xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_cs.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 /*
2  * Copyright 2008 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *    Jerome Glisse <glisse@freedesktop.org>
26  */
27 
28 #include <linux/file.h>
29 #include <linux/pagemap.h>
30 #include <linux/sync_file.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include <drm/drm_syncobj.h>
35 #include "amdgpu.h"
36 #include "amdgpu_trace.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_gem.h"
39 #include "amdgpu_ras.h"
40 
41 static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p,
42 				      struct drm_amdgpu_cs_chunk_fence *data,
43 				      uint32_t *offset)
44 {
45 	struct drm_gem_object *gobj;
46 	struct amdgpu_bo *bo;
47 	unsigned long size;
48 	int r;
49 
50 	gobj = drm_gem_object_lookup(p->filp, data->handle);
51 	if (gobj == NULL)
52 		return -EINVAL;
53 
54 	bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
55 	p->uf_entry.priority = 0;
56 	p->uf_entry.tv.bo = &bo->tbo;
57 	/* One for TTM and one for the CS job */
58 	p->uf_entry.tv.num_shared = 2;
59 
60 	drm_gem_object_put(gobj);
61 
62 	size = amdgpu_bo_size(bo);
63 	if (size != PAGE_SIZE || (data->offset + 8) > size) {
64 		r = -EINVAL;
65 		goto error_unref;
66 	}
67 
68 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
69 		r = -EINVAL;
70 		goto error_unref;
71 	}
72 
73 	*offset = data->offset;
74 
75 	return 0;
76 
77 error_unref:
78 	amdgpu_bo_unref(&bo);
79 	return r;
80 }
81 
82 static int amdgpu_cs_bo_handles_chunk(struct amdgpu_cs_parser *p,
83 				      struct drm_amdgpu_bo_list_in *data)
84 {
85 	int r;
86 	struct drm_amdgpu_bo_list_entry *info = NULL;
87 
88 	r = amdgpu_bo_create_list_entry_array(data, &info);
89 	if (r)
90 		return r;
91 
92 	r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number,
93 				  &p->bo_list);
94 	if (r)
95 		goto error_free;
96 
97 	kvfree(info);
98 	return 0;
99 
100 error_free:
101 	kvfree(info);
102 
103 	return r;
104 }
105 
106 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, union drm_amdgpu_cs *cs)
107 {
108 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
109 	struct amdgpu_vm *vm = &fpriv->vm;
110 	uint64_t *chunk_array_user;
111 	uint64_t *chunk_array;
112 	unsigned size, num_ibs = 0;
113 	uint32_t uf_offset = 0;
114 	int i;
115 	int ret;
116 
117 	if (cs->in.num_chunks == 0)
118 		return 0;
119 
120 	chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
121 	if (!chunk_array)
122 		return -ENOMEM;
123 
124 	p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
125 	if (!p->ctx) {
126 		ret = -EINVAL;
127 		goto free_chunk;
128 	}
129 
130 	mutex_lock(&p->ctx->lock);
131 
132 	/* skip guilty context job */
133 	if (atomic_read(&p->ctx->guilty) == 1) {
134 		ret = -ECANCELED;
135 		goto free_chunk;
136 	}
137 
138 	/* get chunks */
139 	chunk_array_user = u64_to_user_ptr(cs->in.chunks);
140 	if (copy_from_user(chunk_array, chunk_array_user,
141 			   sizeof(uint64_t)*cs->in.num_chunks)) {
142 		ret = -EFAULT;
143 		goto free_chunk;
144 	}
145 
146 	p->nchunks = cs->in.num_chunks;
147 	p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
148 			    GFP_KERNEL);
149 	if (!p->chunks) {
150 		ret = -ENOMEM;
151 		goto free_chunk;
152 	}
153 
154 	for (i = 0; i < p->nchunks; i++) {
155 		struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
156 		struct drm_amdgpu_cs_chunk user_chunk;
157 		uint32_t __user *cdata;
158 
159 		chunk_ptr = u64_to_user_ptr(chunk_array[i]);
160 		if (copy_from_user(&user_chunk, chunk_ptr,
161 				       sizeof(struct drm_amdgpu_cs_chunk))) {
162 			ret = -EFAULT;
163 			i--;
164 			goto free_partial_kdata;
165 		}
166 		p->chunks[i].chunk_id = user_chunk.chunk_id;
167 		p->chunks[i].length_dw = user_chunk.length_dw;
168 
169 		size = p->chunks[i].length_dw;
170 		cdata = u64_to_user_ptr(user_chunk.chunk_data);
171 
172 		p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), GFP_KERNEL);
173 		if (p->chunks[i].kdata == NULL) {
174 			ret = -ENOMEM;
175 			i--;
176 			goto free_partial_kdata;
177 		}
178 		size *= sizeof(uint32_t);
179 		if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
180 			ret = -EFAULT;
181 			goto free_partial_kdata;
182 		}
183 
184 		switch (p->chunks[i].chunk_id) {
185 		case AMDGPU_CHUNK_ID_IB:
186 			++num_ibs;
187 			break;
188 
189 		case AMDGPU_CHUNK_ID_FENCE:
190 			size = sizeof(struct drm_amdgpu_cs_chunk_fence);
191 			if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
192 				ret = -EINVAL;
193 				goto free_partial_kdata;
194 			}
195 
196 			ret = amdgpu_cs_user_fence_chunk(p, p->chunks[i].kdata,
197 							 &uf_offset);
198 			if (ret)
199 				goto free_partial_kdata;
200 
201 			break;
202 
203 		case AMDGPU_CHUNK_ID_BO_HANDLES:
204 			size = sizeof(struct drm_amdgpu_bo_list_in);
205 			if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
206 				ret = -EINVAL;
207 				goto free_partial_kdata;
208 			}
209 
210 			ret = amdgpu_cs_bo_handles_chunk(p, p->chunks[i].kdata);
211 			if (ret)
212 				goto free_partial_kdata;
213 
214 			break;
215 
216 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
217 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
218 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
219 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
220 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
221 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
222 			break;
223 
224 		default:
225 			ret = -EINVAL;
226 			goto free_partial_kdata;
227 		}
228 	}
229 
230 	ret = amdgpu_job_alloc(p->adev, num_ibs, &p->job, vm);
231 	if (ret)
232 		goto free_all_kdata;
233 
234 	if (p->ctx->vram_lost_counter != p->job->vram_lost_counter) {
235 		ret = -ECANCELED;
236 		goto free_all_kdata;
237 	}
238 
239 	if (p->uf_entry.tv.bo)
240 		p->job->uf_addr = uf_offset;
241 	kvfree(chunk_array);
242 
243 	/* Use this opportunity to fill in task info for the vm */
244 	amdgpu_vm_set_task_info(vm);
245 
246 	return 0;
247 
248 free_all_kdata:
249 	i = p->nchunks - 1;
250 free_partial_kdata:
251 	for (; i >= 0; i--)
252 		kvfree(p->chunks[i].kdata);
253 	kvfree(p->chunks);
254 	p->chunks = NULL;
255 	p->nchunks = 0;
256 free_chunk:
257 	kvfree(chunk_array);
258 
259 	return ret;
260 }
261 
262 /* Convert microseconds to bytes. */
263 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us)
264 {
265 	if (us <= 0 || !adev->mm_stats.log2_max_MBps)
266 		return 0;
267 
268 	/* Since accum_us is incremented by a million per second, just
269 	 * multiply it by the number of MB/s to get the number of bytes.
