1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include "amdgpu_cs.h" 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_gmc.h" 39 #include "amdgpu_gem.h" 40 #include "amdgpu_ras.h" 41 42 static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p, 43 struct drm_amdgpu_cs_chunk_fence *data, 44 uint32_t *offset) 45 { 46 struct drm_gem_object *gobj; 47 struct amdgpu_bo *bo; 48 unsigned long size; 49 int r; 50 51 gobj = drm_gem_object_lookup(p->filp, data->handle); 52 if (gobj == NULL) 53 return -EINVAL; 54 55 bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 56 p->uf_entry.priority = 0; 57 p->uf_entry.tv.bo = &bo->tbo; 58 /* One for TTM and one for the CS job */ 59 p->uf_entry.tv.num_shared = 2; 60 61 drm_gem_object_put(gobj); 62 63 size = amdgpu_bo_size(bo); 64 if (size != PAGE_SIZE || (data->offset + 8) > size) { 65 r = -EINVAL; 66 goto error_unref; 67 } 68 69 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 70 r = -EINVAL; 71 goto error_unref; 72 } 73 74 *offset = data->offset; 75 76 return 0; 77 78 error_unref: 79 amdgpu_bo_unref(&bo); 80 return r; 81 } 82 83 static int amdgpu_cs_bo_handles_chunk(struct amdgpu_cs_parser *p, 84 struct drm_amdgpu_bo_list_in *data) 85 { 86 int r; 87 struct drm_amdgpu_bo_list_entry *info = NULL; 88 89 r = amdgpu_bo_create_list_entry_array(data, &info); 90 if (r) 91 return r; 92 93 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 94 &p->bo_list); 95 if (r) 96 goto error_free; 97 98 kvfree(info); 99 return 0; 100 101 error_free: 102 kvfree(info); 103 104 return r; 105 } 106 107 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, union drm_amdgpu_cs *cs) 108 { 109 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 110 struct amdgpu_vm *vm = &fpriv->vm; 111 uint64_t *chunk_array_user; 112 uint64_t *chunk_array; 113 unsigned size, num_ibs = 0; 114 uint32_t uf_offset = 0; 115 int i; 116 int ret; 117 118 if (cs->in.num_chunks == 0) 119 return 0; 120 121 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL); 122 if (!chunk_array) 123 return -ENOMEM; 124 125 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 126 if (!p->ctx) { 127 ret = -EINVAL; 128 goto free_chunk; 129 } 130 131 /* skip guilty context job */ 132 if (atomic_read(&p->ctx->guilty) == 1) { 133 ret = -ECANCELED; 134 goto free_chunk; 135 } 136 137 /* get chunks */ 138 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 139 if (copy_from_user(chunk_array, chunk_array_user, 140 sizeof(uint64_t)*cs->in.num_chunks)) { 141 ret = -EFAULT; 142 goto free_chunk; 143 } 144 145 p->nchunks = cs->in.num_chunks; 146 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 147 GFP_KERNEL); 148 if (!p->chunks) { 149 ret = -ENOMEM; 150 goto free_chunk; 151 } 152 153 for (i = 0; i < p->nchunks; i++) { 154 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; 155 struct drm_amdgpu_cs_chunk user_chunk; 156 uint32_t __user *cdata; 157 158 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 159 if (copy_from_user(&user_chunk, chunk_ptr, 160 sizeof(struct drm_amdgpu_cs_chunk))) { 161 ret = -EFAULT; 162 i--; 163 goto free_partial_kdata; 164 } 165 p->chunks[i].chunk_id = user_chunk.chunk_id; 166 p->chunks[i].length_dw = user_chunk.length_dw; 167 168 size = p->chunks[i].length_dw; 169 cdata = u64_to_user_ptr(user_chunk.chunk_data); 170 171 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), GFP_KERNEL); 172 if (p->chunks[i].kdata == NULL) { 173 ret = -ENOMEM; 174 i--; 175 goto free_partial_kdata; 176 } 177 size *= sizeof(uint32_t); 178 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 179 ret = -EFAULT; 180 goto free_partial_kdata; 181 } 182 183 switch (p->chunks[i].chunk_id) { 184 case AMDGPU_CHUNK_ID_IB: 185 ++num_ibs; 186 break; 187 188 case AMDGPU_CHUNK_ID_FENCE: 189 size = sizeof(struct drm_amdgpu_cs_chunk_fence); 190 if (p->chunks[i].length_dw * sizeof(uint32_t) < size) { 191 ret = -EINVAL; 192 goto free_partial_kdata; 193 } 194 195 ret = amdgpu_cs_user_fence_chunk(p, p->chunks[i].kdata, 196 &uf_offset); 197 if (ret) 198 goto free_partial_kdata; 199 200 break; 201 202 case AMDGPU_CHUNK_ID_BO_HANDLES: 203 size = sizeof(struct drm_amdgpu_bo_list_in); 204 if (p->chunks[i].length_dw * sizeof(uint32_t) < size) { 205 ret = -EINVAL; 206 goto free_partial_kdata; 207 } 208 209 ret = amdgpu_cs_bo_handles_chunk(p, p->chunks[i].kdata); 210 if (ret) 211 goto free_partial_kdata; 212 213 break; 214 215 case AMDGPU_CHUNK_ID_DEPENDENCIES: 216 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 217 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 218 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 219 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 220 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 221 break; 222 223 default: 224 ret = -EINVAL; 225 goto free_partial_kdata; 226 } 227 } 228 229 ret = amdgpu_job_alloc(p->adev, num_ibs, &p->job, vm); 230 if (ret) 231 goto free_all_kdata; 232 233 if (p->ctx->vram_lost_counter != p->job->vram_lost_counter) { 234 ret = -ECANCELED; 235 goto free_all_kdata; 236 } 237 238 if (p->uf_entry.tv.bo) 239 p->job->uf_addr = uf_offset; 240 kvfree(chunk_array); 241 242 /* Use this opportunity to fill in task info for the vm */ 243 amdgpu_vm_set_task_info(vm); 244 245 return 0; 246 247 free_all_kdata: 248 i = p->nchunks - 1; 249 free_partial_kdata: 250 for (; i >= 0; i--) 251 kvfree(p->chunks[i].kdata); 252 kvfree(p->chunks); 253 p->chunks = NULL; 254 p->nchunks = 0; 255 free_chunk: 256 kvfree(chunk_array); 257 258 return ret; 259 } 260 261 /* Convert microseconds to bytes. */ 262 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 263 { 264 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 265 return 0; 266 267 /* Since accum_us is incremented by a million per second, just 268 * multiply it by the number of MB/s to get the number of bytes. 