1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 return 0; 69 } 70 71 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 72 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 73 { 74 struct drm_sched_entity *entity; 75 unsigned int i; 76 int r; 77 78 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 79 chunk_ib->ip_instance, 80 chunk_ib->ring, &entity); 81 if (r) 82 return r; 83 84 /* 85 * Abort if there is no run queue associated with this entity. 86 * Possibly because of disabled HW IP. 87 */ 88 if (entity->rq == NULL) 89 return -EINVAL; 90 91 /* Check if we can add this IB to some existing job */ 92 for (i = 0; i < p->gang_size; ++i) 93 if (p->entities[i] == entity) 94 return i; 95 96 /* If not increase the gang size if possible */ 97 if (i == AMDGPU_CS_GANG_SIZE) 98 return -EINVAL; 99 100 p->entities[i] = entity; 101 p->gang_size = i + 1; 102 return i; 103 } 104 105 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 106 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 107 unsigned int *num_ibs) 108 { 109 int r; 110 111 r = amdgpu_cs_job_idx(p, chunk_ib); 112 if (r < 0) 113 return r; 114 115 ++(num_ibs[r]); 116 p->gang_leader_idx = r; 117 return 0; 118 } 119 120 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 121 struct drm_amdgpu_cs_chunk_fence *data, 122 uint32_t *offset) 123 { 124 struct drm_gem_object *gobj; 125 struct amdgpu_bo *bo; 126 unsigned long size; 127 int r; 128 129 gobj = drm_gem_object_lookup(p->filp, data->handle); 130 if (gobj == NULL) 131 return -EINVAL; 132 133 bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 134 p->uf_entry.priority = 0; 135 p->uf_entry.tv.bo = &bo->tbo; 136 /* One for TTM and two for the CS job */ 137 p->uf_entry.tv.num_shared = 3; 138 139 drm_gem_object_put(gobj); 140 141 size = amdgpu_bo_size(bo); 142 if (size != PAGE_SIZE || (data->offset + 8) > size) { 143 r = -EINVAL; 144 goto error_unref; 145 } 146 147 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 148 r = -EINVAL; 149 goto error_unref; 150 } 151 152 *offset = data->offset; 153 154 return 0; 155 156 error_unref: 157 amdgpu_bo_unref(&bo); 158 return r; 159 } 160 161 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 162 struct drm_amdgpu_bo_list_in *data) 163 { 164 struct drm_amdgpu_bo_list_entry *info; 165 int r; 166 167 r = amdgpu_bo_create_list_entry_array(data, &info); 168 if (r) 169 return r; 170 171 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 172 &p->bo_list); 173 if (r) 174 goto error_free; 175 176 kvfree(info); 177 return 0; 178 179 error_free: 180 kvfree(info); 181 182 return r; 183 } 184 185 /* Copy the data from userspace and go over it the first time */ 186 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 187 union drm_amdgpu_cs *cs) 188 { 189 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 190 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 191 struct amdgpu_vm *vm = &fpriv->vm; 192 uint64_t *chunk_array_user; 193 uint64_t *chunk_array; 194 uint32_t uf_offset = 0; 195 unsigned int size; 196 int ret; 197 int i; 198 199 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 200 GFP_KERNEL); 201 if (!chunk_array) 202 return -ENOMEM; 203 204 /* get chunks */ 205 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 206 if (copy_from_user(chunk_array, chunk_array_user, 207 sizeof(uint64_t)*cs->in.num_chunks)) { 208 ret = -EFAULT; 209 goto free_chunk; 210 } 211 212 p->nchunks = cs->in.num_chunks; 213 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 214 GFP_KERNEL); 215 if (!p->chunks) { 216 ret = -ENOMEM; 217 goto free_chunk; 218 } 219 220 for (i = 0; i < p->nchunks; i++) { 221 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; 222 struct drm_amdgpu_cs_chunk user_chunk; 223 uint32_t __user *cdata; 224 225 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 226 if (copy_from_user(&user_chunk, chunk_ptr, 227 sizeof(struct drm_amdgpu_cs_chunk))) { 228 ret = -EFAULT; 229 i--; 230 goto free_partial_kdata; 231 } 232 p->chunks[i].chunk_id = user_chunk.chunk_id; 233 p->chunks[i].length_dw = user_chunk.length_dw; 234 235 size = p->chunks[i].length_dw; 236 cdata = u64_to_user_ptr(user_chunk.chunk_data); 237 238 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 239 GFP_KERNEL); 240 if (p->chunks[i].kdata == NULL) { 241 ret = -ENOMEM; 242 i--; 243 goto free_partial_kdata; 244 } 245 size *= sizeof(uint32_t); 246 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 247 ret = -EFAULT; 248 goto free_partial_kdata; 249 } 250 251 /* Assume the