1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include "amdgpu_cs.h" 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_gmc.h" 39 #include "amdgpu_gem.h" 40 #include "amdgpu_ras.h" 41 42 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 43 struct amdgpu_device *adev, 44 struct drm_file *filp, 45 union drm_amdgpu_cs *cs) 46 { 47 struct amdgpu_fpriv *fpriv = filp->driver_priv; 48 49 if (cs->in.num_chunks == 0) 50 return -EINVAL; 51 52 memset(p, 0, sizeof(*p)); 53 p->adev = adev; 54 p->filp = filp; 55 56 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 57 if (!p->ctx) 58 return -EINVAL; 59 60 if (atomic_read(&p->ctx->guilty)) { 61 amdgpu_ctx_put(p->ctx); 62 return -ECANCELED; 63 } 64 return 0; 65 } 66 67 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 68 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 69 { 70 struct drm_sched_entity *entity; 71 unsigned int i; 72 int r; 73 74 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 75 chunk_ib->ip_instance, 76 chunk_ib->ring, &entity); 77 if (r) 78 return r; 79 80 /* 81 * Abort if there is no run queue associated with this entity. 82 * Possibly because of disabled HW IP. 83 */ 84 if (entity->rq == NULL) 85 return -EINVAL; 86 87 /* Check if we can add this IB to some existing job */ 88 for (i = 0; i < p->gang_size; ++i) 89 if (p->entities[i] == entity) 90 return i; 91 92 /* If not increase the gang size if possible */ 93 if (i == AMDGPU_CS_GANG_SIZE) 94 return -EINVAL; 95 96 p->entities[i] = entity; 97 p->gang_size = i + 1; 98 return i; 99 } 100 101 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 102 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 103 unsigned int *num_ibs) 104 { 105 int r; 106 107 r = amdgpu_cs_job_idx(p, chunk_ib); 108 if (r < 0) 109 return r; 110 111 ++(num_ibs[r]); 112 return 0; 113 } 114 115 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 116 struct drm_amdgpu_cs_chunk_fence *data, 117 uint32_t *offset) 118 { 119 struct drm_gem_object *gobj; 120 struct amdgpu_bo *bo; 121 unsigned long size; 122 int r; 123 124 gobj = drm_gem_object_lookup(p->filp, data->handle); 125 if (gobj == NULL) 126 return -EINVAL; 127 128 bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 129 p->uf_entry.priority = 0; 130 p->uf_entry.tv.bo = &bo->tbo; 131 /* One for TTM and two for the CS job */ 132 p->uf_entry.tv.num_shared = 3; 133 134 drm_gem_object_put(gobj); 135 136 size = amdgpu_bo_size(bo); 137 if (size != PAGE_SIZE || (data->offset + 8) > size) { 138 r = -EINVAL; 139 goto error_unref; 140 } 141 142 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 143 r = -EINVAL; 144 goto error_unref; 145 } 146 147 *offset = data->offset; 148 149 return 0; 150 151 error_unref: 152 amdgpu_bo_unref(&bo); 153 return r; 154 } 155 156 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 157 struct drm_amdgpu_bo_list_in *data) 158 { 159 struct drm_amdgpu_bo_list_entry *info; 160 int r; 161 162 r = amdgpu_bo_create_list_entry_array(data, &info); 163 if (r) 164 return r; 165 166 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 167 &p->bo_list); 168 if (r) 169 goto error_free; 170 171 kvfree(info); 172 return 0; 173 174 error_free: 175 kvfree(info); 176 177 return r; 178 } 179 180 /* Copy the data from userspace and go over it the first time */ 181 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 182 union drm_amdgpu_cs *cs) 183 { 184 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 185 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 186 struct amdgpu_vm *vm = &fpriv->vm; 187 uint64_t *chunk_array_user; 188 uint64_t *chunk_array; 189 uint32_t uf_offset = 0; 190 unsigned int size; 191 int ret; 192 int i; 193 194 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 195 GFP_KERNEL); 196 if (!chunk_array) 197 return -ENOMEM; 198 199 /* get chunks */ 200 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 201 if (copy_from_user(chunk_array, chunk_array_user, 202 sizeof(uint64_t)*cs->in.num_chunks)) { 203 ret = -EFAULT; 204 goto free_chunk; 205 } 206 207 p->nchunks = cs->in.num_chunks; 208 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 209 GFP_KERNEL); 210 if (!p->chunks) { 211 ret = -ENOMEM; 212 goto free_chunk; 213 } 214 215 for (i = 0; i < p->nchunks; i++) { 216 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; 217 struct drm_amdgpu_cs_chunk user_chunk; 218 uint32_t __user *cdata; 219 220 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 221 if (copy_from_user(&user_chunk, chunk_ptr, 222 sizeof(struct drm_amdgpu_cs_chunk))) { 223 ret = -EFAULT; 224 i--; 225 goto free_partial_kdata; 226 } 227 p->chunks[i].chunk_id = user_chunk.chunk_id; 228 p->chunks[i].length_dw = user_chunk.length_dw; 229 230 size = p->chunks[i].length_dw; 231 cdata = u64_to_user_ptr(user_chunk.chunk_data); 232 233 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 234 GFP_KERNEL); 235 if (p->chunks[i].kdata == NULL) { 236 ret = -ENOMEM; 237 i--; 238 goto free_partial_kdata; 239 } 240 size *= sizeof(uint32_t); 241 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 242 ret = -EFAULT; 243 goto free_partial_kdata; 244 } 245 246 /* Assume the worst on the following checks */ 247 ret = -EINVAL; 248 switch (p->chunks[i].chunk_id) { 249 case AMDGPU_CHUNK_ID_IB: 250 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 251 goto free_partial_kdata; 252 253 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 254 if (ret) 255 goto free_partial_kdata; 256 break; 257 258 case AMDGPU_CHUNK_ID_FENCE: 259 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 260 goto free_partial_kdata; 261 262 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 263 &uf_offset); 264 if (ret) 265 goto free_partial_kdata; 266 break; 267 268 case AMDGPU_CHUNK_ID_BO_HANDLES: 