270 	 */
271 	return us << adev->mm_stats.log2_max_MBps;
272 }
273 
274 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes)
275 {
276 	if (!adev->mm_stats.log2_max_MBps)
277 		return 0;
278 
279 	return bytes >> adev->mm_stats.log2_max_MBps;
280 }
281 
282 /* Returns how many bytes TTM can move right now. If no bytes can be moved,
283  * it returns 0. If it returns non-zero, it's OK to move at least one buffer,
284  * which means it can go over the threshold once. If that happens, the driver
285  * will be in debt and no other buffer migrations can be done until that debt
286  * is repaid.
287  *
288  * This approach allows moving a buffer of any size (it's important to allow
289  * that).
290  *
291  * The currency is simply time in microseconds and it increases as the clock
292  * ticks. The accumulated microseconds (us) are converted to bytes and
293  * returned.
294  */
295 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev,
296 					      u64 *max_bytes,
297 					      u64 *max_vis_bytes)
298 {
299 	s64 time_us, increment_us;
300 	u64 free_vram, total_vram, used_vram;
301 	struct ttm_resource_manager *vram_man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
302 	/* Allow a maximum of 200 accumulated ms. This is basically per-IB
303 	 * throttling.
304 	 *
305 	 * It means that in order to get full max MBps, at least 5 IBs per
306 	 * second must be submitted and not more than 200ms apart from each
307 	 * other.
308 	 */
309 	const s64 us_upper_bound = 200000;
310 
311 	if (!adev->mm_stats.log2_max_MBps) {
312 		*max_bytes = 0;
313 		*max_vis_bytes = 0;
314 		return;
315 	}
316 
317 	total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size);
318 	used_vram = amdgpu_vram_mgr_usage(vram_man);
319 	free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram;
320 
321 	spin_lock(&adev->mm_stats.lock);
322 
323 	/* Increase the amount of accumulated us. */
324 	time_us = ktime_to_us(ktime_get());
325 	increment_us = time_us - adev->mm_stats.last_update_us;
326 	adev->mm_stats.last_update_us = time_us;
327 	adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us,
328 				      us_upper_bound);
329 
330 	/* This prevents the short period of low performance when the VRAM
331 	 * usage is low and the driver is in debt or doesn't have enough
332 	 * accumulated us to fill VRAM quickly.
333 	 *
334 	 * The situation can occur in these cases:
335 	 * - a lot of VRAM is freed by userspace
336 	 * - the presence of a big buffer causes a lot of evictions
337 	 *   (solution: split buffers into smaller ones)
338 	 *
339 	 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting
340 	 * accum_us to a positive number.
341 	 */
342 	if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) {
343 		s64 min_us;
344 
345 		/* Be more aggresive on dGPUs. Try to fill a portion of free
346 		 * VRAM now.
347 		 */
348 		if (!(adev->flags & AMD_IS_APU))
349 			min_us = bytes_to_us(adev, free_vram / 4);
350 		else
351 			min_us = 0; /* Reset accum_us on APUs. */
352 
353 		adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us);
354 	}
355 
356 	/* This is set to 0 if the driver is in debt to disallow (optional)
357 	 * buffer moves.
358 	 */
359 	*max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us);
360 
361 	/* Do the same for visible VRAM if half of it is free */
362 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) {
363 		u64 total_vis_vram = adev->gmc.visible_vram_size;
364 		u64 used_vis_vram =
365 		  amdgpu_vram_mgr_vis_usage(vram_man);
366 
367 		if (used_vis_vram < total_vis_vram) {
368 			u64 free_vis_vram = total_vis_vram - used_vis_vram;
369 			adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis +
370 							  increment_us, us_upper_bound);
371 
372 			if (free_vis_vram >= total_vis_vram / 2)
373 				adev->mm_stats.accum_us_vis =
374 					max(bytes_to_us(adev, free_vis_vram / 2),
375 					    adev->mm_stats.accum_us_vis);
376 		}
377 
378 		*max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis);
379 	} else {
380 		*max_vis_bytes = 0;
381 	}
382 
383 	spin_unlock(&adev->mm_stats.lock);
384 }
385 
386 /* Report how many bytes have really been moved for the last command
387  * submission. This can result in a debt that can stop buffer migrations
388  * temporarily.
389  */
390 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes,
391 				  u64 num_vis_bytes)
392 {
393 	spin_lock(&adev->mm_stats.lock);
394 	adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes);
395 	adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes);
396 	spin_unlock(&adev->mm_stats.lock);
397 }
398 
399 static int amdgpu_cs_bo_validate(struct amdgpu_cs_parser *p,
400 				 struct amdgpu_bo *bo)
401 {
402 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
403 	struct ttm_operation_ctx ctx = {
404 		.interruptible = true,
405 		.no_wait_gpu = false,
406 		.resv = bo->tbo.base.resv
407 	};
408 	uint32_t domain;
409 	int r;
410 
411 	if (bo->tbo.pin_count)
412 		return 0;
413 
414 	/* Don't move this buffer if we have depleted our allowance
415 	 * to move it. Don't move anything if the threshold is zero.
416 	 */
417 	if (p->bytes_moved < p->bytes_moved_threshold &&
418 	    (!bo->tbo.base.dma_buf ||
419 	    list_empty(&bo->tbo.base.dma_buf->attachments))) {
420 		if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
421 		    (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) {
422 			/* And don't move a CPU_ACCESS_REQUIRED BO to limited
423 			 * visible VRAM if we've depleted our allowance to do
424 			 * that.
