i = 0; i < p->gang_size; ++i) 1261 drm_sched_job_arm(&p->jobs[i]->base); 1262 1263 for (i = 0; i < p->gang_size; ++i) { 1264 struct dma_fence *fence; 1265 1266 if (p->jobs[i] == leader) 1267 continue; 1268 1269 fence = &p->jobs[i]->base.s_fence->scheduled; 1270 dma_fence_get(fence); 1271 r = drm_sched_job_add_dependency(&leader->base, fence); 1272 if (r) { 1273 dma_fence_put(fence); 1274 goto error_cleanup; 1275 } 1276 } 1277 1278 if (p->gang_size > 1) { 1279 for (i = 0; i < p->gang_size; ++i) 1280 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1281 } 1282 1283 /* No memory allocation is allowed while holding the notifier lock. 1284 * The lock is held until amdgpu_cs_submit is finished and fence is 1285 * added to BOs. 1286 */ 1287 mutex_lock(&p->adev->notifier_lock); 1288 1289 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1290 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1291 */ 1292 r = 0; 1293 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1294 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1295 1296 r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1297 e->range = NULL; 1298 } 1299 if (r) { 1300 r = -EAGAIN; 1301 goto error_unlock; 1302 } 1303 1304 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1305 list_for_each_entry(e, &p->validated, tv.head) { 1306 1307 /* Everybody except for the gang leader uses READ */ 1308 for (i = 0; i < p->gang_size; ++i) { 1309 if (p->jobs[i] == leader) 1310 continue; 1311 1312 dma_resv_add_fence(e->tv.bo->base.resv, 1313 &p->jobs[i]->base.s_fence->finished, 1314 DMA_RESV_USAGE_READ); 1315 } 1316 1317 /* The gang leader is remembered as writer */ 1318 e->tv.num_shared = 0; 1319 } 1320 1321 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1322 p->fence); 1323 amdgpu_cs_post_dependencies(p); 1324 1325 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1326 !p->ctx->preamble_presented) { 1327 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1328 p->ctx->preamble_presented = true; 1329 } 1330 1331 cs->out.handle = seq; 1332 leader->uf_sequence = seq; 1333 1334 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket); 1335 for (i = 0; i < p->gang_size; ++i) { 1336 amdgpu_job_free_resources(p->jobs[i]); 1337 trace_amdgpu_cs_ioctl(p->jobs[i]); 1338 drm_sched_entity_push_job(&p->jobs[i]->base); 1339 p->jobs[i] = NULL; 1340 } 1341 1342 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1343 ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence); 1344 1345 mutex_unlock(&p->adev->notifier_lock); 1346 mutex_unlock(&p->bo_list->bo_list_mutex); 1347 return 0; 1348 1349 error_unlock: 1350 mutex_unlock(&p->adev->notifier_lock); 1351 1352 error_cleanup: 1353 for (i = 0; i < p->gang_size; ++i) 1354 drm_sched_job_cleanup(&p->jobs[i]->base); 1355 return r; 1356 } 1357 1358 /* Cleanup the parser structure */ 1359 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1360 { 1361 unsigned i; 1362 1363 amdgpu_sync_free(&parser->sync); 1364 for (i = 0; i < parser->num_post_deps; i++) { 1365 drm_syncobj_put(parser->post_deps[i].syncobj); 1366 kfree(parser->post_deps[i].chain); 1367 } 1368 kfree(parser->post_deps); 1369 1370 dma_fence_put(parser->fence); 1371 1372 if (parser->ctx) 1373 amdgpu_ctx_put(parser->ctx); 1374 if (parser->bo_list) 1375 amdgpu_bo_list_put(parser->bo_list); 1376 1377 for (i = 0; i < parser->nchunks; i++) 1378 kvfree(parser->chunks[i].kdata); 1379 kvfree(parser->chunks); 1380 for (i = 0; i < parser->gang_size; ++i) { 1381 if (parser->jobs[i]) 1382 amdgpu_job_free(parser->jobs[i]); 1383 } 1384 if (parser->uf_entry.tv.bo) { 1385 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo); 1386 1387 amdgpu_bo_unref(&uf); 1388 } 1389 } 1390 1391 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1392 { 1393 struct amdgpu_device *adev = drm_to_adev(dev); 1394 struct amdgpu_cs_parser parser; 1395 int r; 1396 1397 if (amdgpu_ras_intr_triggered()) 1398 return -EHWPOISON; 1399 1400 if (!adev->accel_working) 1401 return -EBUSY; 1402 1403 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1404 if (r) { 1405 if (printk_ratelimit()) 1406 DRM_ERROR("Failed to initialize parser %d!\n", r); 1407 return r; 1408 } 1409 1410 r = amdgpu_cs_pass1(&parser, data); 1411 if (r) 1412 goto error_fini; 1413 1414 r = amdgpu_cs_pass2(&parser); 1415 if (r) 1416 goto error_fini; 1417 1418 r = amdgpu_cs_parser_bos(&parser, data); 1419 if (r) { 1420 if (r == -ENOMEM) 1421 DRM_ERROR("Not enough memory for command submission!\n"); 1422 else if (r != -ERESTARTSYS && r != -EAGAIN) 1423 DRM_ERROR("Failed to process the buffer list %d!