worst on the following checks */ 252 ret = -EINVAL; 253 switch (p->chunks[i].chunk_id) { 254 case AMDGPU_CHUNK_ID_IB: 255 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 256 goto free_partial_kdata; 257 258 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 259 if (ret) 260 goto free_partial_kdata; 261 break; 262 263 case AMDGPU_CHUNK_ID_FENCE: 264 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 265 goto free_partial_kdata; 266 267 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 268 &uf_offset); 269 if (ret) 270 goto free_partial_kdata; 271 break; 272 273 case AMDGPU_CHUNK_ID_BO_HANDLES: 274 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 275 goto free_partial_kdata; 276 277 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 278 if (ret) 279 goto free_partial_kdata; 280 break; 281 282 case AMDGPU_CHUNK_ID_DEPENDENCIES: 283 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 284 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 285 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 286 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 287 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 288 break; 289 290 default: 291 goto free_partial_kdata; 292 } 293 } 294 295 if (!p->gang_size) { 296 ret = -EINVAL; 297 goto free_partial_kdata; 298 } 299 300 for (i = 0; i < p->gang_size; ++i) { 301 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 302 num_ibs[i], &p->jobs[i]); 303 if (ret) 304 goto free_all_kdata; 305 } 306 p->gang_leader = p->jobs[p->gang_leader_idx]; 307 308 if (p->ctx->vram_lost_counter != p->gang_leader->vram_lost_counter) { 309 ret = -ECANCELED; 310 goto free_all_kdata; 311 } 312 313 if (p->uf_entry.tv.bo) 314 p->gang_leader->uf_addr = uf_offset; 315 kvfree(chunk_array); 316 317 /* Use this opportunity to fill in task info for the vm */ 318 amdgpu_vm_set_task_info(vm); 319 320 return 0; 321 322 free_all_kdata: 323 i = p->nchunks - 1; 324 free_partial_kdata: 325 for (; i >= 0; i--) 326 kvfree(p->chunks[i].kdata); 327 kvfree(p->chunks); 328 p->chunks = NULL; 329 p->nchunks = 0; 330 free_chunk: 331 kvfree(chunk_array); 332 333 return ret; 334 } 335 336 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 337 struct amdgpu_cs_chunk *chunk, 338 unsigned int *ce_preempt, 339 unsigned int *de_preempt) 340 { 341 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 342 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 343 struct amdgpu_vm *vm = &fpriv->vm; 344 struct amdgpu_ring *ring; 345 struct amdgpu_job *job; 346 struct amdgpu_ib *ib; 347 int r; 348 349 r = amdgpu_cs_job_idx(p, chunk_ib); 350 if (r < 0) 351 return r; 352 353 job = p->jobs[r]; 354 ring = amdgpu_job_ring(job); 355 ib = &job->ibs[job->num_ibs++]; 356 357 /* MM engine doesn't support user fences */ 358 if (p->uf_entry.tv.bo && ring->funcs->no_user_fence) 359 return -EINVAL; 360 361 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 362 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 363 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 364 (*ce_preempt)++; 365 else 366 (*de_preempt)++; 367 368 /* Each GFX command submit allows only 1 IB max 369 * preemptible for CE & DE */ 370 if (*ce_preempt > 1 || *de_preempt > 1) 371 return -EINVAL; 372 } 373 374 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 375 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 376 377 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 378 chunk_ib->ib_bytes : 0, 379 AMDGPU_IB_POOL_DELAYED, ib); 380 if (r) { 381 DRM_ERROR("Failed to get ib !\n"); 382 return r; 383 } 384 385 ib->gpu_addr = chunk_ib->va_start; 386 ib->length_dw = chunk_ib->ib_bytes / 4; 387 ib->flags = chunk_ib->flags; 388 return 0; 389 } 390 391 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 392 struct amdgpu_cs_chunk *chunk) 393 { 394 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 395 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 396 unsigned num_deps; 397 int i, r; 398 399 num_deps = chunk->length_dw * 4 / 400 sizeof(struct drm_amdgpu_cs_chunk_dep); 401 402 for (i = 0; i < num_deps; ++i) { 403 struct amdgpu_ctx *ctx; 404 struct drm_sched_entity *entity; 405 struct dma_fence *fence; 406 407 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 408 if (ctx == NULL) 409 return -EINVAL; 410 411 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 412 deps[i].ip_instance, 413 deps[i].ring, &entity); 414 if (r) { 415 amdgpu_ctx_put(ctx); 416 return r; 417 } 418 419 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 