269 */ 270 return us << adev->mm_stats.log2_max_MBps; 271 } 272 273 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 274 { 275 if (!adev->mm_stats.log2_max_MBps) 276 return 0; 277 278 return bytes >> adev->mm_stats.log2_max_MBps; 279 } 280 281 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 282 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 283 * which means it can go over the threshold once. If that happens, the driver 284 * will be in debt and no other buffer migrations can be done until that debt 285 * is repaid. 286 * 287 * This approach allows moving a buffer of any size (it's important to allow 288 * that). 289 * 290 * The currency is simply time in microseconds and it increases as the clock 291 * ticks. The accumulated microseconds (us) are converted to bytes and 292 * returned. 293 */ 294 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 295 u64 *max_bytes, 296 u64 *max_vis_bytes) 297 { 298 s64 time_us, increment_us; 299 u64 free_vram, total_vram, used_vram; 300 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 301 * throttling. 302 * 303 * It means that in order to get full max MBps, at least 5 IBs per 304 * second must be submitted and not more than 200ms apart from each 305 * other. 306 */ 307 const s64 us_upper_bound = 200000; 308 309 if (!adev->mm_stats.log2_max_MBps) { 310 *max_bytes = 0; 311 *max_vis_bytes = 0; 312 return; 313 } 314 315 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 316 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 317 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 318 319 spin_lock(&adev->mm_stats.lock); 320 321 /* Increase the amount of accumulated us. */ 322 time_us = ktime_to_us(ktime_get()); 323 increment_us = time_us - adev->mm_stats.last_update_us; 324 adev->mm_stats.last_update_us = time_us; 325 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 326 us_upper_bound); 327 328 /* This prevents the short period of low performance when the VRAM 329 * usage is low and the driver is in debt or doesn't have enough 330 * accumulated us to fill VRAM quickly. 331 * 332 * The situation can occur in these cases: 333 * - a lot of VRAM is freed by userspace 334 * - the presence of a big buffer causes a lot of evictions 335 * (solution: split buffers into smaller ones) 336 * 337 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 338 * accum_us to a positive number. 339 */ 340 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 341 s64 min_us; 342 343 /* Be more aggressive on dGPUs. Try to fill a portion of free 344 * VRAM now. 345 */ 346 if (!(adev->flags & AMD_IS_APU)) 347 min_us = bytes_to_us(adev, free_vram / 4); 348 else 349 min_us = 0; /* Reset accum_us on APUs. */ 350 351 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 352 } 353 354 /* This is set to 0 if the driver is in debt to disallow (optional) 355 * buffer moves. 356 */ 357 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 358 359 /* Do the same for visible VRAM if half of it is free */ 360 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 361 u64 total_vis_vram = adev->gmc.visible_vram_size; 362 u64 used_vis_vram = 363 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 364 365 if (used_vis_vram < total_vis_vram) { 366 u64 free_vis_vram = total_vis_vram - used_vis_vram; 367 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 368 increment_us, us_upper_bound); 369 370 if (free_vis_vram >= total_vis_vram / 2) 371 adev->mm_stats.accum_us_vis = 372 max(bytes_to_us(adev, free_vis_vram / 2), 373 adev->mm_stats.accum_us_vis); 374 } 375 376 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 377 } else { 378 *max_vis_bytes = 0; 379 } 380 381 spin_unlock(&adev->mm_stats.lock); 382 } 383 384 /* Report how many bytes have really been moved for the last command 385 * submission. This can result in a debt that can stop buffer migrations 386 * temporarily. 387 */ 388 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 389 u64 num_vis_bytes) 390 { 391 spin_lock(&adev->mm_stats.lock); 392 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 393 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 394 spin_unlock(&adev->mm_stats.lock); 395 } 396 397 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 398 { 399 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 400 struct amdgpu_cs_parser *p = param; 401 struct ttm_operation_ctx ctx = { 402 .interruptible = true, 403 .no_wait_gpu = false, 404 .resv = bo->tbo.base.resv 405 }; 406 uint32_t domain; 407 int r; 408 409 if (bo->tbo.pin_count) 410 return 0; 411 412 /* Don't move this buffer if we have depleted our allowance 413 * to move it. Don't move anything if the threshold is zero. 414 */ 415 if (p->bytes_moved < p->bytes_moved_threshold && 416 (!bo->tbo.base.dma_buf || 417 list_empty(&bo->tbo.base.dma_buf->attachments))) { 418 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 419 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 420 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 421 * visible VRAM if we've depleted our allowance to do 422 * that. 423 */ 424 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 425 domain = bo->preferred_domains; 426 else 427 domain = bo->allowed_domains; 428 } else { 429 domain = bo->preferred_domains; 430 } 431 } else { 432 domain = bo->allowed_domains; 433 } 434 435 retry: 436 amdgpu_bo_placement_from_domain(bo, domain); 437 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 438 439 p->bytes_moved += ctx.bytes_moved; 440 