269 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 270 goto free_partial_kdata; 271 272 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 273 if (ret) 274 goto free_partial_kdata; 275 break; 276 277 case AMDGPU_CHUNK_ID_DEPENDENCIES: 278 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 279 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 280 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 281 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 282 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 283 break; 284 285 default: 286 goto free_partial_kdata; 287 } 288 } 289 290 if (!p->gang_size) 291 return -EINVAL; 292 293 for (i = 0; i < p->gang_size; ++i) { 294 ret = amdgpu_job_alloc(p->adev, num_ibs[i], &p->jobs[i], vm); 295 if (ret) 296 goto free_all_kdata; 297 298 ret = drm_sched_job_init(&p->jobs[i]->base, p->entities[i], 299 &fpriv->vm); 300 if (ret) 301 goto free_all_kdata; 302 } 303 p->gang_leader = p->jobs[p->gang_size - 1]; 304 305 if (p->ctx->vram_lost_counter != p->gang_leader->vram_lost_counter) { 306 ret = -ECANCELED; 307 goto free_all_kdata; 308 } 309 310 if (p->uf_entry.tv.bo) 311 p->gang_leader->uf_addr = uf_offset; 312 kvfree(chunk_array); 313 314 /* Use this opportunity to fill in task info for the vm */ 315 amdgpu_vm_set_task_info(vm); 316 317 return 0; 318 319 free_all_kdata: 320 i = p->nchunks - 1; 321 free_partial_kdata: 322 for (; i >= 0; i--) 323 kvfree(p->chunks[i].kdata); 324 kvfree(p->chunks); 325 p->chunks = NULL; 326 p->nchunks = 0; 327 free_chunk: 328 kvfree(chunk_array); 329 330 return ret; 331 } 332 333 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 334 struct amdgpu_cs_chunk *chunk, 335 unsigned int *ce_preempt, 336 unsigned int *de_preempt) 337 { 338 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 339 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 340 struct amdgpu_vm *vm = &fpriv->vm; 341 struct amdgpu_ring *ring; 342 struct amdgpu_job *job; 343 struct amdgpu_ib *ib; 344 int r; 345 346 r = amdgpu_cs_job_idx(p, chunk_ib); 347 if (r < 0) 348 return r; 349 350 job = p->jobs[r]; 351 ring = amdgpu_job_ring(job); 352 ib = &job->ibs[job->num_ibs++]; 353 354 /* MM engine doesn't support user fences */ 355 if (p->uf_entry.tv.bo && ring->funcs->no_user_fence) 356 return -EINVAL; 357 358 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 359 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 360 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 361 (*ce_preempt)++; 362 else 363 (*de_preempt)++; 364 365 /* Each GFX command submit allows only 1 IB max 366 * preemptible for CE & DE */ 367 if (*ce_preempt > 1 || *de_preempt > 1) 368 return -EINVAL; 369 } 370 371 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 372 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 373 374 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 375 chunk_ib->ib_bytes : 0, 376 AMDGPU_IB_POOL_DELAYED, ib); 377 if (r) { 378 DRM_ERROR("Failed to get ib !\n"); 379 return r; 380 } 381 382 ib->gpu_addr = chunk_ib->va_start; 383 ib->length_dw = chunk_ib->ib_bytes / 4; 384 ib->flags = chunk_ib->flags; 385 return 0; 386 } 387 388 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 389 struct amdgpu_cs_chunk *chunk) 390 { 391 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 392 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 393 unsigned num_deps; 394 int i, r; 395 396 num_deps = chunk->length_dw * 4 / 397 sizeof(struct drm_amdgpu_cs_chunk_dep); 398 399 for (i = 0; i < num_deps; ++i) { 400 struct amdgpu_ctx *ctx; 401 struct drm_sched_entity *entity; 402 struct dma_fence *fence; 403 404 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 405 if (ctx == NULL) 406 return -EINVAL; 407 408 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 409 deps[i].ip_instance, 410 deps[i].ring, &entity); 411 if (r) { 412 amdgpu_ctx_put(ctx); 413 return r; 414 } 415 416 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 417 amdgpu_ctx_put(ctx); 418 419 if (IS_ERR(fence)) 420 return PTR_ERR(fence); 421 else if (!fence) 422 continue; 423 424 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 425 struct drm_sched_fence *s_fence; 426 struct dma_fence *old = fence; 427 428 s_fence = to_drm_sched_fence(fence); 429 fence = dma_fence_get(&s_fence->scheduled); 430 dma_fence_put(old); 431 } 432 433 r = amdgpu_sync_fence(&p->gang_leader->sync, fence); 434 dma_fence_put(fence); 435 if (r) 436 return r; 437 } 438 return 0; 439 } 440 441 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 442 uint32_t handle, u64 point, 443 u64 flags) 444 { 445 struct dma_fence *fence; 446 int r; 447 448 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 449 if (r) { 450 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 451 handle, point, r); 452 return r; 453 } 454 455 r = amdgpu_sync_fence(&p->gang_leader->sync, fence); 456 dma_fence_put(fence); 457 458 return r; 459 } 460 461 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 462 struct amdgpu_cs_chunk *chunk) 463 { 464 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 465 unsigned num_deps; 466 int i, r; 467 468 num_deps = chunk->length_dw * 4 / 469 sizeof(struct drm_amdgpu_cs_chunk_sem); 470 for (i = 0; i < num_deps; ++i) { 471 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 472 if (r) 473 return r; 474 } 475 476 return 0; 477 } 478 479 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 480 struct amdgpu_cs_chunk *chunk) 481 { 482 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 483 unsigned num_deps; 484 int i, r; 485 486 num_deps = chunk->length_dw * 4 / 487 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 488 for (i = 0; i < num_deps; ++i) { 489 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 