425 			 */
426 			if (p->bytes_moved_vis < p->bytes_moved_vis_threshold)
427 				domain = bo->preferred_domains;
428 			else
429 				domain = bo->allowed_domains;
430 		} else {
431 			domain = bo->preferred_domains;
432 		}
433 	} else {
434 		domain = bo->allowed_domains;
435 	}
436 
437 retry:
438 	amdgpu_bo_placement_from_domain(bo, domain);
439 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
440 
441 	p->bytes_moved += ctx.bytes_moved;
442 	if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
443 	    amdgpu_bo_in_cpu_visible_vram(bo))
444 		p->bytes_moved_vis += ctx.bytes_moved;
445 
446 	if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) {
447 		domain = bo->allowed_domains;
448 		goto retry;
449 	}
450 
451 	return r;
452 }
453 
454 static int amdgpu_cs_validate(void *param, struct amdgpu_bo *bo)
455 {
456 	struct amdgpu_cs_parser *p = param;
457 	int r;
458 
459 	r = amdgpu_cs_bo_validate(p, bo);
460 	if (r)
461 		return r;
462 
463 	if (bo->shadow)
464 		r = amdgpu_cs_bo_validate(p, bo->shadow);
465 
466 	return r;
467 }
468 
469 static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p,
470 			    struct list_head *validated)
471 {
472 	struct ttm_operation_ctx ctx = { true, false };
473 	struct amdgpu_bo_list_entry *lobj;
474 	int r;
475 
476 	list_for_each_entry(lobj, validated, tv.head) {
477 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo);
478 		struct mm_struct *usermm;
479 
480 		usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm);
481 		if (usermm && usermm != current->mm)
482 			return -EPERM;
483 
484 		if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) &&
485 		    lobj->user_invalidated && lobj->user_pages) {
486 			amdgpu_bo_placement_from_domain(bo,
487 							AMDGPU_GEM_DOMAIN_CPU);
488 			r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
489 			if (r)
490 				return r;
491 
492 			amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm,
493 						     lobj->user_pages);
494 		}
495 
496 		r = amdgpu_cs_validate(p, bo);
497 		if (r)
498 			return r;
499 
500 		kvfree(lobj->user_pages);
501 		lobj->user_pages = NULL;
502 	}
503 	return 0;
504 }
505 
506 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p,
507 				union drm_amdgpu_cs *cs)
508 {
509 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
510 	struct amdgpu_vm *vm = &fpriv->vm;
511 	struct amdgpu_bo_list_entry *e;
512 	struct list_head duplicates;
513 	struct amdgpu_bo *gds;
514 	struct amdgpu_bo *gws;
515 	struct amdgpu_bo *oa;
516 	int r;
517 
518 	INIT_LIST_HEAD(&p->validated);
519 
520 	/* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */
521 	if (cs->in.bo_list_handle) {
522 		if (p->bo_list)
523 			return -EINVAL;
524 
525 		r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle,
526 				       &p->bo_list);
527 		if (r)
528 			return r;
529 	} else if (!p->bo_list) {
530 		/* Create a empty bo_list when no handle is provided */
531 		r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0,
532 					  &p->bo_list);
533 		if (r)
534 			return r;
535 	}
536 
537 	/* One for TTM and one for the CS job */
538 	amdgpu_bo_list_for_each_entry(e, p->bo_list)
539 		e->tv.num_shared = 2;
540 
541 	amdgpu_bo_list_get_list(p->bo_list, &p->validated);
542 
543 	INIT_LIST_HEAD(&duplicates);
544 	amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd);
545 
546 	if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent)
547 		list_add(&p->uf_entry.tv.head, &p->validated);
548 
549 	/* Get userptr backing pages. If pages are updated after registered
550 	 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do
551 	 * amdgpu_ttm_backend_bind() to flush and invalidate new pages
552 	 */
553 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
554 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
555 		bool userpage_invalidated = false;
556 		int i;
557 
558 		e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages,
559 					sizeof(struct page *),
560 					GFP_KERNEL | __GFP_ZERO);
561 		if (!e->user_pages) {
562 			DRM_ERROR("kvmalloc_array failure\n");
563 			return -ENOMEM;
564 		}
565 
566 		r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages);
567 		if (r) {
568 			kvfree(e->user_pages);
569 			e->user_pages = NULL;
570 			return r;
571 		}
572 
573 		for (i = 0; i < bo->tbo.ttm->num_pages; i++) {
574 			if (bo->tbo.ttm->pages[i] != e->user_pages[i]) {
575 				userpage_invalidated = true;
576 				break;
577 			}
578 		}
579 		e->user_invalidated = userpage_invalidated;
580 	}
581 
582 	r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true,
583 				   &duplicates);
584 	if (unlikely(r != 0)) {
585 		if (r != -ERESTARTSYS)
586 			DRM_ERROR("ttm_eu_reserve_buffers failed.\n");
587 		goto out;
588 	}
589 
590 	amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold,
591 					  &p->bytes_moved_vis_threshold);
592 	p->bytes_moved = 0;
593 	p->bytes_moved_vis = 0;
594 
595 	r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm,
596 				      amdgpu_cs_validate, p);
597 	if (r) {
598 		DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n");
599 		goto error_validate;
600 	}
601 
602 	r = amdgpu_cs_list_validate(p, &duplicates);
603 	if (r)
604 		goto error_validate;
605 
606 	r = amdgpu_cs_list_validate(p, &p->validated);
607 	if (r)
608 		goto error_validate;
609 
610 	amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved,
611 				     p->bytes_moved_vis);
612 
613 	gds = p->bo_list->gds_obj;
614 	gws = p->bo_list->gws_obj;
615 	oa = p->bo_list->oa_obj;
616 
617 	amdgpu_bo_list_for_each_entry(e, p->bo_list) {
618 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
619 
620 		/* Make sure we use the exclusive slot for shared BOs */
621 		if (bo->prime_shared_count)
622 			e->tv.num_shared = 0;
623 		e->bo_va = amdgpu_vm_bo_find(vm, bo);
624 	}
625 
626 	if (gds) {
627 		p->job->gds_base = amdgpu_bo_gpu_offset(gds) >> PAGE_SHIFT;
628 		p->job->gds_size = amdgpu_bo_size(gds) >> PAGE_SHIFT;
629 	}
630 	if (gws) {
631 		p->job->gws_base = amdgpu_bo_gpu_offset(gws) >> PAGE_SHIFT;
632 		p->job->gws_size = amdgpu_bo_size(gws) >> PAGE_SHIFT;
633 	}
634 	if (oa) {
635 		p->job->oa_base = amdgpu_bo_gpu_offset(oa) >> PAGE_SHIFT;
636 		p->job->oa_size = amdgpu_bo_size(oa) >> PAGE_SHIFT;
637 	}
638 
639 	if (!r && p->uf_entry.tv.bo) {
640 		struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo);
641 
642 		r = amdgpu_ttm_alloc_gart(&uf->tbo);
643 		p->job->uf_addr += amdgpu_bo_gpu_offset(uf);
644 	}
645 
646 error_validate:
647 	if (r)
648 		ttm_eu_backoff_reservation(&p->ticket, &p->validated);
649 out:
650 	return r;
651 }
652 
653 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
654 {
655 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
656 	struct amdgpu_bo_list_entry *e;
657 	int r;
658 
659 	list_for_each_entry(e, &p->validated, tv.head) {
660 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
661 		struct dma_resv *resv = bo->tbo.base.resv;
662 		enum amdgpu_sync_mode sync_mode;
663 
664 		sync_mode = amdgpu_bo_explicit_sync(bo) ?