420 amdgpu_ctx_put(ctx); 421 422 if (IS_ERR(fence)) 423 return PTR_ERR(fence); 424 else if (!fence) 425 continue; 426 427 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 428 struct drm_sched_fence *s_fence; 429 struct dma_fence *old = fence; 430 431 s_fence = to_drm_sched_fence(fence); 432 fence = dma_fence_get(&s_fence->scheduled); 433 dma_fence_put(old); 434 } 435 436 r = amdgpu_sync_fence(&p->sync, fence); 437 dma_fence_put(fence); 438 if (r) 439 return r; 440 } 441 return 0; 442 } 443 444 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 445 uint32_t handle, u64 point, 446 u64 flags) 447 { 448 struct dma_fence *fence; 449 int r; 450 451 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 452 if (r) { 453 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 454 handle, point, r); 455 return r; 456 } 457 458 r = amdgpu_sync_fence(&p->sync, fence); 459 dma_fence_put(fence); 460 return r; 461 } 462 463 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 464 struct amdgpu_cs_chunk *chunk) 465 { 466 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 467 unsigned num_deps; 468 int i, r; 469 470 num_deps = chunk->length_dw * 4 / 471 sizeof(struct drm_amdgpu_cs_chunk_sem); 472 for (i = 0; i < num_deps; ++i) { 473 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 474 if (r) 475 return r; 476 } 477 478 return 0; 479 } 480 481 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 482 struct amdgpu_cs_chunk *chunk) 483 { 484 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 485 unsigned num_deps; 486 int i, r; 487 488 num_deps = chunk->length_dw * 4 / 489 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 490 for (i = 0; i < num_deps; ++i) { 491 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 492 syncobj_deps[i].point, 493 syncobj_deps[i].flags); 494 if (r) 495 return r; 496 } 497 498 return 0; 499 } 500 501 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 502 struct amdgpu_cs_chunk *chunk) 503 { 504 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 505 unsigned num_deps; 506 int i; 507 508 num_deps = chunk->length_dw * 4 / 509 sizeof(struct drm_amdgpu_cs_chunk_sem); 510 511 if (p->post_deps) 512 return -EINVAL; 513 514 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 515 GFP_KERNEL); 516 p->num_post_deps = 0; 517 518 if (!p->post_deps) 519 return -ENOMEM; 520 521 522 for (i = 0; i < num_deps; ++i) { 523 p->post_deps[i].syncobj = 524 drm_syncobj_find(p->filp, deps[i].handle); 525 if (!p->post_deps[i].syncobj) 526 return -EINVAL; 527 p->post_deps[i].chain = NULL; 528 p->post_deps[i].point = 0; 529 p->num_post_deps++; 530 } 531 532 return 0; 533 } 534 535 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 536 struct amdgpu_cs_chunk *chunk) 537 { 538 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 539 unsigned num_deps; 540 int i; 541 542 num_deps = chunk->length_dw * 4 / 543 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 544 545 if (p->post_deps) 546 return -EINVAL; 547 548 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 549 GFP_KERNEL); 550 p->num_post_deps = 0; 551 552 if (!p->post_deps) 553 return -ENOMEM; 554 555 for (i = 0; i < num_deps; ++i) { 556 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 557 558 dep->chain = NULL; 559 if (syncobj_deps[i].point) { 560 dep->chain = dma_fence_chain_alloc(); 561 if (!dep->chain) 562 return -ENOMEM; 563 } 564 565 dep->syncobj = drm_syncobj_find(p->filp, 566 syncobj_deps[i].handle); 567 if (!dep->syncobj) { 568 dma_fence_chain_free(dep->chain); 569 return -EINVAL; 570 } 571 dep->point = syncobj_deps[i].point; 572 p->num_post_deps++; 573 } 574 575 return 0; 576 } 577 578 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 579 { 580 unsigned int ce_preempt = 0, de_preempt = 0; 581 int i, r; 582 583 for (i = 0; i < p->nchunks; ++i) { 584 struct amdgpu_cs_chunk *chunk; 585 586 chunk = &p->chunks[i]; 587 588 switch (chunk->chunk_id) { 589 case AMDGPU_CHUNK_ID_IB: 590 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 591 if (r) 592 return r; 593 break; 594 case AMDGPU_CHUNK_ID_DEPENDENCIES: 595 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 596 r = amdgpu_cs_p2_dependencies(p, chunk); 597 if (r) 598 return r; 599 break; 600 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 601 r = amdgpu_cs_p2_syncobj_in(p, chunk); 602 if (r) 603 return r; 604 break; 605 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 606 r = amdgpu_cs_p2_syncobj_out(p, chunk); 607 if (r) 608 return r; 609 break; 610 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 611 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 612 if (r) 613 return r; 614 break; 615 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 616 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 617 if (r) 618 return r; 619 break; 620 } 621 } 622 623 return 0; 624 } 625 626 /* Convert microseconds to bytes. */ 627 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 628 { 629 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 630 return 0; 631 632 /* Since accum_us is incremented by a million per second, just 633 * multiply it by the number of MB/s to get the number of bytes. 