490 syncobj_deps[i].point, 491 syncobj_deps[i].flags); 492 if (r) 493 return r; 494 } 495 496 return 0; 497 } 498 499 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 500 struct amdgpu_cs_chunk *chunk) 501 { 502 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 503 unsigned num_deps; 504 int i; 505 506 num_deps = chunk->length_dw * 4 / 507 sizeof(struct drm_amdgpu_cs_chunk_sem); 508 509 if (p->post_deps) 510 return -EINVAL; 511 512 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 513 GFP_KERNEL); 514 p->num_post_deps = 0; 515 516 if (!p->post_deps) 517 return -ENOMEM; 518 519 520 for (i = 0; i < num_deps; ++i) { 521 p->post_deps[i].syncobj = 522 drm_syncobj_find(p->filp, deps[i].handle); 523 if (!p->post_deps[i].syncobj) 524 return -EINVAL; 525 p->post_deps[i].chain = NULL; 526 p->post_deps[i].point = 0; 527 p->num_post_deps++; 528 } 529 530 return 0; 531 } 532 533 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 534 struct amdgpu_cs_chunk *chunk) 535 { 536 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 537 unsigned num_deps; 538 int i; 539 540 num_deps = chunk->length_dw * 4 / 541 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 542 543 if (p->post_deps) 544 return -EINVAL; 545 546 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 547 GFP_KERNEL); 548 p->num_post_deps = 0; 549 550 if (!p->post_deps) 551 return -ENOMEM; 552 553 for (i = 0; i < num_deps; ++i) { 554 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 555 556 dep->chain = NULL; 557 if (syncobj_deps[i].point) { 558 dep->chain = dma_fence_chain_alloc(); 559 if (!dep->chain) 560 return -ENOMEM; 561 } 562 563 dep->syncobj = drm_syncobj_find(p->filp, 564 syncobj_deps[i].handle); 565 if (!dep->syncobj) { 566 dma_fence_chain_free(dep->chain); 567 return -EINVAL; 568 } 569 dep->point = syncobj_deps[i].point; 570 p->num_post_deps++; 571 } 572 573 return 0; 574 } 575 576 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 577 { 578 unsigned int ce_preempt = 0, de_preempt = 0; 579 int i, r; 580 581 for (i = 0; i < p->nchunks; ++i) { 582 struct amdgpu_cs_chunk *chunk; 583 584 chunk = &p->chunks[i]; 585 586 switch (chunk->chunk_id) { 587 case AMDGPU_CHUNK_ID_IB: 588 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 589 if (r) 590 return r; 591 break; 592 case AMDGPU_CHUNK_ID_DEPENDENCIES: 593 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 594 r = amdgpu_cs_p2_dependencies(p, chunk); 595 if (r) 596 return r; 597 break; 598 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 599 r = amdgpu_cs_p2_syncobj_in(p, chunk); 600 if (r) 601 return r; 602 break; 603 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 604 r = amdgpu_cs_p2_syncobj_out(p, chunk); 605 if (r) 606 return r; 607 break; 608 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 609 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 610 if (r) 611 return r; 612 break; 613 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 614 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 615 if (r) 616 return r; 617 break; 618 } 619 } 620 621 return 0; 622 } 623 624 /* Convert microseconds to bytes. */ 625 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 626 { 627 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 628 return 0; 629 630 /* Since accum_us is incremented by a million per second, just 631 * multiply it by the number of MB/s to get the number of bytes. 632 */ 633 return us << adev->mm_stats.log2_max_MBps; 634 } 635 636 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 637 { 638 if (!adev->mm_stats.log2_max_MBps) 639 return 0; 640 641 return bytes >> adev->mm_stats.log2_max_MBps; 642 } 643 644 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 645 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 646 * which means it can go over the threshold once. If that happens, the driver 647 * will be in debt and no other buffer migrations can be done until that debt 648 * is repaid. 649 * 650 * This approach allows moving a buffer of any size (it's important to allow 651 * that). 652 * 653 * The currency is simply time in microseconds and it increases as the clock 654 * ticks. The accumulated microseconds (us) are converted to bytes and 655 * returned. 656 */ 657 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 658 u64 *max_bytes, 659 u64 *max_vis_bytes) 660 { 661 s64 time_us, increment_us; 662 u64 free_vram, total_vram, used_vram; 663 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 664 * throttling. 665 * 666 * It means that in order to get full max MBps, at least 5 IBs per 667 * second must be submitted and not more than 200ms apart from each 668 * other. 669 */ 670 const s64 us_upper_bound = 200000; 671 672 if (!adev->mm_stats.log2_max_MBps) { 673 *max_bytes = 0; 674 *max_vis_bytes = 0; 675 return; 676 } 677 678 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 679 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 680 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 681 682 spin_lock(&adev->mm_stats.lock); 683 684 /* Increase the amount of accumulated us. */ 685 time_us = ktime_to_us(ktime_get()); 686 increment_us = time_us - adev->mm_stats.last_update_us; 687 adev->mm_stats.last_update_us = time_us; 688 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 689 us_upper_bound); 690 691 /* This prevents the short period of low performance when the VRAM 692 * usage is low and the driver is in debt or doesn't have enough 693 * accumulated us to fill VRAM quickly. 694 * 695 * The situation can occur in these cases: 696 * - a lot of VRAM is freed by userspace 697 * - the presence of a big buffer causes a lot of evictions 698 * (solution: split buffers into smaller ones) 699 * 700 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 701 * accum_us to a positive number. 