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 441 amdgpu_bo_in_cpu_visible_vram(bo)) 442 p->bytes_moved_vis += ctx.bytes_moved; 443 444 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 445 domain = bo->allowed_domains; 446 goto retry; 447 } 448 449 return r; 450 } 451 452 static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p, 453 struct list_head *validated) 454 { 455 struct ttm_operation_ctx ctx = { true, false }; 456 struct amdgpu_bo_list_entry *lobj; 457 int r; 458 459 list_for_each_entry(lobj, validated, tv.head) { 460 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo); 461 struct mm_struct *usermm; 462 463 usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm); 464 if (usermm && usermm != current->mm) 465 return -EPERM; 466 467 if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) && 468 lobj->user_invalidated && lobj->user_pages) { 469 amdgpu_bo_placement_from_domain(bo, 470 AMDGPU_GEM_DOMAIN_CPU); 471 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 472 if (r) 473 return r; 474 475 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, 476 lobj->user_pages); 477 } 478 479 r = amdgpu_cs_bo_validate(p, bo); 480 if (r) 481 return r; 482 483 kvfree(lobj->user_pages); 484 lobj->user_pages = NULL; 485 } 486 return 0; 487 } 488 489 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 490 union drm_amdgpu_cs *cs) 491 { 492 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 493 struct amdgpu_vm *vm = &fpriv->vm; 494 struct amdgpu_bo_list_entry *e; 495 struct list_head duplicates; 496 struct amdgpu_bo *gds; 497 struct amdgpu_bo *gws; 498 struct amdgpu_bo *oa; 499 int r; 500 501 INIT_LIST_HEAD(&p->validated); 502 503 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 504 if (cs->in.bo_list_handle) { 505 if (p->bo_list) 506 return -EINVAL; 507 508 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 509 &p->bo_list); 510 if (r) 511 return r; 512 } else if (!p->bo_list) { 513 /* Create a empty bo_list when no handle is provided */ 514 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 515 &p->bo_list); 516 if (r) 517 return r; 518 } 519 520 /* One for TTM and one for the CS job */ 521 amdgpu_bo_list_for_each_entry(e, p->bo_list) 522 e->tv.num_shared = 2; 523 524 amdgpu_bo_list_get_list(p->bo_list, &p->validated); 525 526 INIT_LIST_HEAD(&duplicates); 527 amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd); 528 529 if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent) 530 list_add(&p->uf_entry.tv.head, &p->validated); 531 532 /* Get userptr backing pages. If pages are updated after registered 533 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 534 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 535 */ 536 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 537 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 538 bool userpage_invalidated = false; 539 int i; 540 541 e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, 542 sizeof(struct page *), 543 GFP_KERNEL | __GFP_ZERO); 544 if (!e->user_pages) { 545 DRM_ERROR("kvmalloc_array failure\n"); 546 return -ENOMEM; 547 } 548 549 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages); 550 if (r) { 551 kvfree(e->user_pages); 552 e->user_pages = NULL; 553 return r; 554 } 555 556 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 557 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 558 userpage_invalidated = true; 559 break; 560 } 561 } 562 e->user_invalidated = userpage_invalidated; 563 } 564 565 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, 566 &duplicates); 567 if (unlikely(r != 0)) { 568 if (r != -ERESTARTSYS) 569 DRM_ERROR("ttm_eu_reserve_buffers failed.\n"); 570 goto out; 571 } 572 573 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 574 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 575 576 e->bo_va = amdgpu_vm_bo_find(vm, bo); 577 578 if (bo->tbo.base.dma_buf && !amdgpu_bo_explicit_sync(bo)) { 579 e->chain = dma_fence_chain_alloc(); 580 if (!e->chain) { 581 r = -ENOMEM; 582 goto error_validate; 583 } 584 } 585 } 586 587 /* Move fence waiting after getting reservation lock of 588 * PD root. Then there is no need on a ctx mutex lock. 589 */ 590 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entity); 591 if (unlikely(r != 0)) { 592 if (r != -ERESTARTSYS) 593 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 594 goto error_validate; 595 } 596 597 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 598 &p->bytes_moved_vis_threshold); 599 p->bytes_moved = 0; 600 p->bytes_moved_vis = 0; 601 602 r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm, 603 amdgpu_cs_bo_validate, p); 604 if (r) { 605 DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n"); 606 goto error_validate; 607 } 608 609 r = amdgpu_cs_list_validate(p, &duplicates); 610 if (r) 611 goto error_validate; 612 613 r = amdgpu_cs_list_validate(p, &p->validated); 614 if (r) 615 goto error_validate; 616 617 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 618 p->bytes_moved_vis); 619 620 gds = p->bo_list->gds_obj; 621 gws = p->bo_list->gws_obj; 622 oa = p->bo_list->oa_obj; 623 624 if (gds) { 625 p->job->gds_base = amdgpu_bo_gpu_offset(gds) >> PAGE_SHIFT; 626 p->job->gds_size = amdgpu_bo_size(gds) >> PAGE_SHIFT; 627 } 628 if (gws) { 629 p->job->gws_base = amdgpu_bo_gpu_offset(gws) >> PAGE_SHIFT; 630 p->job->gws_size = amdgpu_bo_size(gws) >> PAGE_SHIFT; 631 } 632 if (oa) { 633 p->job->oa_base = amdgpu_bo_gpu_offset(oa) >> PAGE_SHIFT; 634 p->job->oa_size = amdgpu_bo_size(oa) >> PAGE_SHIFT; 635 } 636 637 if (!r && p->uf_entry.tv.bo) { 638 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo); 639 640 r = amdgpu_ttm_alloc_gart(&uf->tbo); 641 p->job->uf_addr += amdgpu_bo_gpu_offset(uf); 642 } 643 644 error_validate: 645 if (r) { 646 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 647 dma_fence_chain_free(e->chain); 648 e->chain = NULL; 649 } 650 ttm_eu_backoff_reservation(&p->ticket, &p->validated); 651 } 652 out: 653 return r; 654 } 655 656 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 657 { 658 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 659 struct amdgpu_bo_list_entry *e; 660 int r; 661 662 list_for_each_entry(e, &p->validated, tv.head) { 663 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 664 struct dma_resv *resv = bo->tbo.base.resv; 665 enum amdgpu_sync_mode sync_mode; 666 667 sync_mode = amdgpu_bo_explicit_sync(bo) ? 