634 */ 635 return us << adev->mm_stats.log2_max_MBps; 636 } 637 638 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 639 { 640 if (!adev->mm_stats.log2_max_MBps) 641 return 0; 642 643 return bytes >> adev->mm_stats.log2_max_MBps; 644 } 645 646 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 647 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 648 * which means it can go over the threshold once. If that happens, the driver 649 * will be in debt and no other buffer migrations can be done until that debt 650 * is repaid. 651 * 652 * This approach allows moving a buffer of any size (it's important to allow 653 * that). 654 * 655 * The currency is simply time in microseconds and it increases as the clock 656 * ticks. The accumulated microseconds (us) are converted to bytes and 657 * returned. 658 */ 659 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 660 u64 *max_bytes, 661 u64 *max_vis_bytes) 662 { 663 s64 time_us, increment_us; 664 u64 free_vram, total_vram, used_vram; 665 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 666 * throttling. 667 * 668 * It means that in order to get full max MBps, at least 5 IBs per 669 * second must be submitted and not more than 200ms apart from each 670 * other. 671 */ 672 const s64 us_upper_bound = 200000; 673 674 if (!adev->mm_stats.log2_max_MBps) { 675 *max_bytes = 0; 676 *max_vis_bytes = 0; 677 return; 678 } 679 680 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 681 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 682 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 683 684 spin_lock(&adev->mm_stats.lock); 685 686 /* Increase the amount of accumulated us. */ 687 time_us = ktime_to_us(ktime_get()); 688 increment_us = time_us - adev->mm_stats.last_update_us; 689 adev->mm_stats.last_update_us = time_us; 690 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 691 us_upper_bound); 692 693 /* This prevents the short period of low performance when the VRAM 694 * usage is low and the driver is in debt or doesn't have enough 695 * accumulated us to fill VRAM quickly. 696 * 697 * The situation can occur in these cases: 698 * - a lot of VRAM is freed by userspace 699 * - the presence of a big buffer causes a lot of evictions 700 * (solution: split buffers into smaller ones) 701 * 702 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 703 * accum_us to a positive number. 704 */ 705 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 706 s64 min_us; 707 708 /* Be more aggressive on dGPUs. Try to fill a portion of free 709 * VRAM now. 710 */ 711 if (!(adev->flags & AMD_IS_APU)) 712 min_us = bytes_to_us(adev, free_vram / 4); 713 else 714 min_us = 0; /* Reset accum_us on APUs. */ 715 716 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 717 } 718 719 /* This is set to 0 if the driver is in debt to disallow (optional) 720 * buffer moves. 721 */ 722 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 723 724 /* Do the same for visible VRAM if half of it is free */ 725 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 726 u64 total_vis_vram = adev->gmc.visible_vram_size; 727 u64 used_vis_vram = 728 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 729 730 if (used_vis_vram < total_vis_vram) { 731 u64 free_vis_vram = total_vis_vram - used_vis_vram; 732 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 733 increment_us, us_upper_bound); 734 735 if (free_vis_vram >= total_vis_vram / 2) 736 adev->mm_stats.accum_us_vis = 737 max(bytes_to_us(adev, free_vis_vram / 2), 738 adev->mm_stats.accum_us_vis); 739 } 740 741 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 742 } else { 743 *max_vis_bytes = 0; 744 } 745 746 spin_unlock(&adev->mm_stats.lock); 747 } 748 749 /* Report how many bytes have really been moved for the last command 750 * submission. This can result in a debt that can stop buffer migrations 751 * temporarily. 