702 */ 703 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 704 s64 min_us; 705 706 /* Be more aggressive on dGPUs. Try to fill a portion of free 707 * VRAM now. 708 */ 709 if (!(adev->flags & AMD_IS_APU)) 710 min_us = bytes_to_us(adev, free_vram / 4); 711 else 712 min_us = 0; /* Reset accum_us on APUs. */ 713 714 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 715 } 716 717 /* This is set to 0 if the driver is in debt to disallow (optional) 718 * buffer moves. 719 */ 720 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 721 722 /* Do the same for visible VRAM if half of it is free */ 723 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 724 u64 total_vis_vram = adev->gmc.visible_vram_size; 725 u64 used_vis_vram = 726 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 727 728 if (used_vis_vram < total_vis_vram) { 729 u64 free_vis_vram = total_vis_vram - used_vis_vram; 730 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 731 increment_us, us_upper_bound); 732 733 if (free_vis_vram >= total_vis_vram / 2) 734 adev->mm_stats.accum_us_vis = 735 max(bytes_to_us(adev, free_vis_vram / 2), 736 adev->mm_stats.accum_us_vis); 737 } 738 739 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 740 } else { 741 *max_vis_bytes = 0; 742 } 743 744 spin_unlock(&adev->mm_stats.lock); 745 } 746 747 /* Report how many bytes have really been moved for the last command 748 * submission. This can result in a debt that can stop buffer migrations 749 * temporarily. 750 */ 751 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 752 u64 num_vis_bytes) 753 { 754 spin_lock(&adev->mm_stats.lock); 755 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 756 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 757 spin_unlock(&adev->mm_stats.lock); 758 } 759 760 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 761 { 762 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 763 struct amdgpu_cs_parser *p = param; 764 struct ttm_operation_ctx ctx = { 765 .interruptible = true, 766 .no_wait_gpu = false, 767 .resv = bo->tbo.base.resv 768 }; 769 uint32_t domain; 770 int r; 771 772 if (bo->tbo.pin_count) 773 return 0; 774 775 /* Don't move this buffer if we have depleted our allowance 776 * to move it. Don't move anything if the threshold is zero. 777 */ 778 if (p->bytes_moved < p->bytes_moved_threshold && 779 (!bo->tbo.base.dma_buf || 780 list_empty(&bo->tbo.base.dma_buf->attachments))) { 781 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 782 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 783 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 784 * visible VRAM if we've depleted our allowance to do 785 * that. 786 */ 787 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 788 domain = bo->preferred_domains; 789 else 790 domain = bo->allowed_domains; 791 } else { 792 domain = bo->preferred_domains; 793 } 794 } else { 795 domain = bo->allowed_domains; 796 } 797 798 retry: 799 amdgpu_bo_placement_from_domain(bo, domain); 800 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 801 802 p->bytes_moved += ctx.bytes_moved; 803 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 804 amdgpu_bo_in_cpu_visible_vram(bo)) 805 p->bytes_moved_vis += ctx.bytes_moved; 806 807 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 808 domain = bo->allowed_domains; 809 goto retry; 810 } 811 812 return r; 813 } 814 815 static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p, 816 struct list_head *validated) 817 { 818 struct ttm_operation_ctx ctx = { true, false }; 819 struct amdgpu_bo_list_entry *lobj; 820 int r; 821 822 list_for_each_entry(lobj, validated, tv.head) { 823 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo); 824 struct mm_struct *usermm; 825 826 usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm); 827 if (usermm && usermm != current->mm) 828 return -EPERM; 829 830 if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) && 831 lobj->user_invalidated && lobj->user_pages) { 832 amdgpu_bo_placement_from_domain(bo, 833 AMDGPU_GEM_DOMAIN_CPU); 834 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 835 if (r) 836 return r; 837 838 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, 839 lobj->user_pages); 840 } 841 842 r = amdgpu_cs_bo_validate(p, bo); 843 if (r) 844 return r; 845 846 kvfree(lobj->user_pages); 847 lobj->user_pages = NULL; 848 } 849 return 0; 850 } 851 852 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 853 union drm_amdgpu_cs *cs) 854 { 855 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 856 struct amdgpu_vm *vm = &fpriv->vm; 857 struct amdgpu_bo_list_entry *e; 858 struct list_head duplicates; 859 unsigned int i; 860 int r; 861 862 INIT_LIST_HEAD(&p->validated); 863 864 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 865 if (cs->in.bo_list_handle) { 866 if (p->bo_list) 867 return -EINVAL; 868 869 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 870 &p->bo_list); 871 if (r) 872 return r; 873 } else if (!p->bo_list) { 874 /* Create a empty bo_list when no handle is provided */ 875 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 876 &p->bo_list); 877 if (r) 878 return r; 879 } 880 881 mutex_lock(&p->bo_list->bo_list_mutex); 882 883 /* One for TTM and one for the CS job */ 884 amdgpu_bo_list_for_each_entry(e, p->bo_list) 885 e->tv.num_shared = 2; 886 887 amdgpu_bo_list_get_list(p->bo_list, &p->validated); 888 889 INIT_LIST_HEAD(&duplicates); 890 amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd); 891 892 if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent) 893 list_add(&p->uf_entry.tv.head, &p->validated); 894 895 /* Get userptr backing pages. If pages are updated after registered 896 