668 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 669 r = amdgpu_sync_resv(p->adev, &p->job->sync, resv, sync_mode, 670 &fpriv->vm); 671 if (r) 672 return r; 673 } 674 return 0; 675 } 676 677 /** 678 * amdgpu_cs_parser_fini() - clean parser states 679 * @parser: parser structure holding parsing context. 680 * @error: error number 681 * @backoff: indicator to backoff the reservation 682 * 683 * If error is set then unvalidate buffer, otherwise just free memory 684 * used by parsing context. 685 **/ 686 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, 687 bool backoff) 688 { 689 unsigned i; 690 691 if (error && backoff) { 692 struct amdgpu_bo_list_entry *e; 693 694 amdgpu_bo_list_for_each_entry(e, parser->bo_list) { 695 dma_fence_chain_free(e->chain); 696 e->chain = NULL; 697 } 698 699 ttm_eu_backoff_reservation(&parser->ticket, 700 &parser->validated); 701 } 702 703 for (i = 0; i < parser->num_post_deps; i++) { 704 drm_syncobj_put(parser->post_deps[i].syncobj); 705 kfree(parser->post_deps[i].chain); 706 } 707 kfree(parser->post_deps); 708 709 dma_fence_put(parser->fence); 710 711 if (parser->ctx) { 712 amdgpu_ctx_put(parser->ctx); 713 } 714 if (parser->bo_list) 715 amdgpu_bo_list_put(parser->bo_list); 716 717 for (i = 0; i < parser->nchunks; i++) 718 kvfree(parser->chunks[i].kdata); 719 kvfree(parser->chunks); 720 if (parser->job) 721 amdgpu_job_free(parser->job); 722 if (parser->uf_entry.tv.bo) { 723 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo); 724 725 amdgpu_bo_unref(&uf); 726 } 727 } 728 729 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 730 { 731 struct amdgpu_ring *ring = to_amdgpu_ring(p->entity->rq->sched); 732 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 733 struct amdgpu_device *adev = p->adev; 734 struct amdgpu_vm *vm = &fpriv->vm; 735 struct amdgpu_bo_list_entry *e; 736 struct amdgpu_bo_va *bo_va; 737 struct amdgpu_bo *bo; 738 int r; 739 740 /* Only for UVD/VCE VM emulation */ 741 if (ring->funcs->parse_cs || ring->funcs->patch_cs_in_place) { 742 unsigned i, j; 743 744 for (i = 0, j = 0; i < p->nchunks && j < p->job->num_ibs; i++) { 745 struct drm_amdgpu_cs_chunk_ib *chunk_ib; 746 struct amdgpu_bo_va_mapping *m; 747 struct amdgpu_bo *aobj = NULL; 748 struct amdgpu_cs_chunk *chunk; 749 uint64_t offset, va_start; 750 struct amdgpu_ib *ib; 751 uint8_t *kptr; 752 753 chunk = &p->chunks[i]; 754 ib = &p->job->ibs[j]; 755 chunk_ib = chunk->kdata; 756 757 if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB) 758 continue; 759 760 va_start = chunk_ib->va_start & AMDGPU_GMC_HOLE_MASK; 761 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 762 if (r) { 763 DRM_ERROR("IB va_start is invalid\n"); 764 return r; 765 } 766 767 if ((va_start + chunk_ib->ib_bytes) > 768 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 769 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 770 return -EINVAL; 771 } 772 773 /* the IB should be reserved at this point */ 774 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 775 if (r) { 776 return r; 777 } 778 779 offset = m->start * AMDGPU_GPU_PAGE_SIZE; 780 kptr += va_start - offset; 781 782 if (ring->funcs->parse_cs) { 783 memcpy(ib->ptr, kptr, chunk_ib->ib_bytes); 784 amdgpu_bo_kunmap(aobj); 785 786 r = amdgpu_ring_parse_cs(ring, p, p->job, ib); 787 if (r) 788 return r; 789 } else { 790 ib->ptr = (uint32_t *)kptr; 791 r = amdgpu_ring_patch_cs_in_place(ring, p, p->job, ib); 792 amdgpu_bo_kunmap(aobj); 793 if (r) 794 return r; 795 } 796 797 j++; 798 } 799 } 800 801 if (!p->job->vm) 802 return amdgpu_cs_sync_rings(p); 803 804 805 r = amdgpu_vm_clear_freed(adev, vm, NULL); 806 if (r) 807 return r; 808 809 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false, NULL); 810 if (r) 811 return r; 812 813 r = amdgpu_sync_vm_fence(&p->job->sync, fpriv->prt_va->last_pt_update); 814 if (r) 815 return r; 816 817 if (amdgpu_mcbp || amdgpu_sriov_vf(adev)) { 818 bo_va = fpriv->csa_va; 819 BUG_ON(!bo_va); 820 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 821 if (r) 822 return r; 823 824 r = amdgpu_sync_vm_fence(&p->job->sync, bo_va->last_pt_update); 825 if (r) 826 return r; 827 } 828 829 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 830 /* ignore duplicates */ 831 bo = ttm_to_amdgpu_bo(e->tv.bo); 832 if (!bo) 833 continue; 834 835 bo_va = e->bo_va; 836 if (bo_va == NULL) 837 continue; 838 839 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 840 if (r) 841 return r; 842 843 r = amdgpu_sync_vm_fence(&p->job->sync, bo_va->last_pt_update); 844 if (r) 845 return r; 846 } 847 848 r = amdgpu_vm_handle_moved(adev, vm); 849 if (r) 850 return r; 851 852 r = amdgpu_vm_update_pdes(adev, vm, false); 853 if (r) 854 return r; 855 856 r = amdgpu_sync_vm_fence(&p->job->sync, vm->last_update); 857 if (r) 858 return r; 859 860 p->job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 861 862 if (amdgpu_vm_debug) { 863 /* Invalidate