665 			AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER;
666 		r = amdgpu_sync_resv(p->adev, &p->job->sync, resv, sync_mode,
667 				     &fpriv->vm);
668 		if (r)
669 			return r;
670 	}
671 	return 0;
672 }
673 
674 /**
675  * cs_parser_fini() - clean parser states
676  * @parser:	parser structure holding parsing context.
677  * @error:	error number
678  * @backoff:	indicator to backoff the reservation
679  *
680  * If error is set than unvalidate buffer, otherwise just free memory
681  * used by parsing context.
682  **/
683 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error,
684 				  bool backoff)
685 {
686 	unsigned i;
687 
688 	if (error && backoff)
689 		ttm_eu_backoff_reservation(&parser->ticket,
690 					   &parser->validated);
691 
692 	for (i = 0; i < parser->num_post_deps; i++) {
693 		drm_syncobj_put(parser->post_deps[i].syncobj);
694 		kfree(parser->post_deps[i].chain);
695 	}
696 	kfree(parser->post_deps);
697 
698 	dma_fence_put(parser->fence);
699 
700 	if (parser->ctx) {
701 		mutex_unlock(&parser->ctx->lock);
702 		amdgpu_ctx_put(parser->ctx);
703 	}
704 	if (parser->bo_list)
705 		amdgpu_bo_list_put(parser->bo_list);
706 
707 	for (i = 0; i < parser->nchunks; i++)
708 		kvfree(parser->chunks[i].kdata);
709 	kvfree(parser->chunks);
710 	if (parser->job)
711 		amdgpu_job_free(parser->job);
712 	if (parser->uf_entry.tv.bo) {
713 		struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo);
714 
715 		amdgpu_bo_unref(&uf);
716 	}
717 }
718 
719 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p)
720 {
721 	struct amdgpu_ring *ring = to_amdgpu_ring(p->entity->rq->sched);
722 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
723 	struct amdgpu_device *adev = p->adev;
724 	struct amdgpu_vm *vm = &fpriv->vm;
725 	struct amdgpu_bo_list_entry *e;
726 	struct amdgpu_bo_va *bo_va;
727 	struct amdgpu_bo *bo;
728 	int r;
729 
730 	/* Only for UVD/VCE VM emulation */
731 	if (ring->funcs->parse_cs || ring->funcs->patch_cs_in_place) {
732 		unsigned i, j;
733 
734 		for (i = 0, j = 0; i < p->nchunks && j < p->job->num_ibs; i++) {
735 			struct drm_amdgpu_cs_chunk_ib *chunk_ib;
736 			struct amdgpu_bo_va_mapping *m;
737 			struct amdgpu_bo *aobj = NULL;
738 			struct amdgpu_cs_chunk *chunk;
739 			uint64_t offset, va_start;
740 			struct amdgpu_ib *ib;
741 			uint8_t *kptr;
742 
743 			chunk = &p->chunks[i];
744 			ib = &p->job->ibs[j];
745 			chunk_ib = chunk->kdata;
746 
747 			if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
748 				continue;
749 
750 			va_start = chunk_ib->va_start & AMDGPU_GMC_HOLE_MASK;
751 			r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m);
752 			if (r) {
753 				DRM_ERROR("IB va_start is invalid\n");
754 				return r;
755 			}
756 
757 			if ((va_start + chunk_ib->ib_bytes) >
758 			    (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) {
759 				DRM_ERROR("IB va_start+ib_bytes is invalid\n");
760 				return -EINVAL;
761 			}
762 
763 			/* the IB should be reserved at this point */
764 			r = amdgpu_bo_kmap(aobj, (void **)&kptr);
765 			if (r) {
766 				return r;
767 			}
768 
769 			offset = m->start * AMDGPU_GPU_PAGE_SIZE;
770 			kptr += va_start - offset;
771 
772 			if (ring->funcs->parse_cs) {
773 				memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
774 				amdgpu_bo_kunmap(aobj);
775 
776 				r = amdgpu_ring_parse_cs(ring, p, j);
777 				if (r)
778 					return r;
779 			} else {
780 				ib->ptr = (uint32_t *)kptr;
781 				r = amdgpu_ring_patch_cs_in_place(ring, p, j);
782 				amdgpu_bo_kunmap(aobj);
783 				if (r)
784 					return r;
785 			}
786 
787 			j++;
788 		}
789 	}
790 
791 	if (!p->job->vm)
792 		return amdgpu_cs_sync_rings(p);
793 
794 
795 	r = amdgpu_vm_clear_freed(adev, vm, NULL);
796 	if (r)
797 		return r;
798 
799 	r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false);
800 	if (r)
801 		return r;
802 
803 	r = amdgpu_sync_vm_fence(&p->job->sync, fpriv->prt_va->last_pt_update);
804 	if (r)
805 		return r;
806 
807 	if (amdgpu_mcbp || amdgpu_sriov_vf(adev)) {
808 		bo_va = fpriv->csa_va;
809 		BUG_ON(!bo_va);
810 		r = amdgpu_vm_bo_update(adev, bo_va, false);
811 		if (r)
812 			return r;
813 
814 		r = amdgpu_sync_vm_fence(&p->job->sync, bo_va->last_pt_update);
815 		if (r)
816 			return r;
817 	}
818 
819 	amdgpu_bo_list_for_each_entry(e, p->bo_list) {
820 		/* ignore duplicates */
821 		bo = ttm_to_amdgpu_bo(e->tv.bo);
822 		if (!bo)
823 			continue;
824 
825 		bo_va = e->bo_va;
826 		if (bo_va == NULL)
827 			continue;
828 
829 		r = amdgpu_vm_bo_update(adev, bo_va, false);
830 		if (r)
831 			return r;
832 
833 		r = amdgpu_sync_vm_fence(&p->job->sync, bo_va->last_pt_update);
834 		if (r)
835 			return r;
836 	}
837 
838 	r = amdgpu_vm_handle_moved(adev, vm);
839 	if (r)
840 		return r;
841 
842 	r = amdgpu_vm_update_pdes(adev, vm, false);
843 	if (r)
844 		return r;
845 
846 	r = amdgpu_sync_vm_fence(&p->job->sync, vm->last_update);
847 	if (r)
848 		return r;
849 
850 	p->job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.base.bo);
851 
852 	if (amdgpu_vm_debug) {
853 		/* Invalidate all BOs to test for userspace bugs */
854 		amdgpu_bo_list_for_each_entry(e, p->bo_list) {
855 			struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
856 
857 			/* ignore duplicates */
858 			if (!bo)