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 897 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 898 */ 899 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 900 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 901 bool userpage_invalidated = false; 902 int i; 903 904 e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, 905 sizeof(struct page *), 906 GFP_KERNEL | __GFP_ZERO); 907 if (!e->user_pages) { 908 DRM_ERROR("kvmalloc_array failure\n"); 909 r = -ENOMEM; 910 goto out_free_user_pages; 911 } 912 913 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages); 914 if (r) { 915 kvfree(e->user_pages); 916 e->user_pages = NULL; 917 goto out_free_user_pages; 918 } 919 920 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 921 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 922 userpage_invalidated = true; 923 break; 924 } 925 } 926 e->user_invalidated = userpage_invalidated; 927 } 928 929 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, 930 &duplicates); 931 if (unlikely(r != 0)) { 932 if (r != -ERESTARTSYS) 933 DRM_ERROR("ttm_eu_reserve_buffers failed.\n"); 934 goto out_free_user_pages; 935 } 936 937 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 938 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 939 940 e->bo_va = amdgpu_vm_bo_find(vm, bo); 941 } 942 943 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 944 &p->bytes_moved_vis_threshold); 945 p->bytes_moved = 0; 946 p->bytes_moved_vis = 0; 947 948 r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm, 949 amdgpu_cs_bo_validate, p); 950 if (r) { 951 DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n"); 952 goto error_validate; 953 } 954 955 r = amdgpu_cs_list_validate(p, &duplicates); 956 if (r) 957 goto error_validate; 958 959 r = amdgpu_cs_list_validate(p, &p->validated); 960 if (r) 961 goto error_validate; 962 963 if (p->uf_entry.tv.bo) { 964 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo); 965 966 r = amdgpu_ttm_alloc_gart(&uf->tbo); 967 if (r) 968 goto error_validate; 969 970 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(uf); 971 } 972 973 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 974 p->bytes_moved_vis); 975 976 for (i = 0; i < p->gang_size; ++i) 977 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 978 p->bo_list->gws_obj, 979 p->bo_list->oa_obj); 980 return 0; 981 982 error_validate: 983 ttm_eu_backoff_reservation(&p->ticket, &p->validated); 984 985 out_free_user_pages: 986 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 987 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 988 989 if (!e->user_pages) 990 continue; 991 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm); 992 kvfree(e->user_pages); 993 e->user_pages = NULL; 994 } 995 mutex_unlock(&p->bo_list->bo_list_mutex); 996 return r; 997 } 998 999 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1000 { 1001 int i, j; 1002 1003 if (!trace_amdgpu_cs_enabled()) 1004 return; 1005 1006 for (i = 0; i < p->gang_size; ++i) { 1007 struct amdgpu_job *job = p->jobs[i]; 1008 1009 for (j = 0; j < job->num_ibs; ++j) 1010 trace_amdgpu_cs(p, job, &job->ibs[j]); 1011 } 1012 } 1013 1014 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1015 struct amdgpu_job *job) 1016 { 1017 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1018 unsigned int i; 1019 int r; 1020 1021 /* Only for UVD/VCE VM emulation */ 1022 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1023 return 0; 1024 1025 for (i = 0; i < job->num_ibs; ++i) { 1026 struct amdgpu_ib *ib = &job->ibs[i]; 1027 struct amdgpu_bo_va_mapping *m; 1028 struct amdgpu_bo *aobj; 1029 uint64_t va_start; 1030 uint8_t *kptr; 1031 1032 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1033 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1034 if (r) { 1035 DRM_ERROR("IB va_start is invalid\n"); 1036 return r; 1037 } 1038 1039 if ((va_start + ib->length_dw * 4) > 1040 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1041 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1042 return -EINVAL; 1043 } 1044 1045 /* the IB should be reserved at this point */ 1046 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1047 if (r) { 1048 return r; 1049 } 1050 1051 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1052 1053 if (ring->funcs->parse_cs) { 1054 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1055 amdgpu_bo_kunmap(aobj); 1056 1057 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1058 if (r) 1059 return r; 1060 } else { 1061 ib->ptr = (uint32_t *)kptr; 1062 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1063 amdgpu_bo_kunmap(aobj); 1064 if (r) 1065 return r; 1066 } 1067 } 1068 1069 return 0; 1070 } 1071 1072 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1073 { 1074 unsigned int i; 1075 int r; 1076 1077 for (i = 0; i < p->gang_size; ++i) { 1078 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1079 if (r) 1080 return r; 1081 } 1082 return 0; 1083 } 1084 1085 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1086 { 1087 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1088 struct amdgpu_job *job = p->gang_leader; 1089 struct amdgpu_device *adev = p->adev; 1090 struct amdgpu_vm *vm = &fpriv->vm; 1091 struct amdgpu_bo_list_entry *e; 1092 struct amdgpu_bo_va *bo_va; 1093 struct amdgpu_bo *bo; 1094 unsigned int i; 1095 int r; 1096 1097 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1098 if (r) 1099 return r; 1100 1101 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1102 if (r) 1103 return r; 1104 1105 r = amdgpu_sync_fence(&job->sync, fpriv->prt_va->last_pt_update); 1106 if (r) 1107 return r; 1108 1109 if (fpriv->csa_va) { 1110 bo_va = fpriv->csa_va; 1111 BUG_ON(!bo_va); 1112 r = amdgpu_vm_bo_update(adev, bo_va, false); 