all BOs to test for userspace bugs */ 864 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 865 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 866 867 /* ignore duplicates */ 868 if (!bo) 869 continue; 870 871 amdgpu_vm_bo_invalidate(adev, bo, false); 872 } 873 } 874 875 return amdgpu_cs_sync_rings(p); 876 } 877 878 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev, 879 struct amdgpu_cs_parser *parser) 880 { 881 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 882 struct amdgpu_vm *vm = &fpriv->vm; 883 int r, ce_preempt = 0, de_preempt = 0; 884 struct amdgpu_ring *ring; 885 int i, j; 886 887 for (i = 0, j = 0; i < parser->nchunks && j < parser->job->num_ibs; i++) { 888 struct amdgpu_cs_chunk *chunk; 889 struct amdgpu_ib *ib; 890 struct drm_amdgpu_cs_chunk_ib *chunk_ib; 891 struct drm_sched_entity *entity; 892 893 chunk = &parser->chunks[i]; 894 ib = &parser->job->ibs[j]; 895 chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata; 896 897 if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB) 898 continue; 899 900 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 901 (amdgpu_mcbp || amdgpu_sriov_vf(adev))) { 902 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 903 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 904 ce_preempt++; 905 else 906 de_preempt++; 907 } 908 909 /* each GFX command submit allows 0 or 1 IB preemptible for CE & DE */ 910 if (ce_preempt > 1 || de_preempt > 1) 911 return -EINVAL; 912 } 913 914 r = amdgpu_ctx_get_entity(parser->ctx, chunk_ib->ip_type, 915 chunk_ib->ip_instance, chunk_ib->ring, 916 &entity); 917 if (r) 918 return r; 919 920 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 921 parser->job->preamble_status |= 922 AMDGPU_PREAMBLE_IB_PRESENT; 923 924 if (parser->entity && parser->entity != entity) 925 return -EINVAL; 926 927 /* Return if there is no run queue associated with this entity. 928 * Possibly because of disabled HW IP*/ 929 if (entity->rq == NULL) 930 return -EINVAL; 931 932 parser->entity = entity; 933 934 ring = to_amdgpu_ring(entity->rq->sched); 935 r = amdgpu_ib_get(adev, vm, ring->funcs->parse_cs ? 936 chunk_ib->ib_bytes : 0, 937 AMDGPU_IB_POOL_DELAYED, ib); 938 if (r) { 939 DRM_ERROR("Failed to get ib !\n"); 940 return r; 941 } 942 943 ib->gpu_addr = chunk_ib->va_start; 944 ib->length_dw = chunk_ib->ib_bytes / 4; 945 ib->flags = chunk_ib->flags; 946 947 j++; 948 } 949 950 /* MM engine doesn't support user fences */ 951 ring = to_amdgpu_ring(parser->entity->rq->sched); 952 if (parser->job->uf_addr && ring->funcs->no_user_fence) 953 return -EINVAL; 954 955 return 0; 956 } 957 958 static int amdgpu_cs_process_fence_dep(struct amdgpu_cs_parser *p, 959 struct amdgpu_cs_chunk *chunk) 960 { 961 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 962 unsigned num_deps; 963 int i, r; 964 struct drm_amdgpu_cs_chunk_dep *deps; 965 966 deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata; 967 num_deps = chunk->length_dw * 4 / 968 sizeof(struct drm_amdgpu_cs_chunk_dep); 969 970 for (i = 0; i < num_deps; ++i) { 971 struct amdgpu_ctx *ctx; 972 struct drm_sched_entity *entity; 973 struct dma_fence *fence; 974 975 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 976 if (ctx == NULL) 977 return -EINVAL; 978 979 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 980 deps[i].ip_instance, 981 deps[i].ring, &entity); 982 if (r) { 983 amdgpu_ctx_put(ctx); 984 return r; 985 } 986 987 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 988 amdgpu_ctx_put(ctx); 989 990 if (IS_ERR(fence)) 991 return PTR_ERR(fence); 992 else if (!fence) 993 continue; 994 995 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 996 struct drm_sched_fence *s_fence; 997 struct dma_fence *old = fence; 998 999 s_fence = to_drm_sched_fence(fence); 1000 fence = dma_fence_get(&s_fence->scheduled); 1001 dma_fence_put(old); 1002 } 1003 1004 r = amdgpu_sync_fence(&p->job->sync, fence); 1005 dma_fence_put(fence); 1006 if (r) 1007 return r; 1008 } 1009 return 0; 1010 } 1011 1012 static int amdgpu_syncobj_lookup_and_add_to_sync(struct amdgpu_cs_parser *p, 1013 uint32_t handle, u64 point, 1014 u64 flags) 1015 { 1016 struct dma_fence *fence; 1017 int r; 1018 1019 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 1020 if (r) { 1021 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 1022 handle, point, r); 1023 return r; 1024 } 1025 1026 r = amdgpu_sync_fence(&p->job->sync, fence); 1027 dma_fence_put(fence); 1028 1029 return r; 1030 } 1031 1032 static int amdgpu_cs_process_syncobj_in_dep(struct amdgpu_cs_parser *p, 1033 struct amdgpu_cs_chunk *chunk) 1034 { 1035 struct drm_amdgpu_cs_chunk_sem *deps; 1036 unsigned num_deps; 1037 int i, r; 1038 1039 deps = (struct drm_amdgpu_cs_chunk_sem *)chunk->kdata; 1040 num_deps = chunk->length_dw * 4 / 1041 sizeof(struct drm_amdgpu_cs_chunk_sem); 1042 for (i = 0; i < num_deps; ++i) { 1043 r = amdgpu_syncobj_lookup_and_add_to_sync(p, deps[i].handle, 1044 0, 0); 1045 if (r) 1046 return r; 1047 } 1048 1049 return 0; 1050 } 1051 1052 1053 static int amdgpu_cs_process_syncobj_timeline_in_dep(struct amdgpu_cs_parser *p, 1054 struct amdgpu_cs_chunk *chunk) 1055 { 1056 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps; 1057 unsigned num_deps; 1058 int i, r; 1059 1060 syncobj_deps = (struct drm_amdgpu_cs_chunk_syncobj *)chunk->kdata; 1061 num_deps = chunk->length_dw * 4 / 1062 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 1063 for (i = 0; i < num_deps; ++i) { 1064 r = amdgpu_syncobj_lookup_and_add_to_sync(p, 1065 syncobj_deps[i].handle, 1066 syncobj_deps[i].point, 1067 syncobj_deps[i].flags); 1068 if (r) 1069 return r; 