859 				continue;
860 
861 			amdgpu_vm_bo_invalidate(adev, bo, false);
862 		}
863 	}
864 
865 	return amdgpu_cs_sync_rings(p);
866 }
867 
868 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
869 			     struct amdgpu_cs_parser *parser)
870 {
871 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
872 	struct amdgpu_vm *vm = &fpriv->vm;
873 	int r, ce_preempt = 0, de_preempt = 0;
874 	struct amdgpu_ring *ring;
875 	int i, j;
876 
877 	for (i = 0, j = 0; i < parser->nchunks && j < parser->job->num_ibs; i++) {
878 		struct amdgpu_cs_chunk *chunk;
879 		struct amdgpu_ib *ib;
880 		struct drm_amdgpu_cs_chunk_ib *chunk_ib;
881 		struct drm_sched_entity *entity;
882 
883 		chunk = &parser->chunks[i];
884 		ib = &parser->job->ibs[j];
885 		chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
886 
887 		if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
888 			continue;
889 
890 		if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX &&
891 		    (amdgpu_mcbp || amdgpu_sriov_vf(adev))) {
892 			if (chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) {
893 				if (chunk_ib->flags & AMDGPU_IB_FLAG_CE)
894 					ce_preempt++;
895 				else
896 					de_preempt++;
897 			}
898 
899 			/* each GFX command submit allows 0 or 1 IB preemptible for CE & DE */
900 			if (ce_preempt > 1 || de_preempt > 1)
901 				return -EINVAL;
902 		}
903 
904 		r = amdgpu_ctx_get_entity(parser->ctx, chunk_ib->ip_type,
905 					  chunk_ib->ip_instance, chunk_ib->ring,
906 					  &entity);
907 		if (r)
908 			return r;
909 
910 		if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE)
911 			parser->job->preamble_status |=
912 				AMDGPU_PREAMBLE_IB_PRESENT;
913 
914 		if (parser->entity && parser->entity != entity)
915 			return -EINVAL;
916 
917 		/* Return if there is no run queue associated with this entity.
918 		 * Possibly because of disabled HW IP*/
919 		if (entity->rq == NULL)
920 			return -EINVAL;
921 
922 		parser->entity = entity;
923 
924 		ring = to_amdgpu_ring(entity->rq->sched);
925 		r =  amdgpu_ib_get(adev, vm, ring->funcs->parse_cs ?
926 				   chunk_ib->ib_bytes : 0,
927 				   AMDGPU_IB_POOL_DELAYED, ib);
928 		if (r) {
929 			DRM_ERROR("Failed to get ib !\n");
930 			return r;
931 		}
932 
933 		ib->gpu_addr = chunk_ib->va_start;
934 		ib->length_dw = chunk_ib->ib_bytes / 4;
935 		ib->flags = chunk_ib->flags;
936 
937 		j++;
938 	}
939 
940 	/* MM engine doesn't support user fences */
941 	ring = to_amdgpu_ring(parser->entity->rq->sched);
942 	if (parser->job->uf_addr && ring->funcs->no_user_fence)
943 		return -EINVAL;
944 
945 	return amdgpu_ctx_wait_prev_fence(parser->ctx, parser->entity);
946 }
947 
948 static int amdgpu_cs_process_fence_dep(struct amdgpu_cs_parser *p,
949 				       struct amdgpu_cs_chunk *chunk)
950 {
951 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
952 	unsigned num_deps;
953 	int i, r;
954 	struct drm_amdgpu_cs_chunk_dep *deps;
955 
956 	deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
957 	num_deps = chunk->length_dw * 4 /
958 		sizeof(struct drm_amdgpu_cs_chunk_dep);
959 
960 	for (i = 0; i < num_deps; ++i) {
961 		struct amdgpu_ctx *ctx;
962 		struct drm_sched_entity *entity;
963 		struct dma_fence *fence;
964 
965 		ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id);
966 		if (ctx == NULL)
967 			return -EINVAL;
968 
969 		r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type,
970 					  deps[i].ip_instance,
971 					  deps[i].ring, &entity);
972 		if (r) {
973 			amdgpu_ctx_put(ctx);
974 			return r;
975 		}
976 
977 		fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle);
978 		amdgpu_ctx_put(ctx);
979 
980 		if (IS_ERR(fence))
981 			return PTR_ERR(fence);
982 		else if (!fence)
983 			continue;
984 
985 		if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) {
986 			struct drm_sched_fence *s_fence;
987 			struct dma_fence *old = fence;
988 
989 			s_fence = to_drm_sched_fence(fence);
990 			fence = dma_fence_get(&s_fence->scheduled);
991 			dma_fence_put(old);
992 		}
993 
994 		r = amdgpu_sync_fence(&p->job->sync, fence);
995 		dma_fence_put(fence);
996 		if (r)
997 			return r;
998 	}
999 	return 0;
1000 }
1001 
1002 static int amdgpu_syncobj_lookup_and_add_to_sync(struct amdgpu_cs_parser *p,
1003 						 uint32_t handle, u64 point,
1004 						 u64 flags)
1005 {
1006 	struct dma_fence *fence;
1007 	int r;
1008 
1009 	r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence);
1010 	if (r) {
1011 		DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n",
1012 			  handle, point, r);
1013 		return r;
1014 	}
1015 
1016 	r = amdgpu_sync_fence(&p->job->sync, fence);
1017 	dma_fence_put(fence);
1018 
1019 	return r;
1020 }
1021 
1022 static int amdgpu_cs_process_syncobj_in_dep(struct amdgpu_cs_parser *p,
1023 					    struct amdgpu_cs_chunk *chunk)
1024 {
1025 	struct drm_amdgpu_cs_chunk_sem *deps;
1026 	unsigned num_deps;
1027 	int i, r;
1028 
1029 	deps = (struct drm_amdgpu_cs_chunk_sem *)chunk->kdata;
1030 	num_deps = chunk->length_dw * 4 /
1031 		sizeof(struct drm_amdgpu_cs_chunk_sem);
1032 	for (i = 0; i < num_deps; ++i) {
1033 		r = amdgpu_syncobj_lookup_and_add_to_sync(p, deps[i].handle,
1034 							  0, 0);
1035 		if (r)
1036 			return r;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 