\n", r); 1424 goto error_fini; 1425 } 1426 1427 r = amdgpu_cs_patch_jobs(&parser); 1428 if (r) 1429 goto error_backoff; 1430 1431 r = amdgpu_cs_vm_handling(&parser); 1432 if (r) 1433 goto error_backoff; 1434 1435 r = amdgpu_cs_sync_rings(&parser); 1436 if (r) 1437 goto error_backoff; 1438 1439 trace_amdgpu_cs_ibs(&parser); 1440 1441 r = amdgpu_cs_submit(&parser, data); 1442 if (r) 1443 goto error_backoff; 1444 1445 amdgpu_cs_parser_fini(&parser); 1446 return 0; 1447 1448 error_backoff: 1449 ttm_eu_backoff_reservation(&parser.ticket, &parser.validated); 1450 mutex_unlock(&parser.bo_list->bo_list_mutex); 1451 1452 error_fini: 1453 amdgpu_cs_parser_fini(&parser); 1454 return r; 1455 } 1456 1457 /** 1458 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1459 * 1460 * @dev: drm device 1461 * @data: data from userspace 1462 * @filp: file private 1463 * 1464 * Wait for the command submission identified by handle to finish. 1465 */ 1466 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1467 struct drm_file *filp) 1468 { 1469 union drm_amdgpu_wait_cs *wait = data; 1470 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1471 struct drm_sched_entity *entity; 1472 struct amdgpu_ctx *ctx; 1473 struct dma_fence *fence; 1474 long r; 1475 1476 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1477 if (ctx == NULL) 1478 return -EINVAL; 1479 1480 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1481 wait->in.ring, &entity); 1482 if (r) { 1483 amdgpu_ctx_put(ctx); 1484 return r; 1485 } 1486 1487 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1488 if (IS_ERR(fence)) 1489 r = PTR_ERR(fence); 1490 else if (fence) { 1491 r = dma_fence_wait_timeout(fence, true, timeout); 1492 if (r > 0 && fence->error) 1493 r = fence->error; 1494 dma_fence_put(fence); 1495 } else 1496 r = 1; 1497 1498 amdgpu_ctx_put(ctx); 1499 if (r < 0) 1500 return r; 1501 1502 memset(wait, 0, sizeof(*wait)); 1503 wait->out.status = (r == 0); 1504 1505 return 0; 1506 } 1507 1508 /** 1509 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1510 * 1511 * @adev: amdgpu device 1512 * @filp: file private 1513 * @user: drm_amdgpu_fence copied from user space 1514 */ 1515 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1516 struct drm_file *filp, 1517 struct drm_amdgpu_fence *user) 1518 { 1519 struct drm_sched_entity *entity; 1520 struct amdgpu_ctx *ctx; 1521 struct dma_fence *fence; 1522 int r; 1523 1524 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1525 if (ctx == NULL) 1526 return ERR_PTR(-EINVAL); 1527 1528 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1529 user->ring, &entity); 1530 if (r) { 1531 amdgpu_ctx_put(ctx); 1532 return ERR_PTR(r); 1533 } 1534 1535 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1536 amdgpu_ctx_put(ctx); 1537 1538 return fence; 1539 } 1540 1541 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1542 struct drm_file *filp) 1543 { 1544 struct amdgpu_device *adev = drm_to_adev(dev); 1545 union drm_amdgpu_fence_to_handle *info = data; 1546 struct dma_fence *fence; 1547 struct drm_syncobj *syncobj; 1548 struct sync_file *sync_file; 1549 int fd, r; 1550 1551 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1552 if (IS_ERR(fence)) 1553 return PTR_ERR(fence); 1554 1555 if (!fence) 1556 fence = dma_fence_get_stub(); 1557 1558 switch (info->in.what) { 1559 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1560 r = drm_syncobj_create(&syncobj, 0, fence); 1561 dma_fence_put(fence); 1562 if (r) 1563 return r; 1564 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1565 drm_syncobj_put(syncobj); 1566 return r; 1567 1568 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1569 r = drm_syncobj_create(&syncobj, 0, fence); 1570 dma_fence_put(fence); 1571 if (r) 1572 return r; 1573 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1574 drm_syncobj_put(syncobj); 1575 return r; 1576 1577 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1578 fd = get_unused_fd_flags(O_CLOEXEC); 1579 if (fd < 0) { 1580 dma_fence_put(fence); 1581 return fd; 1582 } 1583 1584 sync_file = sync_file_create(fence); 1585 dma_fence_put(fence); 1586 if (!sync_file) { 1587 put_unused_fd(fd); 1588 return -ENOMEM; 1589 } 1590 1591 fd_install(fd, sync_file->file); 1592 info->out.handle = fd; 1593 return 0; 1594 1595 default: 1596 dma_fence_put(fence); 1597 return -EINVAL; 1598 } 1599 } 1600 1601 /** 1602 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1603 * 1604 * @adev: amdgpu device 1605 * @filp: file private 1606 * @wait: wait parameters 1607 * @fences: array of drm_amdgpu_fence 1608 */ 1609 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1610 struct drm_file *filp, 1611 union drm_amdgpu_wait_fences *wait, 1612 struct drm_amdgpu_fence *fences) 1613 { 1614 uint32_t fence_count = wait->in.fence_count; 1615 unsigned int i; 1616 long r = 1; 1617 1618 for (i = 0; i < fence_count; i++) { 1619 struct dma_fence *fence; 1620 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1621 