752 */ 753 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 754 u64 num_vis_bytes) 755 { 756 spin_lock(&adev->mm_stats.lock); 757 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 758 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 759 spin_unlock(&adev->mm_stats.lock); 760 } 761 762 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 763 { 764 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 765 struct amdgpu_cs_parser *p = param; 766 struct ttm_operation_ctx ctx = { 767 .interruptible = true, 768 .no_wait_gpu = false, 769 .resv = bo->tbo.base.resv 770 }; 771 uint32_t domain; 772 int r; 773 774 if (bo->tbo.pin_count) 775 return 0; 776 777 /* Don't move this buffer if we have depleted our allowance 778 * to move it. Don't move anything if the threshold is zero. 779 */ 780 if (p->bytes_moved < p->bytes_moved_threshold && 781 (!bo->tbo.base.dma_buf || 782 list_empty(&bo->tbo.base.dma_buf->attachments))) { 783 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 784 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 785 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 786 * visible VRAM if we've depleted our allowance to do 787 * that. 788 */ 789 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 790 domain = bo->preferred_domains; 791 else 792 domain = bo->allowed_domains; 793 } else { 794 domain = bo->preferred_domains; 795 } 796 } else { 797 domain = bo->allowed_domains; 798 } 799 800 retry: 801 amdgpu_bo_placement_from_domain(bo, domain); 802 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 803 804 p->bytes_moved += ctx.bytes_moved; 805 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 806 amdgpu_bo_in_cpu_visible_vram(bo)) 807 p->bytes_moved_vis += ctx.bytes_moved; 808 809 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 810 domain = bo->allowed_domains; 811 goto retry; 812 } 813 814 return r; 815 } 816 817 static int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p, 818 struct list_head *validated) 819 { 820 struct ttm_operation_ctx ctx = { true, false }; 821 struct amdgpu_bo_list_entry *lobj; 822 int r; 823 824 list_for_each_entry(lobj, validated, tv.head) { 825 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(lobj->tv.bo); 826 struct mm_struct *usermm; 827 828 usermm = amdgpu_ttm_tt_get_usermm(bo->tbo.ttm); 829 if (usermm && usermm != current->mm) 830 return -EPERM; 831 832 if (amdgpu_ttm_tt_is_userptr(bo->tbo.ttm) && 833 lobj->user_invalidated && lobj->user_pages) { 834 amdgpu_bo_placement_from_domain(bo, 835 AMDGPU_GEM_DOMAIN_CPU); 836 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 837 if (r) 838 return r; 839 840 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, 841 lobj->user_pages); 842 } 843 844 r = amdgpu_cs_bo_validate(p, bo); 845 if (r) 846 return r; 847 848 kvfree(lobj->user_pages); 849 lobj->user_pages = NULL; 850 } 851 return 0; 852 } 853 854 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 855 union drm_amdgpu_cs *cs) 856 { 857 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 858 struct amdgpu_vm *vm = &fpriv->vm; 859 struct amdgpu_bo_list_entry *e; 860 struct list_head duplicates; 861 unsigned int i; 862 int r; 863 864 INIT_LIST_HEAD(&p->validated); 865 866 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 867 if (cs->in.bo_list_handle) { 868 if (p->bo_list) 869 return -EINVAL; 870 871 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 872 &p->bo_list); 873 if (r) 874 return r; 875 } else if (!p->bo_list) { 876 /* Create a empty bo_list when no handle is provided */ 877 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 878 &p->bo_list); 879 if (r) 880 return r; 881 } 882 883 mutex_lock(&p->bo_list->bo_list_mutex); 884 885 /* One for TTM and one for the CS job */ 886 amdgpu_bo_list_for_each_entry(e, p->bo_list) 887 e->tv.num_shared = 2; 888 889 amdgpu_bo_list_get_list(p->bo_list, &p->validated); 890 891 INIT_LIST_HEAD(&duplicates); 892 amdgpu_vm_get_pd_bo(&fpriv->vm, &p->validated, &p->vm_pd); 893 894 if (p->uf_entry.tv.bo && !ttm_to_amdgpu_bo(p->uf_entry.tv.bo)->parent) 895 list_add(&p->uf_entry.tv.head, &p->validated); 896 897 /* Get userptr backing pages. If pages are updated after registered 898 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 899 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 900 */ 901 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 902 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 903 bool userpage_invalidated = false; 904 int i; 905 906 