1043 static int amdgpu_cs_process_syncobj_timeline_in_dep(struct amdgpu_cs_parser *p,
1044 						     struct amdgpu_cs_chunk *chunk)
1045 {
1046 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps;
1047 	unsigned num_deps;
1048 	int i, r;
1049 
1050 	syncobj_deps = (struct drm_amdgpu_cs_chunk_syncobj *)chunk->kdata;
1051 	num_deps = chunk->length_dw * 4 /
1052 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
1053 	for (i = 0; i < num_deps; ++i) {
1054 		r = amdgpu_syncobj_lookup_and_add_to_sync(p,
1055 							  syncobj_deps[i].handle,
1056 							  syncobj_deps[i].point,
1057 							  syncobj_deps[i].flags);
1058 		if (r)
1059 			return r;
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static int amdgpu_cs_process_syncobj_out_dep(struct amdgpu_cs_parser *p,
1066 					     struct amdgpu_cs_chunk *chunk)
1067 {
1068 	struct drm_amdgpu_cs_chunk_sem *deps;
1069 	unsigned num_deps;
1070 	int i;
1071 
1072 	deps = (struct drm_amdgpu_cs_chunk_sem *)chunk->kdata;
1073 	num_deps = chunk->length_dw * 4 /
1074 		sizeof(struct drm_amdgpu_cs_chunk_sem);
1075 
1076 	if (p->post_deps)
1077 		return -EINVAL;
1078 
1079 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
1080 				     GFP_KERNEL);
1081 	p->num_post_deps = 0;
1082 
1083 	if (!p->post_deps)
1084 		return -ENOMEM;
1085 
1086 
1087 	for (i = 0; i < num_deps; ++i) {
1088 		p->post_deps[i].syncobj =
1089 			drm_syncobj_find(p->filp, deps[i].handle);
1090 		if (!p->post_deps[i].syncobj)
1091 			return -EINVAL;
1092 		p->post_deps[i].chain = NULL;
1093 		p->post_deps[i].point = 0;
1094 		p->num_post_deps++;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 
1101 static int amdgpu_cs_process_syncobj_timeline_out_dep(struct amdgpu_cs_parser *p,
1102 						      struct amdgpu_cs_chunk *chunk)
1103 {
1104 	struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps;
1105 	unsigned num_deps;
1106 	int i;
1107 
1108 	syncobj_deps = (struct drm_amdgpu_cs_chunk_syncobj *)chunk->kdata;
1109 	num_deps = chunk->length_dw * 4 /
1110 		sizeof(struct drm_amdgpu_cs_chunk_syncobj);
1111 
1112 	if (p->post_deps)
1113 		return -EINVAL;
1114 
1115 	p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps),
1116 				     GFP_KERNEL);
1117 	p->num_post_deps = 0;
1118 
1119 	if (!p->post_deps)
1120 		return -ENOMEM;
1121 
1122 	for (i = 0; i < num_deps; ++i) {
1123 		struct amdgpu_cs_post_dep *dep = &p->post_deps[i];
1124 
1125 		dep->chain = NULL;
1126 		if (syncobj_deps[i].point) {
1127 			dep->chain = kmalloc(sizeof(*dep->chain), GFP_KERNEL);
1128 			if (!dep->chain)
1129 				return -ENOMEM;
1130 		}
1131 
1132 		dep->syncobj = drm_syncobj_find(p->filp,
1133 						syncobj_deps[i].handle);
1134 		if (!dep->syncobj) {
1135 			kfree(dep->chain);
1136 			return -EINVAL;
1137 		}
1138 		dep->point = syncobj_deps[i].point;
1139 		p->num_post_deps++;
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
1146 				  struct amdgpu_cs_parser *p)
1147 {
1148 	int i, r;
1149 
1150 	for (i = 0; i < p->nchunks; ++i) {
1151 		struct amdgpu_cs_chunk *chunk;
1152 
1153 		chunk = &p->chunks[i];
1154 
1155 		switch (chunk->chunk_id) {
1156 		case AMDGPU_CHUNK_ID_DEPENDENCIES:
1157 		case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES:
1158 			r = amdgpu_cs_process_fence_dep(p, chunk);
1159 			if (r)
1160 				return r;
1161 			break;
1162 		case AMDGPU_CHUNK_ID_SYNCOBJ_IN:
1163 			r = amdgpu_cs_process_syncobj_in_dep(p, chunk);
1164 			if (r)
1165 				return r;
1166 			break;
1167 		case AMDGPU_CHUNK_ID_SYNCOBJ_OUT:
1168 			r = amdgpu_cs_process_syncobj_out_dep(p, chunk);
1169 			if (r)
1170 				return r;
1171 			break;
1172 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT:
1173 			r = amdgpu_cs_process_syncobj_timeline_in_dep(p, chunk);
1174 			if (r)
1175 				return r;
1176 			break;
1177 		case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL:
1178 			r = amdgpu_cs_process_syncobj_timeline_out_dep(p, chunk);
1179 			if (r)
1180 				return r;
1181 			break;
1182 		}
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p)
1189 {
1190 	int i;
1191 
1192 	for (i = 0; i < p->num_post_deps; ++i) {
1193 		if (p->post_deps[i].chain && p->post_deps[i].point) {
1194 			drm_syncobj_add_point(p->post_deps[i].syncobj,
1195 					      p->post_deps[i].chain,
1196 					      p->fence, p->post_deps[i].point);
1197 			p->post_deps[i].chain = NULL;
1198 		} else {
1199 			drm_syncobj_replace_fence(p->post_deps[i].syncobj,
1200 						  p->fence);
1201 		}
1202 	}
1203 }
1204 
1205 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p,
1206 			    union drm_amdgpu_cs *cs)
1207 {
1208 	struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
1209 	struct drm_sched_entity *entity = p->entity;
1210 	struct amdgpu_bo_list_entry *e;
1211 	struct amdgpu_job *job;
1212 	uint64_t seq;
1213 	int r;
1214 
1215 	job = p->job;
1216 	p->job = NULL;
1217 
1218 	r = drm_sched_job_init(&job->base, entity, &fpriv->vm);
1219 	if (r)
1220 		goto error_unlock;
1221 
1222 	/* No memory allocation is allowed while holding the notifier lock.
1223 	 * The lock is held until amdgpu_cs_submit is finished and fence is
1224 	 * added to BOs.
1225 	 */
1226 	mutex_lock(&p->adev->notifier_lock);
1227 
1228 	/* If userptr are invalidated after amdgpu_cs_parser_bos(), return
1229 	 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl.