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int amdgpu_cs_process_syncobj_out_dep(struct amdgpu_cs_parser *p, 1076 struct amdgpu_cs_chunk *chunk) 1077 { 1078 struct drm_amdgpu_cs_chunk_sem *deps; 1079 unsigned num_deps; 1080 int i; 1081 1082 deps = (struct drm_amdgpu_cs_chunk_sem *)chunk->kdata; 1083 num_deps = chunk->length_dw * 4 / 1084 sizeof(struct drm_amdgpu_cs_chunk_sem); 1085 1086 if (p->post_deps) 1087 return -EINVAL; 1088 1089 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 1090 GFP_KERNEL); 1091 p->num_post_deps = 0; 1092 1093 if (!p->post_deps) 1094 return -ENOMEM; 1095 1096 1097 for (i = 0; i < num_deps; ++i) { 1098 p->post_deps[i].syncobj = 1099 drm_syncobj_find(p->filp, deps[i].handle); 1100 if (!p->post_deps[i].syncobj) 1101 return -EINVAL; 1102 p->post_deps[i].chain = NULL; 1103 p->post_deps[i].point = 0; 1104 p->num_post_deps++; 1105 } 1106 1107 return 0; 1108 } 1109 1110 1111 static int amdgpu_cs_process_syncobj_timeline_out_dep(struct amdgpu_cs_parser *p, 1112 struct amdgpu_cs_chunk *chunk) 1113 { 1114 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps; 1115 unsigned num_deps; 1116 int i; 1117 1118 syncobj_deps = (struct drm_amdgpu_cs_chunk_syncobj *)chunk->kdata; 1119 num_deps = chunk->length_dw * 4 / 1120 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 1121 1122 if (p->post_deps) 1123 return -EINVAL; 1124 1125 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 1126 GFP_KERNEL); 1127 p->num_post_deps = 0; 1128 1129 if (!p->post_deps) 1130 return -ENOMEM; 1131 1132 for (i = 0; i < num_deps; ++i) { 1133 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 1134 1135 dep->chain = NULL; 1136 if (syncobj_deps[i].point) { 1137 dep->chain = dma_fence_chain_alloc(); 1138 if (!dep->chain) 1139 return -ENOMEM; 1140 } 1141 1142 dep->syncobj = drm_syncobj_find(p->filp, 1143 syncobj_deps[i].handle); 1144 if (!dep->syncobj) { 1145 dma_fence_chain_free(dep->chain); 1146 return -EINVAL; 1147 } 1148 dep->point = syncobj_deps[i].point; 1149 p->num_post_deps++; 1150 } 1151 1152 return 0; 1153 } 1154 1155 static int amdgpu_cs_dependencies(struct amdgpu_device *adev, 1156 struct amdgpu_cs_parser *p) 1157 { 1158 int i, r; 1159 1160 for (i = 0; i < p->nchunks; ++i) { 1161 struct amdgpu_cs_chunk *chunk; 1162 1163 chunk = &p->chunks[i]; 1164 1165 switch (chunk->chunk_id) { 1166 case AMDGPU_CHUNK_ID_DEPENDENCIES: 1167 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 1168 r = amdgpu_cs_process_fence_dep(p, chunk); 1169 if (r) 1170 return r; 1171 break; 1172 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 1173 r = amdgpu_cs_process_syncobj_in_dep(p, chunk); 1174 if (r) 1175 return r; 1176 break; 1177 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 1178 r = amdgpu_cs_process_syncobj_out_dep(p, chunk); 1179 if (r) 1180 return r; 1181 break; 1182 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 1183 r = amdgpu_cs_process_syncobj_timeline_in_dep(p, chunk); 1184 if (r) 1185 return r; 1186 break; 1187 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 1188 r = amdgpu_cs_process_syncobj_timeline_out_dep(p, chunk); 1189 if (r) 1190 return r; 1191 break; 1192 } 1193 } 1194 1195 return 0; 1196 } 1197 1198 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1199 { 1200 int i; 1201 1202 for (i = 0; i < p->num_post_deps; ++i) { 1203 if (p->post_deps[i].chain && p->post_deps[i].point) { 1204 drm_syncobj_add_point(p->post_deps[i].syncobj, 1205 p->post_deps[i].chain, 1206 p->fence, p->post_deps[i].point); 1207 p->post_deps[i].chain = NULL; 1208 } else { 1209 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1210 p->fence); 1211 } 1212 } 1213 } 1214 1215 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1216 union drm_amdgpu_cs *cs) 1217 { 1218 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1219 struct drm_sched_entity *entity = p->entity; 1220 struct amdgpu_bo_list_entry *e; 1221 struct amdgpu_job *job; 1222 uint64_t seq; 1223 int r; 1224 1225 job = p->job; 1226 p->job = NULL; 1227 1228 r = drm_sched_job_init(&job->base, entity, &fpriv->vm); 1229 if (r) 1230 goto error_unlock; 1231 1232 drm_sched_job_arm(&job->base); 1233 1234 /* No memory allocation is allowed while holding the notifier lock. 1235 * The lock is held until amdgpu_cs_submit is finished and fence is 1236 * added to BOs. 1237 */ 1238 mutex_lock(&p->adev->notifier_lock); 1239 1240 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1241 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1242 */ 1243 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1244 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1245 1246 r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm); 1247 } 1248 if (r) { 1249 r = -EAGAIN; 1250 goto error_abort; 1251 } 1252 1253 p->fence = dma_fence_get(&job->base.s_fence->finished); 1254 1255 amdgpu_ctx_add_fence(p->ctx, entity, p->fence, &seq); 1256 amdgpu_cs_post_dependencies(p); 1257 1258 if ((job->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1259 !p->ctx->preamble_presented) { 1260 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1261 p->ctx->preamble_presented = true; 1262 } 1263 1264 cs->out.handle = seq; 1265 job->uf_sequence = seq; 1266 1267 amdgpu_job_free_resources(job); 1268 1269 trace_amdgpu_cs_ioctl(job); 1270 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket); 1271 drm_sched_entity_push_job(&job->base); 1272 1273 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1274 1275 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1276 struct dma_resv *resv = e->tv.bo->base.resv; 1277 struct dma_fence_chain *chain = e->chain; 1278 1279 if (!chain) 1280 continue; 1281 1282 /* 1283 * Work around dma_resv shortcomings by wrapping up the 1284 * submission in a dma_fence_chain and add it as exclusive 1285 * fence. 