1113 if (r) 1114 return r; 1115 1116 r = amdgpu_sync_fence(&job->sync, bo_va->last_pt_update); 1117 if (r) 1118 return r; 1119 } 1120 1121 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1122 /* ignore duplicates */ 1123 bo = ttm_to_amdgpu_bo(e->tv.bo); 1124 if (!bo) 1125 continue; 1126 1127 bo_va = e->bo_va; 1128 if (bo_va == NULL) 1129 continue; 1130 1131 r = amdgpu_vm_bo_update(adev, bo_va, false); 1132 if (r) 1133 return r; 1134 1135 r = amdgpu_sync_fence(&job->sync, bo_va->last_pt_update); 1136 if (r) 1137 return r; 1138 } 1139 1140 r = amdgpu_vm_handle_moved(adev, vm); 1141 if (r) 1142 return r; 1143 1144 r = amdgpu_vm_update_pdes(adev, vm, false); 1145 if (r) 1146 return r; 1147 1148 r = amdgpu_sync_fence(&job->sync, vm->last_update); 1149 if (r) 1150 return r; 1151 1152 for (i = 0; i < p->gang_size; ++i) { 1153 job = p->jobs[i]; 1154 1155 if (!job->vm) 1156 continue; 1157 1158 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1159 } 1160 1161 if (amdgpu_vm_debug) { 1162 /* Invalidate all BOs to test for userspace bugs */ 1163 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1164 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1165 1166 /* ignore duplicates */ 1167 if (!bo) 1168 continue; 1169 1170 amdgpu_vm_bo_invalidate(adev, bo, false); 1171 } 1172 } 1173 1174 return 0; 1175 } 1176 1177 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1178 { 1179 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1180 struct amdgpu_job *leader = p->gang_leader; 1181 struct amdgpu_bo_list_entry *e; 1182 unsigned int i; 1183 int r; 1184 1185 list_for_each_entry(e, &p->validated, tv.head) { 1186 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1187 struct dma_resv *resv = bo->tbo.base.resv; 1188 enum amdgpu_sync_mode sync_mode; 1189 1190 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1191 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1192 r = amdgpu_sync_resv(p->adev, &leader->sync, resv, sync_mode, 1193 &fpriv->vm); 1194 if (r) 1195 return r; 1196 } 1197 1198 for (i = 0; i < p->gang_size - 1; ++i) { 1199 r = amdgpu_sync_clone(&leader->sync, &p->jobs[i]->sync); 1200 if (r) 1201 return r; 1202 } 1203 1204 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_size - 1]); 1205 if (r && r != -ERESTARTSYS) 1206 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1207 1208 return r; 1209 } 1210 1211 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1212 { 1213 int i; 1214 1215 for (i = 0; i < p->num_post_deps; ++i) { 1216 if (p->post_deps[i].chain && p->post_deps[i].point) { 1217 drm_syncobj_add_point(p->post_deps[i].syncobj, 1218 p->post_deps[i].chain, 1219 p->fence, p->post_deps[i].point); 1220 p->post_deps[i].chain = NULL; 1221 } else { 1222 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1223 p->fence); 1224 } 1225 } 1226 } 1227 1228 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1229 union drm_amdgpu_cs *cs) 1230 { 1231 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1232 struct amdgpu_job *leader = p->gang_leader; 1233 struct amdgpu_bo_list_entry *e; 1234 unsigned int i; 1235 uint64_t seq; 1236 int r; 1237 1238 for (i = 0; i < p->gang_size; ++i) 1239 drm_sched_job_arm(&p->jobs[i]->base); 1240 1241 for (i = 0; i < (p->gang_size - 1); ++i) { 1242 struct dma_fence *fence; 1243 1244 fence = &p->jobs[i]->base.s_fence->scheduled; 1245 r = amdgpu_sync_fence(&leader->sync, fence); 1246 if (r) 1247 goto error_cleanup; 1248 } 1249 1250 if (p->gang_size > 1) { 1251 for (i = 0; i < p->gang_size; ++i) 1252 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1253 } 1254 1255 /* No memory allocation is allowed while holding the notifier lock. 1256 * The lock is held until amdgpu_cs_submit is finished and fence is 1257 * added to BOs. 1258 */ 1259 mutex_lock(&p->adev->notifier_lock); 1260 1261 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1262 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1263 */ 1264 r = 0; 1265 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1266 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1267 1268 r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm); 1269 } 1270 if (r) { 1271 r = -EAGAIN; 1272 goto error_unlock; 1273 } 1274 1275 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1276 list_for_each_entry(e, &p->validated, tv.head) { 1277 1278 /* Everybody except for the gang leader uses READ */ 1279 for (i = 0; i < (p->gang_size - 1); ++i) { 1280 dma_resv_add_fence(e->tv.bo->base.resv, 1281 &p->jobs[i]->base.s_fence->finished, 1282 DMA_RESV_USAGE_READ); 1283 } 1284 1285 /* The gang leader is remembered as writer */ 1286 e->tv.num_shared = 0; 1287 } 1288 1289 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_size - 1], 1290 p->fence); 1291 amdgpu_cs_post_dependencies(p); 1292 1293 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1294 !p->ctx->preamble_presented) { 1295 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1296 p->ctx->preamble_presented = true; 1297 } 1298 1299 cs->out.handle = seq; 1300 leader->uf_sequence = seq; 1301 1302 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket); 1303 for (i = 0; i < p->gang_size; ++i) { 1304 amdgpu_job_free_resources(p->jobs[i]); 1305 trace_amdgpu_cs_ioctl(p->jobs[i]); 1306 drm_sched_entity_push_job(&p->jobs[i]->base); 1307 p->jobs[i] = NULL; 1308 } 1309 1310 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1311 ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence); 1312 1313 mutex_unlock(&p->adev->notifier_lock); 1314 mutex_unlock(&p->bo_list->bo_list_mutex); 1315 return 0; 1316 1317 error_unlock: 1318 mutex_unlock(&p->adev->notifier_lock); 1319 1320 error_cleanup: 1321 for (i = 0; i < p->gang_size; ++i) 1322 drm_sched_job_cleanup(&p->jobs[i]->base); 1323 return