1230 	 */
1231 	amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) {
1232 		struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo);
1233 
1234 		r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
1235 	}
1236 	if (r) {
1237 		r = -EAGAIN;
1238 		goto error_abort;
1239 	}
1240 
1241 	p->fence = dma_fence_get(&job->base.s_fence->finished);
1242 
1243 	amdgpu_ctx_add_fence(p->ctx, entity, p->fence, &seq);
1244 	amdgpu_cs_post_dependencies(p);
1245 
1246 	if ((job->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) &&
1247 	    !p->ctx->preamble_presented) {
1248 		job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST;
1249 		p->ctx->preamble_presented = true;
1250 	}
1251 
1252 	cs->out.handle = seq;
1253 	job->uf_sequence = seq;
1254 
1255 	amdgpu_job_free_resources(job);
1256 
1257 	trace_amdgpu_cs_ioctl(job);
1258 	amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket);
1259 	drm_sched_entity_push_job(&job->base, entity);
1260 
1261 	amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm);
1262 
1263 	ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence);
1264 	mutex_unlock(&p->adev->notifier_lock);
1265 
1266 	return 0;
1267 
1268 error_abort:
1269 	drm_sched_job_cleanup(&job->base);
1270 	mutex_unlock(&p->adev->notifier_lock);
1271 
1272 error_unlock:
1273 	amdgpu_job_free(job);
1274 	return r;
1275 }
1276 
1277 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *parser)
1278 {
1279 	int i;
1280 
1281 	if (!trace_amdgpu_cs_enabled())
1282 		return;
1283 
1284 	for (i = 0; i < parser->job->num_ibs; i++)
1285 		trace_amdgpu_cs(parser, i);
1286 }
1287 
1288 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
1289 {
1290 	struct amdgpu_device *adev = drm_to_adev(dev);
1291 	union drm_amdgpu_cs *cs = data;
1292 	struct amdgpu_cs_parser parser = {};
1293 	bool reserved_buffers = false;
1294 	int r;
1295 
1296 	if (amdgpu_ras_intr_triggered())
1297 		return -EHWPOISON;
1298 
1299 	if (!adev->accel_working)
1300 		return -EBUSY;
1301 
1302 	parser.adev = adev;
1303 	parser.filp = filp;
1304 
1305 	r = amdgpu_cs_parser_init(&parser, data);
1306 	if (r) {
1307 		if (printk_ratelimit())
1308 			DRM_ERROR("Failed to initialize parser %d!\n", r);
1309 		goto out;
1310 	}
1311 
1312 	r = amdgpu_cs_ib_fill(adev, &parser);
1313 	if (r)
1314 		goto out;
1315 
1316 	r = amdgpu_cs_dependencies(adev, &parser);
1317 	if (r) {
1318 		DRM_ERROR("Failed in the dependencies handling %d!\n", r);
1319 		goto out;
1320 	}
1321 
1322 	r = amdgpu_cs_parser_bos(&parser, data);
1323 	if (r) {
1324 		if (r == -ENOMEM)
1325 			DRM_ERROR("Not enough memory for command submission!\n");
1326 		else if (r != -ERESTARTSYS && r != -EAGAIN)
1327 			DRM_ERROR("Failed to process the buffer list %d!\n", r);
1328 		goto out;
1329 	}
1330 
1331 	reserved_buffers = true;
1332 
1333 	trace_amdgpu_cs_ibs(&parser);
1334 
1335 	r = amdgpu_cs_vm_handling(&parser);
1336 	if (r)
1337 		goto out;
1338 
1339 	r = amdgpu_cs_submit(&parser, cs);
1340 
1341 out:
1342 	amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
1343 
1344 	return r;
1345 }
1346 
1347 /**
1348  * amdgpu_cs_wait_ioctl - wait for a command submission to finish
1349  *
1350  * @dev: drm device
1351  * @data: data from userspace
1352  * @filp: file private
1353  *
1354  * Wait for the command submission identified by handle to finish.
1355  */
1356 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
1357 			 struct drm_file *filp)
1358 {
1359 	union drm_amdgpu_wait_cs *wait = data;
1360 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
1361 	struct drm_sched_entity *entity;
1362 	struct amdgpu_ctx *ctx;
1363 	struct dma_fence *fence;
1364 	long r;
1365 
1366 	ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
1367 	if (ctx == NULL)
1368 		return -EINVAL;
1369 
1370 	r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance,
1371 				  wait->in.ring, &entity);
1372 	if (r) {
1373 		amdgpu_ctx_put(ctx);
1374 		return r;
1375 	}
1376 
1377 	fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle);
1378 	if (IS_ERR(fence))
1379 		r = PTR_ERR(fence);
1380 	else if (fence) {
1381 		r = dma_fence_wait_timeout(fence, true, timeout);
1382 		if (r > 0 && fence->error)
1383 			r = fence->error;
1384 		dma_fence_put(fence);
1385 	} else
1386 		r = 1;
1387 
1388 	amdgpu_ctx_put(ctx);
1389 	if (r < 0)
1390 		return r;
1391 
1392 	memset(wait, 0, sizeof(*wait));
1393 	wait->out.status = (r == 0);
1394 
1395 	return 0;
1396 }
1397 
1398 /**
1399  * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence
1400  *
1401  * @adev: amdgpu device
1402  * @filp: file private
1403  * @user: drm_amdgpu_fence copied from user space
1404  */
1405 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev,
1406 					     struct drm_file *filp,
1407 					     struct drm_amdgpu_fence *user)
1408 {
1409 	struct drm_sched_entity *entity;
1410 	struct amdgpu_ctx *ctx;
1411 	struct dma_fence *fence;
1412 	int r;
1413 
1414 	ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id);
1415 	if (ctx == NULL)
1416 		return ERR_PTR(-EINVAL);
1417 
1418 	r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance,
1419 				  user->ring, &entity);
1420 	if (r) {
1421 		amdgpu_ctx_put(ctx);
1422 		return ERR_PTR(r);
1423 	}
1424 
1425 	fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no);
1426 	amdgpu_ctx_put(ctx);
1427 
1428 	return fence;
1429 }
1430 
1431 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data,
1432 				    struct drm_file *filp)
1433 {
1434 	struct amdgpu_device *adev = drm_to_adev(dev);
1435 	union drm_amdgpu_fence_to_handle *info = data;
1436 	struct dma_fence *fence;
1437 	struct drm_syncobj *syncobj;
1438 	struct sync_file *sync_file;
1439 	int fd, r;
1440 
1441 	fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence);
1442 	if (IS_ERR(fence))
1443 		return PTR_ERR(fence);
1444 
1445 	if (!fence)
1446 		fence = dma_fence_get_stub();
1447 
1448 	switch (info->in.what) {
1449 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ:
1450 		r = drm_syncobj_create(&syncobj, 0, fence);
1451 		dma_fence_put(fence);
1452 		if (r)
1453 			return r;
1454 		r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle);
1455 		drm_syncobj_put(syncobj);
1456 		return r;
1457 
1458 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD:
1459 		r = drm_syncobj_create(&syncobj, 0, fence);
1460 		dma_fence_put(fence);
1461 		if (r)
1462 			return r;