1622 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1623 if (IS_ERR(fence)) 1624 return PTR_ERR(fence); 1625 else if (!fence) 1626 continue; 1627 1628 r = dma_fence_wait_timeout(fence, true, timeout); 1629 dma_fence_put(fence); 1630 if (r < 0) 1631 return r; 1632 1633 if (r == 0) 1634 break; 1635 1636 if (fence->error) 1637 return fence->error; 1638 } 1639 1640 memset(wait, 0, sizeof(*wait)); 1641 wait->out.status = (r > 0); 1642 1643 return 0; 1644 } 1645 1646 /** 1647 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1648 * 1649 * @adev: amdgpu device 1650 * @filp: file private 1651 * @wait: wait parameters 1652 * @fences: array of drm_amdgpu_fence 1653 */ 1654 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1655 struct drm_file *filp, 1656 union drm_amdgpu_wait_fences *wait, 1657 struct drm_amdgpu_fence *fences) 1658 { 1659 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1660 uint32_t fence_count = wait->in.fence_count; 1661 uint32_t first = ~0; 1662 struct dma_fence **array; 1663 unsigned int i; 1664 long r; 1665 1666 /* Prepare the fence array */ 1667 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1668 1669 if (array == NULL) 1670 return -ENOMEM; 1671 1672 for (i = 0; i < fence_count; i++) { 1673 struct dma_fence *fence; 1674 1675 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1676 if (IS_ERR(fence)) { 1677 r = PTR_ERR(fence); 1678 goto err_free_fence_array; 1679 } else if (fence) { 1680 array[i] = fence; 1681 } else { /* NULL, the fence has been already signaled */ 1682 r = 1; 1683 first = i; 1684 goto out; 1685 } 1686 } 1687 1688 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1689 &first); 1690 if (r < 0) 1691 goto err_free_fence_array; 1692 1693 out: 1694 memset(wait, 0, sizeof(*wait)); 1695 wait->out.status = (r > 0); 1696 wait->out.first_signaled = first; 1697 1698 if (first < fence_count && array[first]) 1699 r = array[first]->error; 1700 else 1701 r = 0; 1702 1703 err_free_fence_array: 1704 for (i = 0; i < fence_count; i++) 1705 dma_fence_put(array[i]); 1706 kfree(array); 1707 1708 return r; 1709 } 1710 1711 /** 1712 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1713 * 1714 * @dev: drm device 1715 * @data: data from userspace 1716 * @filp: file private 1717 */ 1718 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1719 struct drm_file *filp) 1720 { 1721 struct amdgpu_device *adev = drm_to_adev(dev); 1722 union drm_amdgpu_wait_fences *wait = data; 1723 uint32_t fence_count = wait->in.fence_count; 1724 struct drm_amdgpu_fence *fences_user; 1725 struct drm_amdgpu_fence *fences; 1726 int r; 1727 1728 /* Get the fences from userspace */ 1729 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1730 GFP_KERNEL); 1731 if (fences == NULL) 1732 return -ENOMEM; 1733 1734 fences_user = u64_to_user_ptr(wait->in.fences); 1735 if (copy_from_user(fences, fences_user, 1736 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1737 r = -EFAULT; 1738 goto err_free_fences; 1739 } 1740 1741 if (wait->in.wait_all) 1742 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1743 else 1744 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1745 1746 err_free_fences: 1747 kfree(fences); 1748 1749 return r; 1750 } 1751 1752 /** 1753 * amdgpu_cs_find_mapping - find bo_va for VM address 1754 * 1755 * @parser: command submission parser context 1756 * @addr: VM address 1757 * @bo: resulting BO of the mapping found 1758 * @map: Placeholder to return found BO mapping 1759 * 1760 * Search the buffer objects in the command submission context for a certain 1761 * virtual memory address. Returns allocation structure when found, NULL 1762 * otherwise. 1763 */ 1764 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1765 uint64_t addr, struct amdgpu_bo **bo, 1766 struct amdgpu_bo_va_mapping **map) 1767 { 1768 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1769 struct ttm_operation_ctx ctx = { false, false }; 1770 struct amdgpu_vm *vm = &fpriv->vm; 1771 struct amdgpu_bo_va_mapping *mapping; 1772 int r; 1773 1774 addr /= AMDGPU_GPU_PAGE_SIZE; 1775 1776 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1777 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1778 return -EINVAL; 1779 1780 *bo = mapping->bo_va->base.bo; 1781 *map = mapping; 1782 1783 /* Double check that the BO is reserved by this CS */ 1784 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket) 1785 return -EINVAL; 1786 1787 if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) { 1788 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1789 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1790 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1791 if (r) 1792 return r; 1793 } 1794 1795 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1796 } 1797