r; 1324 } 1325 1326 /* Cleanup the parser structure */ 1327 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1328 { 1329 unsigned i; 1330 1331 for (i = 0; i < parser->num_post_deps; i++) { 1332 drm_syncobj_put(parser->post_deps[i].syncobj); 1333 kfree(parser->post_deps[i].chain); 1334 } 1335 kfree(parser->post_deps); 1336 1337 dma_fence_put(parser->fence); 1338 1339 if (parser->ctx) 1340 amdgpu_ctx_put(parser->ctx); 1341 if (parser->bo_list) 1342 amdgpu_bo_list_put(parser->bo_list); 1343 1344 for (i = 0; i < parser->nchunks; i++) 1345 kvfree(parser->chunks[i].kdata); 1346 kvfree(parser->chunks); 1347 for (i = 0; i < parser->gang_size; ++i) { 1348 if (parser->jobs[i]) 1349 amdgpu_job_free(parser->jobs[i]); 1350 } 1351 if (parser->uf_entry.tv.bo) { 1352 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo); 1353 1354 amdgpu_bo_unref(&uf); 1355 } 1356 } 1357 1358 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1359 { 1360 struct amdgpu_device *adev = drm_to_adev(dev); 1361 struct amdgpu_cs_parser parser; 1362 int r; 1363 1364 if (amdgpu_ras_intr_triggered()) 1365 return -EHWPOISON; 1366 1367 if (!adev->accel_working) 1368 return -EBUSY; 1369 1370 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1371 if (r) { 1372 if (printk_ratelimit()) 1373 DRM_ERROR("Failed to initialize parser %d!\n", r); 1374 return r; 1375 } 1376 1377 r = amdgpu_cs_pass1(&parser, data); 1378 if (r) 1379 goto error_fini; 1380 1381 r = amdgpu_cs_pass2(&parser); 1382 if (r) 1383 goto error_fini; 1384 1385 r = amdgpu_cs_parser_bos(&parser, data); 1386 if (r) { 1387 if (r == -ENOMEM) 1388 DRM_ERROR("Not enough memory for command submission!\n"); 1389 else if (r != -ERESTARTSYS && r != -EAGAIN) 1390 DRM_ERROR("Failed to process the buffer list %d!\n", r); 1391 goto error_fini; 1392 } 1393 1394 r = amdgpu_cs_patch_jobs(&parser); 1395 if (r) 1396 goto error_backoff; 1397 1398 r = amdgpu_cs_vm_handling(&parser); 1399 if (r) 1400 goto error_backoff; 1401 1402 r = amdgpu_cs_sync_rings(&parser); 1403 if (r) 1404 goto error_backoff; 1405 1406 trace_amdgpu_cs_ibs(&parser); 1407 1408 r = amdgpu_cs_submit(&parser, data); 1409 if (r) 1410 goto error_backoff; 1411 1412 amdgpu_cs_parser_fini(&parser); 1413 return 0; 1414 1415 error_backoff: 1416 ttm_eu_backoff_reservation(&parser.ticket, &parser.validated); 1417 mutex_unlock(&parser.bo_list->bo_list_mutex); 1418 1419 error_fini: 1420 amdgpu_cs_parser_fini(&parser); 1421 return r; 1422 } 1423 1424 /** 1425 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1426 * 1427 * @dev: drm device 1428 * @data: data from userspace 1429 * @filp: file private 1430 * 1431 * Wait for the command submission identified by handle to finish. 1432 */ 1433 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1434 struct drm_file *filp) 1435 { 1436 union drm_amdgpu_wait_cs *wait = data; 1437 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1438 struct drm_sched_entity *entity; 1439 struct amdgpu_ctx *ctx; 1440 struct dma_fence *fence; 1441 long r; 1442 1443 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1444 if (ctx == NULL) 1445 return -EINVAL; 1446 1447 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1448 wait->in.ring, &entity); 1449 if (r) { 1450 amdgpu_ctx_put(ctx); 1451 return r; 1452 } 1453 1454 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1455 if (IS_ERR(fence)) 1456 r = PTR_ERR(fence); 1457 else if (fence) { 1458 r = dma_fence_wait_timeout(fence, true, timeout); 1459 if (r > 0 && fence->error) 1460 r = fence->error; 1461 dma_fence_put(fence); 1462 } else 1463 r = 1; 1464 1465 amdgpu_ctx_put(ctx); 1466 if (r < 0) 1467 return r; 1468 1469 memset(wait, 0, sizeof(*wait)); 1470 wait->out.status = (r == 0); 1471 1472 return 0; 1473 } 1474 1475 /** 1476 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1477 * 1478 * @adev: amdgpu device 1479 * @filp: file private 1480 * @user: drm_amdgpu_fence copied from user space 1481 */ 1482 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1483 struct drm_file *filp, 1484 struct drm_amdgpu_fence *user) 1485 { 1486 struct drm_sched_entity *entity; 1487 struct amdgpu_ctx *ctx; 1488 struct dma_fence *fence; 1489 int r; 1490 1491 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1492 if (ctx == NULL) 1493 return ERR_PTR(-EINVAL); 1494 1495 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1496 user->ring, &entity); 1497 if (r) { 1498 amdgpu_ctx_put(ctx); 1499 return ERR_PTR(r); 1500 } 1501 1502 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1503 amdgpu_ctx_put(ctx); 1504 1505 return fence; 1506 } 1507 1508 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1509 struct drm_file *filp) 1510 { 1511 struct amdgpu_device *adev = drm_to_adev(dev); 1512 union drm_amdgpu_fence_to_handle *info = data; 1513 struct dma_fence *fence; 1514 struct drm_syncobj *syncobj; 1515 struct sync_file *sync_file; 1516 int fd, r; 1517 1518 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1519 if (IS_ERR(fence)) 1520 return PTR_ERR(fence); 1521 1522 if (!fence) 1523 fence = dma_fence_get_stub(); 1524 1525 switch (info->in.what) { 1526 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1527 r = drm_syncobj_create(&syncobj, 0, fence); 1528 dma_fence_put(fence); 1529 if (r) 1530 return r; 1531 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1532 drm_syncobj_put(syncobj); 1533 return r; 1534 1535 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1536 r = drm_syncobj_create(&syncobj, 0, fence); 1537 dma_fence_put(fence); 1538 if (r) 1539 return r; 1540 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1541 drm_syncobj_put(syncobj); 1542 return r; 1543 1544 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1545 fd = get_unused_fd_flags(O_CLOEXEC); 1546 if (fd < 