1286 */ 1287 dma_fence_chain_init(chain, dma_resv_excl_fence(resv), 1288 dma_fence_get(p->fence), 1); 1289 1290 rcu_assign_pointer(resv->fence_excl, &chain->base); 1291 e->chain = NULL; 1292 } 1293 1294 ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence); 1295 mutex_unlock(&p->adev->notifier_lock); 1296 1297 return 0; 1298 1299 error_abort: 1300 drm_sched_job_cleanup(&job->base); 1301 mutex_unlock(&p->adev->notifier_lock); 1302 1303 error_unlock: 1304 amdgpu_job_free(job); 1305 return r; 1306 } 1307 1308 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *parser) 1309 { 1310 int i; 1311 1312 if (!trace_amdgpu_cs_enabled()) 1313 return; 1314 1315 for (i = 0; i < parser->job->num_ibs; i++) 1316 trace_amdgpu_cs(parser, i); 1317 } 1318 1319 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1320 { 1321 struct amdgpu_device *adev = drm_to_adev(dev); 1322 union drm_amdgpu_cs *cs = data; 1323 struct amdgpu_cs_parser parser = {}; 1324 bool reserved_buffers = false; 1325 int r; 1326 1327 if (amdgpu_ras_intr_triggered()) 1328 return -EHWPOISON; 1329 1330 if (!adev->accel_working) 1331 return -EBUSY; 1332 1333 parser.adev = adev; 1334 parser.filp = filp; 1335 1336 r = amdgpu_cs_parser_init(&parser, data); 1337 if (r) { 1338 if (printk_ratelimit()) 1339 DRM_ERROR("Failed to initialize parser %d!\n", r); 1340 goto out; 1341 } 1342 1343 r = amdgpu_cs_ib_fill(adev, &parser); 1344 if (r) 1345 goto out; 1346 1347 r = amdgpu_cs_dependencies(adev, &parser); 1348 if (r) { 1349 DRM_ERROR("Failed in the dependencies handling %d!\n", r); 1350 goto out; 1351 } 1352 1353 r = amdgpu_cs_parser_bos(&parser, data); 1354 if (r) { 1355 if (r == -ENOMEM) 1356 DRM_ERROR("Not enough memory for command submission!\n"); 1357 else if (r != -ERESTARTSYS && r != -EAGAIN) 1358 DRM_ERROR("Failed to process the buffer list %d!\n", r); 1359 goto out; 1360 } 1361 1362 reserved_buffers = true; 1363 1364 trace_amdgpu_cs_ibs(&parser); 1365 1366 r = amdgpu_cs_vm_handling(&parser); 1367 if (r) 1368 goto out; 1369 1370 r = amdgpu_cs_submit(&parser, cs); 1371 out: 1372 amdgpu_cs_parser_fini(&parser, r, reserved_buffers); 1373 1374 return r; 1375 } 1376 1377 /** 1378 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1379 * 1380 * @dev: drm device 1381 * @data: data from userspace 1382 * @filp: file private 1383 * 1384 * Wait for the command submission identified by handle to finish. 1385 */ 1386 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1387 struct drm_file *filp) 1388 { 1389 union drm_amdgpu_wait_cs *wait = data; 1390 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1391 struct drm_sched_entity *entity; 1392 struct amdgpu_ctx *ctx; 1393 struct dma_fence *fence; 1394 long r; 1395 1396 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1397 if (ctx == NULL) 1398 return -EINVAL; 1399 1400 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1401 wait->in.ring, &entity); 1402 if (r) { 1403 amdgpu_ctx_put(ctx); 1404 return r; 1405 } 1406 1407 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1408 if (IS_ERR(fence)) 1409 r = PTR_ERR(fence); 1410 else if (fence) { 1411 r = dma_fence_wait_timeout(fence, true, timeout); 1412 if (r > 0 && fence->error) 1413 r = fence->error; 1414 dma_fence_put(fence); 1415 } else 1416 r = 1; 1417 1418 amdgpu_ctx_put(ctx); 1419 if (r < 0) 1420 return r; 1421 1422 memset(wait, 0, sizeof(*wait)); 1423 wait->out.status = (r == 0); 1424 1425 return 0; 1426 } 1427 1428 /** 1429 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1430 * 1431 * @adev: amdgpu device 1432 * @filp: file private 1433 * @user: drm_amdgpu_fence copied from user space 1434 */ 1435 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1436 struct drm_file *filp, 1437 struct drm_amdgpu_fence *user) 1438 { 1439 struct drm_sched_entity *entity; 1440 struct amdgpu_ctx *ctx; 1441 struct dma_fence *fence; 1442 int r; 1443 1444 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1445 if (ctx == NULL) 1446 return ERR_PTR(-EINVAL); 1447 1448 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1449 user->ring, &entity); 1450 if (r) { 1451 amdgpu_ctx_put(ctx); 1452 return ERR_PTR(r); 1453 } 1454 1455 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1456 amdgpu_ctx_put(ctx); 1457 1458 return fence; 1459 } 1460 1461 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1462 struct drm_file *filp) 1463 { 1464 struct amdgpu_device *adev = drm_to_adev(dev); 1465 union drm_amdgpu_fence_to_handle *info = data; 1466 struct dma_fence *fence; 1467 struct drm_syncobj *syncobj; 1468 struct sync_file *sync_file; 1469 int fd, r; 1470 1471 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1472 if (IS_ERR(fence)) 1473 return PTR_ERR(fence); 1474 1475 if (!fence) 1476 fence = dma_fence_get_stub(); 1477 1478 switch (info->in.what) { 1479 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1480 r = drm_syncobj_create(&syncobj, 0, fence); 1481 dma_fence_put(fence); 1482 if (r) 1483 return r; 1484 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1485 drm_syncobj_put(syncobj); 1486 return r; 1487 1488 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1489 r = drm_syncobj_create(&syncobj, 0, fence); 1490 dma_fence_put(fence); 1491 if (r) 1492 return r; 1493 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1494 drm_syncobj_put(syncobj); 1495 return r; 1496 1497 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1498 fd = get_unused_fd_flags(O_CLOEXEC); 1499 if (fd < 0) { 1500 dma_fence_put(fence); 1501 return fd; 1502 } 1503 1504 sync_file = sync_file_create(fence); 1505 dma_fence_put(fence); 1506 if (!sync_file) { 1507 put_unused_fd(fd); 1508 return -ENOMEM; 1509 } 1510 1511 fd_install(fd, sync_file->file); 1512 info->out.handle = fd; 1513 return 0; 1514 1515 default: 1516 dma_fence_put(fence); 1517 return -EINVAL; 1518 } 1519 } 1520 1521 /** 1522 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1523 * 1524 * @adev: amdgpu device 1525 * @filp: file private 1526 * @wait: wait parameters 1527 * @fences: array of drm_amdgpu_fence 1528 */ 1529 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1530 struct drm_file *filp, 1531 union drm_amdgpu_wait_fences *wait, 1532 struct drm_amdgpu_fence *fences) 1533 { 1534 uint32_t fence_count = wait->in.fence_count; 1535 unsigned int i; 1536 long r = 1; 1537 1538 for (i = 0; i < fence_count; i++) { 1539 struct dma_fence *fence; 1540 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1541 1542 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1543 if (IS_ERR(fence)) 1544 return PTR_ERR(fence); 1545 else if (!fence) 1546 continue; 1547 1548 r = dma_fence_wait_timeout(fence, true, timeout); 1549 dma_fence_put(fence); 1550 if (r < 0) 1551 return r; 1552 1553 if (r == 0) 1554 break; 1555 1556 if (fence->error) 1557 return fence->error; 1558 } 1559 1560 memset(wait, 0, sizeof(*wait)); 1561 wait->out.status = (r > 0); 1562 1563 return 0; 1564 } 1565 1566 /** 1567 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1568 * 1569 * @adev: amdgpu device 1570 * @filp: file private 1571 * @wait: wait parameters 1572 * @fences: array of drm_amdgpu_fence 1573 */ 1574 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1575 struct drm_file *filp, 1576 union drm_amdgpu_wait_fences *wait, 1577 struct drm_amdgpu_fence *fences) 1578 { 1579 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1580 uint32_t fence_count = wait->in.fence_count; 1581 uint32_t first = ~0; 1582 struct dma_fence **array; 1583 unsigned int i; 1584 long r; 1585 1586 /* Prepare the fence array */ 1587 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1588 1589 if (array == NULL) 1590 return -ENOMEM; 1591 1592 for (i = 0; i < fence_count; i++) { 1593 struct dma_fence *fence; 1594 1595 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1596 if (IS_ERR(fence)) { 1597 r = PTR_ERR(fence); 1598 goto err_free_fence_array; 1599 } else if (fence) { 1600 array[i] = fence; 1601 } else { /* NULL, the fence has been already signaled */ 1602 r = 1; 1603 first = i; 1604 goto out; 1605 } 1606 } 1607 1608 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1609 &first); 1610 if (r < 0) 1611 goto err_free_fence_array; 1612 1613 out: 1614 memset(wait, 0, sizeof(*wait)); 1615 wait->out.status = (r > 0); 1616 wait->out.first_signaled = first; 1617 1618 if (first < fence_count && array[first]) 1619 r = array[first]->error; 1620 else 1621 r = 0; 1622 1623 err_free_fence_array: 1624 for (i = 0; i < fence_count; i++) 1625 dma_fence_put(array[i]); 1626 kfree(array); 1627 1628 return r; 1629 } 1630 1631 /** 1632 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1633 * 1634 * @dev: drm device 1635 * @data: data from userspace 1636 * @filp: file private 1637 */ 1638 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1639 struct drm_file *filp) 1640 { 1641 struct amdgpu_device *adev = drm_to_adev(dev); 1642 union drm_amdgpu_wait_fences *wait = data; 1643 uint32_t fence_count = wait->in.fence_count; 1644 struct drm_amdgpu_fence *fences_user; 1645 struct drm_amdgpu_fence *fences; 1646 int r; 1647 1648 /* Get the fences from userspace */ 1649 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1650 GFP_KERNEL); 1651 if (fences == NULL) 1652 return -ENOMEM; 1653 1654 fences_user = u64_to_user_ptr(wait->in.fences); 1655 if (copy_from_user(fences, fences_user, 1656 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1657 r = -EFAULT; 1658 goto err_free_fences; 1659 } 1660 1661 if (wait->in.wait_all) 1662 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1663 else 1664 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1665 1666 err_free_fences: 1667 kfree(fences); 1668 1669 return r; 1670 } 1671 1672 /** 1673 * amdgpu_cs_find_mapping - find bo_va for VM address 1674 * 1675 * @parser: command submission parser context 1676 * @addr: VM address 1677 * @bo: resulting BO of the mapping found 1678 * @map: Placeholder to return found BO mapping 1679 * 1680 * Search the buffer objects in the command submission context for a certain 1681 * virtual memory address. Returns allocation structure when found, NULL 1682 * otherwise. 1683 */ 1684 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1685 uint64_t addr, struct amdgpu_bo **bo, 1686 struct amdgpu_bo_va_mapping **map) 1687 { 1688 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1689 struct ttm_operation_ctx ctx = { false, false }; 1690 struct amdgpu_vm *vm = &fpriv->vm; 1691 struct amdgpu_bo_va_mapping *mapping; 1692 int r; 1693 1694 addr /= AMDGPU_GPU_PAGE_SIZE; 1695 1696 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1697 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1698 return -EINVAL; 1699 1700 *bo = mapping->bo_va->base.bo; 1701 *map = mapping; 1702 1703 /* Double check that the BO is reserved by this CS */ 1704 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket) 1705 return -EINVAL; 1706 1707 if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) { 1708 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1709 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1710 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1711 if (r) 1712 return r; 1713 } 1714 1715 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1716 } 1717