e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, 907 sizeof(struct page *), 908 GFP_KERNEL | __GFP_ZERO); 909 if (!e->user_pages) { 910 DRM_ERROR("kvmalloc_array failure\n"); 911 r = -ENOMEM; 912 goto out_free_user_pages; 913 } 914 915 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 916 if (r) { 917 kvfree(e->user_pages); 918 e->user_pages = NULL; 919 goto out_free_user_pages; 920 } 921 922 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 923 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 924 userpage_invalidated = true; 925 break; 926 } 927 } 928 e->user_invalidated = userpage_invalidated; 929 } 930 931 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, 932 &duplicates); 933 if (unlikely(r != 0)) { 934 if (r != -ERESTARTSYS) 935 DRM_ERROR("ttm_eu_reserve_buffers failed.\n"); 936 goto out_free_user_pages; 937 } 938 939 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 940 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 941 942 e->bo_va = amdgpu_vm_bo_find(vm, bo); 943 } 944 945 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 946 &p->bytes_moved_vis_threshold); 947 p->bytes_moved = 0; 948 p->bytes_moved_vis = 0; 949 950 r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm, 951 amdgpu_cs_bo_validate, p); 952 if (r) { 953 DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n"); 954 goto error_validate; 955 } 956 957 r = amdgpu_cs_list_validate(p, &duplicates); 958 if (r) 959 goto error_validate; 960 961 r = amdgpu_cs_list_validate(p, &p->validated); 962 if (r) 963 goto error_validate; 964 965 if (p->uf_entry.tv.bo) { 966 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(p->uf_entry.tv.bo); 967 968 r = amdgpu_ttm_alloc_gart(&uf->tbo); 969 if (r) 970 goto error_validate; 971 972 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(uf); 973 } 974 975 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 976 p->bytes_moved_vis); 977 978 for (i = 0; i < p->gang_size; ++i) 979 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 980 p->bo_list->gws_obj, 981 p->bo_list->oa_obj); 982 return 0; 983 984 error_validate: 985 ttm_eu_backoff_reservation(&p->ticket, &p->validated); 986 987 out_free_user_pages: 988 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 989 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 990 991 if (!e->user_pages) 992 continue; 993 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 994 kvfree(e->user_pages); 995 e->user_pages = NULL; 996 e->range = NULL; 997 } 998 mutex_unlock(&p->bo_list->bo_list_mutex); 999 return r; 1000 } 1001 1002 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1003 { 1004 int i, j; 1005 1006 if (!trace_amdgpu_cs_enabled()) 1007 return; 1008 1009 for (i = 0; i < p->gang_size; ++i) { 1010 struct amdgpu_job *job = p->jobs[i]; 1011 1012 for (j = 0; j < job->num_ibs; ++j) 1013 trace_amdgpu_cs(p, job, &job->ibs[j]); 1014 } 1015 } 1016 1017 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1018 struct amdgpu_job *job) 1019 { 1020 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1021 unsigned int i; 1022 int r; 1023 1024 /* Only for UVD/VCE VM emulation */ 1025 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1026 return 0; 1027 1028 for (i = 0; i < job->num_ibs; ++i) { 1029 struct amdgpu_ib *ib = &job->ibs[i]; 1030 struct amdgpu_bo_va_mapping *m; 1031 struct amdgpu_bo *aobj; 1032 uint64_t va_start; 1033 uint8_t *kptr; 1034 1035 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1036 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1037 if (r) { 1038 DRM_ERROR("IB va_start is invalid\n"); 1039 return r; 1040 } 1041 1042 if ((va_start + ib->length_dw * 4) > 1043 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1044 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1045 return -EINVAL; 1046 } 1047 1048 /* the IB should be reserved at this point */ 1049 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1050 if (r) { 1051 return r; 1052 } 1053 1054 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1055 1056 if (ring->funcs->parse_cs) { 1057 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1058 amdgpu_bo_kunmap(aobj); 1059 1060 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1061 if (r) 1062 return r; 1063 } else { 1064 ib->ptr = (uint32_t *)kptr; 1065 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1066 amdgpu_bo_kunmap(aobj); 1067 if (r) 1068 return r; 1069 } 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1076 { 1077 unsigned int i; 1078 int r; 1079 1080 for (i = 0; i < p->gang_size; ++i) { 1081 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1082 if (r) 1083 return r; 1084 } 1085 return 0; 1086 } 1087 1088 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1089 { 1090 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1091 struct amdgpu_job *job = p->gang_leader; 1092 struct amdgpu_device *adev = p->adev; 1093 struct amdgpu_vm *vm = &fpriv->vm; 1094 struct amdgpu_bo_list_entry *e; 1095 struct amdgpu_bo_va *bo_va; 1096 struct amdgpu_bo *bo; 1097 unsigned int i; 1098 int r; 1099 1100 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1101 if (r) 1102 return r; 1103 1104 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1105 if (r) 1106 return r; 1107 1108 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update); 1109 if (r) 1110 return r; 1111 1112 if (fpriv->csa_va) { 1113 bo_va = fpriv->csa_va; 1114 BUG_ON(!bo_va); 1115 r = amdgpu_vm_bo_update(adev, bo_va, false); 1116 if (r) 1117 return r; 1118 1119 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1120 if (r) 1121 return r; 1122 } 1123 1124 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1125 /* ignore duplicates */ 1126 bo = ttm_to_amdgpu_bo(e->tv.bo); 1127 if (!bo) 1128 continue; 1129 1130 bo_va = e->bo_va; 1131 if (bo_va == NULL) 1132 continue; 1133 1134 r = amdgpu_vm_bo_update(adev, bo_va, false); 1135 if (r) 1136 return r; 1137 1138 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1139 if (r) 1140 return r; 1141 } 1142 1143 r = amdgpu_vm_handle_moved(adev, vm); 1144 if (r) 1145 return r; 1146 1147 r = amdgpu_vm_update_pdes(adev, vm, false); 1148 if (r) 1149 return r; 1150 1151 r = amdgpu_sync_fence(&p->sync, vm->last_update); 1152 if (r) 1153 return r; 1154 1155 for (i = 0; i < p->gang_size; ++i) { 1156 job = p->jobs[i]; 1157 1158 if (!job->vm) 1159 continue; 1160 1161 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1162 } 1163 1164 if (amdgpu_vm_debug) { 1165 /* Invalidate all BOs to test for userspace bugs */ 1166 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1167 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1168 1169 /* ignore duplicates */ 1170 if (!bo) 1171 continue; 1172 1173 amdgpu_vm_bo_invalidate(adev, bo, false); 1174 } 1175 } 1176 1177 return 0; 1178 } 1179 1180 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1181 { 1182 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1183 struct drm_gpu_scheduler *sched; 1184 struct amdgpu_bo_list_entry *e; 1185 struct dma_fence *fence; 1186 unsigned int i; 1187 int r; 1188 1189 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1190 if (r) { 1191 if (r != -ERESTARTSYS) 1192 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1193 return r; 1194 } 1195 1196 list_for_each_entry(e, &p->validated, tv.head) { 1197 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1198 struct dma_resv *resv = bo->tbo.base.resv; 1199 enum amdgpu_sync_mode sync_mode; 1200 1201 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1202 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1203 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1204 &fpriv->vm); 1205 if (r) 1206 return r; 1207 } 1208 1209 for (i = 0; i < p->gang_size; ++i) { 1210 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1211 if (r) 1212 return r; 1213 } 1214 1215 sched = p->gang_leader->base.entity->rq->sched; 1216 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1217 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1218 1219 /* 1220 * When we have an dependency it might be necessary to insert a 1221 * pipeline sync to make sure that all caches etc are flushed and the 1222 * next job actually sees the results from the previous one 1223 * before we start executing on the same scheduler ring. 1224 */ 1225 if (!s_fence || s_fence->sched != sched) { 1226 dma_fence_put(fence); 1227 continue; 1228 } 1229 1230 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence); 1231 dma_fence_put(fence); 1232 if (r) 1233 return r; 1234 } 1235 return 0; 1236 } 1237 1238 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1239 { 1240 int i; 1241 1242 for (i = 0; i < p->num_post_deps; ++i) { 1243 if (p->post_deps[i].chain && p->post_deps[i].point) { 1244 drm_syncobj_add_point(p->post_deps[i].syncobj, 1245 p->post_deps[i].chain, 1246 p->fence, p->post_deps[i].point); 1247 p->post_deps[i].chain = NULL; 1248 } else { 1249 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1250 p->fence); 1251 } 1252 } 1253 } 1254 1255 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1256 union