1463 		r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle);
1464 		drm_syncobj_put(syncobj);
1465 		return r;
1466 
1467 	case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD:
1468 		fd = get_unused_fd_flags(O_CLOEXEC);
1469 		if (fd < 0) {
1470 			dma_fence_put(fence);
1471 			return fd;
1472 		}
1473 
1474 		sync_file = sync_file_create(fence);
1475 		dma_fence_put(fence);
1476 		if (!sync_file) {
1477 			put_unused_fd(fd);
1478 			return -ENOMEM;
1479 		}
1480 
1481 		fd_install(fd, sync_file->file);
1482 		info->out.handle = fd;
1483 		return 0;
1484 
1485 	default:
1486 		return -EINVAL;
1487 	}
1488 }
1489 
1490 /**
1491  * amdgpu_cs_wait_all_fence - wait on all fences to signal
1492  *
1493  * @adev: amdgpu device
1494  * @filp: file private
1495  * @wait: wait parameters
1496  * @fences: array of drm_amdgpu_fence
1497  */
1498 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev,
1499 				     struct drm_file *filp,
1500 				     union drm_amdgpu_wait_fences *wait,
1501 				     struct drm_amdgpu_fence *fences)
1502 {
1503 	uint32_t fence_count = wait->in.fence_count;
1504 	unsigned int i;
1505 	long r = 1;
1506 
1507 	for (i = 0; i < fence_count; i++) {
1508 		struct dma_fence *fence;
1509 		unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1510 
1511 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1512 		if (IS_ERR(fence))
1513 			return PTR_ERR(fence);
1514 		else if (!fence)
1515 			continue;
1516 
1517 		r = dma_fence_wait_timeout(fence, true, timeout);
1518 		dma_fence_put(fence);
1519 		if (r < 0)
1520 			return r;
1521 
1522 		if (r == 0)
1523 			break;
1524 
1525 		if (fence->error)
1526 			return fence->error;
1527 	}
1528 
1529 	memset(wait, 0, sizeof(*wait));
1530 	wait->out.status = (r > 0);
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  * amdgpu_cs_wait_any_fence - wait on any fence to signal
1537  *
1538  * @adev: amdgpu device
1539  * @filp: file private
1540  * @wait: wait parameters
1541  * @fences: array of drm_amdgpu_fence
1542  */
1543 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev,
1544 				    struct drm_file *filp,
1545 				    union drm_amdgpu_wait_fences *wait,
1546 				    struct drm_amdgpu_fence *fences)
1547 {
1548 	unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns);
1549 	uint32_t fence_count = wait->in.fence_count;
1550 	uint32_t first = ~0;
1551 	struct dma_fence **array;
1552 	unsigned int i;
1553 	long r;
1554 
1555 	/* Prepare the fence array */
1556 	array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL);
1557 
1558 	if (array == NULL)
1559 		return -ENOMEM;
1560 
1561 	for (i = 0; i < fence_count; i++) {
1562 		struct dma_fence *fence;
1563 
1564 		fence = amdgpu_cs_get_fence(adev, filp, &fences[i]);
1565 		if (IS_ERR(fence)) {
1566 			r = PTR_ERR(fence);
1567 			goto err_free_fence_array;
1568 		} else if (fence) {
1569 			array[i] = fence;
1570 		} else { /* NULL, the fence has been already signaled */
1571 			r = 1;
1572 			first = i;
1573 			goto out;
1574 		}
1575 	}
1576 
1577 	r = dma_fence_wait_any_timeout(array, fence_count, true, timeout,
1578 				       &first);
1579 	if (r < 0)
1580 		goto err_free_fence_array;
1581 
1582 out:
1583 	memset(wait, 0, sizeof(*wait));
1584 	wait->out.status = (r > 0);
1585 	wait->out.first_signaled = first;
1586 
1587 	if (first < fence_count && array[first])
1588 		r = array[first]->error;
1589 	else
1590 		r = 0;
1591 
1592 err_free_fence_array:
1593 	for (i = 0; i < fence_count; i++)
1594 		dma_fence_put(array[i]);
1595 	kfree(array);
1596 
1597 	return r;
1598 }
1599 
1600 /**
1601  * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish
1602  *
1603  * @dev: drm device
1604  * @data: data from userspace
1605  * @filp: file private
1606  */
1607 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data,
1608 				struct drm_file *filp)
1609 {
1610 	struct amdgpu_device *adev = drm_to_adev(dev);
1611 	union drm_amdgpu_wait_fences *wait = data;
1612 	uint32_t fence_count = wait->in.fence_count;
1613 	struct drm_amdgpu_fence *fences_user;
1614 	struct drm_amdgpu_fence *fences;
1615 	int r;
1616 
1617 	/* Get the fences from userspace */
1618 	fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence),
1619 			GFP_KERNEL);
1620 	if (fences == NULL)
1621 		return -ENOMEM;
1622 
1623 	fences_user = u64_to_user_ptr(wait->in.fences);
1624 	if (copy_from_user(fences, fences_user,
1625 		sizeof(struct drm_amdgpu_fence) * fence_count)) {
1626 		r = -EFAULT;
1627 		goto err_free_fences;
1628 	}
1629 
1630 	if (wait->in.wait_all)
1631 		r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences);
1632 	else
1633 		r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences);
1634 
1635 err_free_fences:
1636 	kfree(fences);
1637 
1638 	return r;
1639 }
1640 
1641 /**
1642  * amdgpu_cs_find_bo_va - find bo_va for VM address
1643  *
1644  * @parser: command submission parser context
1645  * @addr: VM address
1646  * @bo: resulting BO of the mapping found
1647  * @map: Placeholder to return found BO mapping
1648  *
1649  * Search the buffer objects in the command submission context for a certain
1650  * virtual memory address. Returns allocation structure when found, NULL
1651  * otherwise.
1652  */
1653 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
1654 			   uint64_t addr, struct amdgpu_bo **bo,
1655 			   struct amdgpu_bo_va_mapping **map)
1656 {
1657 	struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
1658 	struct ttm_operation_ctx ctx = { false, false };
1659 	struct amdgpu_vm *vm = &fpriv->vm;
1660 	struct amdgpu_bo_va_mapping *mapping;
1661 	int r;
1662 
1663 	addr /= AMDGPU_GPU_PAGE_SIZE;
1664 
1665 	mapping = amdgpu_vm_bo_lookup_mapping(vm, addr);
1666 	if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo)
1667 		return -EINVAL;
1668 
1669 	*bo = mapping->bo_va->base.bo;
1670 	*map = mapping;
1671 
1672 	/* Double check that the BO is reserved by this CS */
1673 	if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket)
1674 		return -EINVAL;
1675 
1676 	if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) {
1677 		(*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1678 		amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains);
1679 		r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx);
1680 		if (r)
1681 			return r;
1682 	}
1683 
1684 	return amdgpu_ttm_alloc_gart(&(*bo)->tbo);
1685 }
1686