0) { 1547 dma_fence_put(fence); 1548 return fd; 1549 } 1550 1551 sync_file = sync_file_create(fence); 1552 dma_fence_put(fence); 1553 if (!sync_file) { 1554 put_unused_fd(fd); 1555 return -ENOMEM; 1556 } 1557 1558 fd_install(fd, sync_file->file); 1559 info->out.handle = fd; 1560 return 0; 1561 1562 default: 1563 dma_fence_put(fence); 1564 return -EINVAL; 1565 } 1566 } 1567 1568 /** 1569 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1570 * 1571 * @adev: amdgpu device 1572 * @filp: file private 1573 * @wait: wait parameters 1574 * @fences: array of drm_amdgpu_fence 1575 */ 1576 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1577 struct drm_file *filp, 1578 union drm_amdgpu_wait_fences *wait, 1579 struct drm_amdgpu_fence *fences) 1580 { 1581 uint32_t fence_count = wait->in.fence_count; 1582 unsigned int i; 1583 long r = 1; 1584 1585 for (i = 0; i < fence_count; i++) { 1586 struct dma_fence *fence; 1587 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1588 1589 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1590 if (IS_ERR(fence)) 1591 return PTR_ERR(fence); 1592 else if (!fence) 1593 continue; 1594 1595 r = dma_fence_wait_timeout(fence, true, timeout); 1596 dma_fence_put(fence); 1597 if (r < 0) 1598 return r; 1599 1600 if (r == 0) 1601 break; 1602 1603 if (fence->error) 1604 return fence->error; 1605 } 1606 1607 memset(wait, 0, sizeof(*wait)); 1608 wait->out.status = (r > 0); 1609 1610 return 0; 1611 } 1612 1613 /** 1614 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1615 * 1616 * @adev: amdgpu device 1617 * @filp: file private 1618 * @wait: wait parameters 1619 * @fences: array of drm_amdgpu_fence 1620 */ 1621 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1622 struct drm_file *filp, 1623 union drm_amdgpu_wait_fences *wait, 1624 struct drm_amdgpu_fence *fences) 1625 { 1626 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1627 uint32_t fence_count = wait->in.fence_count; 1628 uint32_t first = ~0; 1629 struct dma_fence **array; 1630 unsigned int i; 1631 long r; 1632 1633 /* Prepare the fence array */ 1634 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1635 1636 if (array == NULL) 1637 return -ENOMEM; 1638 1639 for (i = 0; i < fence_count; i++) { 1640 struct dma_fence *fence; 1641 1642 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1643 if (IS_ERR(fence)) { 1644 r = PTR_ERR(fence); 1645 goto err_free_fence_array; 1646 } else if (fence) { 1647 array[i] = fence; 1648 } else { /* NULL, the fence has been already signaled */ 1649 r = 1; 1650 first = i; 1651 goto out; 1652 } 1653 } 1654 1655 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1656 &first); 1657 if (r < 0) 1658 goto err_free_fence_array; 1659 1660 out: 1661 memset(wait, 0, sizeof(*wait)); 1662 wait->out.status = (r > 0); 1663 wait->out.first_signaled = first; 1664 1665 if (first < fence_count && array[first]) 1666 r = array[first]->error; 1667 else 1668 r = 0; 1669 1670 err_free_fence_array: 1671 for (i = 0; i < fence_count; i++) 1672 dma_fence_put(array[i]); 1673 kfree(array); 1674 1675 return r; 1676 } 1677 1678 /** 1679 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1680 * 1681 * @dev: drm device 1682 * @data: data from userspace 1683 * @filp: file private 1684 */ 1685 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1686 struct drm_file *filp) 1687 { 1688 struct amdgpu_device *adev = drm_to_adev(dev); 1689 union drm_amdgpu_wait_fences *wait = data; 1690 uint32_t fence_count = wait->in.fence_count; 1691 struct drm_amdgpu_fence *fences_user; 1692 struct drm_amdgpu_fence *fences; 1693 int r; 1694 1695 /* Get the fences from userspace */ 1696 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1697 GFP_KERNEL); 1698 if (fences == NULL) 1699 return -ENOMEM; 1700 1701 fences_user = u64_to_user_ptr(wait->in.fences); 1702 if (copy_from_user(fences, fences_user, 1703 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1704 r = -EFAULT; 1705 goto err_free_fences; 1706 } 1707 1708 if (wait->in.wait_all) 1709 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1710 else 1711 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1712 1713 err_free_fences: 1714 kfree(fences); 1715 1716 return r; 1717 } 1718 1719 /** 1720 * amdgpu_cs_find_mapping - find bo_va for VM address 1721 * 1722 * @parser: command submission parser context 1723 * @addr: VM address 1724 * @bo: resulting BO of the mapping found 1725 * @map: Placeholder to return found BO mapping 1726 * 1727 * Search the buffer objects in the command submission context for a certain 1728 * virtual memory address. Returns allocation structure when found, NULL 1729 * otherwise. 1730 */ 1731 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1732 uint64_t addr, struct amdgpu_bo **bo, 1733 struct amdgpu_bo_va_mapping **map) 1734 { 1735 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1736 struct ttm_operation_ctx ctx = { false, false }; 1737 struct amdgpu_vm *vm = &fpriv->vm; 1738 struct amdgpu_bo_va_mapping *mapping; 1739 int r; 1740 1741 addr /= AMDGPU_GPU_PAGE_SIZE; 1742 1743 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1744 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1745 return -EINVAL; 1746 1747 *bo = mapping->bo_va->base.bo; 1748 *map = mapping; 1749 1750 /* Double check that the BO is reserved by this CS */ 1751 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket) 1752 return -EINVAL; 1753 1754 if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) { 1755 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1756 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1757 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1758 if (r) 1759 return r; 1760 } 1761 1762 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1763 } 1764