drm_amdgpu_cs *cs) 1257 { 1258 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1259 struct amdgpu_job *leader = p->gang_leader; 1260 struct amdgpu_bo_list_entry *e; 1261 unsigned int i; 1262 uint64_t seq; 1263 int r; 1264 1265 for (i = 0; i < p->gang_size; ++i) 1266 drm_sched_job_arm(&p->jobs[i]->base); 1267 1268 for (i = 0; i < p->gang_size; ++i) { 1269 struct dma_fence *fence; 1270 1271 if (p->jobs[i] == leader) 1272 continue; 1273 1274 fence = &p->jobs[i]->base.s_fence->scheduled; 1275 dma_fence_get(fence); 1276 r = drm_sched_job_add_dependency(&leader->base, fence); 1277 if (r) { 1278 dma_fence_put(fence); 1279 return r; 1280 } 1281 } 1282 1283 if (p->gang_size > 1) { 1284 for (i = 0; i < p->gang_size; ++i) 1285 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1286 } 1287 1288 /* No memory allocation is allowed while holding the notifier lock. 1289 * The lock is held until amdgpu_cs_submit is finished and fence is 1290 * added to BOs. 1291 */ 1292 mutex_lock(&p->adev->notifier_lock); 1293 1294 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1295 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1296 */ 1297 r = 0; 1298 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1299 struct amdgpu_bo *bo = ttm_to_amdgpu_bo(e->tv.bo); 1300 1301 r |= !amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1302 e->range = NULL; 1303 } 1304 if (r) { 1305 r = -EAGAIN; 1306 mutex_unlock(&p->adev->notifier_lock); 1307 return r; 1308 } 1309 1310 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1311 list_for_each_entry(e, &p->validated, tv.head) { 1312 1313 /* Everybody except for the gang leader uses READ */ 1314 for (i = 0; i < p->gang_size; ++i) { 1315 if (p->jobs[i] == leader) 1316 continue; 1317 1318 dma_resv_add_fence(e->tv.bo->base.resv, 1319 &p->jobs[i]->base.s_fence->finished, 1320 DMA_RESV_USAGE_READ); 1321 } 1322 1323 /* The gang leader is remembered as writer */ 1324 e->tv.num_shared = 0; 1325 } 1326 1327 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1328 p->fence); 1329 amdgpu_cs_post_dependencies(p); 1330 1331 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1332 !p->ctx->preamble_presented) { 1333 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1334 p->ctx->preamble_presented = true; 1335 } 1336 1337 cs->out.handle = seq; 1338 leader->uf_sequence = seq; 1339 1340 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->ticket); 1341 for (i = 0; i < p->gang_size; ++i) { 1342 amdgpu_job_free_resources(p->jobs[i]); 1343 trace_amdgpu_cs_ioctl(p->jobs[i]); 1344 drm_sched_entity_push_job(&p->jobs[i]->base); 1345 p->jobs[i] = NULL; 1346 } 1347 1348 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1349 ttm_eu_fence_buffer_objects(&p->ticket, &p->validated, p->fence); 1350 1351 mutex_unlock(&p->adev->notifier_lock); 1352 mutex_unlock(&p->bo_list->bo_list_mutex); 1353 return 0; 1354 } 1355 1356 /* Cleanup the parser structure */ 1357 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1358 { 1359 unsigned i; 1360 1361 amdgpu_sync_free(&parser->sync); 1362 for (i = 0; i < parser->num_post_deps; i++) { 1363 drm_syncobj_put(parser->post_deps[i].syncobj); 1364 kfree(parser->post_deps[i].chain); 1365 } 1366 kfree(parser->post_deps); 1367 1368 dma_fence_put(parser->fence); 1369 1370 if (parser->ctx) 1371 amdgpu_ctx_put(parser->ctx); 1372 if (parser->bo_list) 1373 amdgpu_bo_list_put(parser->bo_list); 1374 1375 for (i = 0; i < parser->nchunks; i++) 1376 kvfree(parser->chunks[i].kdata); 1377 kvfree(parser->chunks); 1378 for (i = 0; i < parser->gang_size; ++i) { 1379 if (parser->jobs[i]) 1380 amdgpu_job_free(parser->jobs[i]); 1381 } 1382 if (parser->uf_entry.tv.bo) { 1383 struct amdgpu_bo *uf = ttm_to_amdgpu_bo(parser->uf_entry.tv.bo); 1384 1385 amdgpu_bo_unref(&uf); 1386 } 1387 } 1388 1389 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1390 { 1391 struct amdgpu_device *adev = drm_to_adev(dev); 1392 struct amdgpu_cs_parser parser; 1393 int r; 1394 1395 if (amdgpu_ras_intr_triggered()) 1396 return -EHWPOISON; 1397 1398 if (!adev->accel_working) 1399 return -EBUSY; 1400 1401 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1402 if (r) { 1403 if (printk_ratelimit()) 1404 DRM_ERROR("Failed to initialize parser %d!\n", r); 1405 return r; 1406 } 1407 1408 r = amdgpu_cs_pass1(&parser, data); 1409 if (r) 1410 goto error_fini; 1411 1412 r = amdgpu_cs_pass2(&parser); 1413 if (r) 1414 goto error_fini; 1415 1416 r = amdgpu_cs_parser_bos(&parser, data); 1417 if (r) { 1418 if (r == -ENOMEM) 1419 DRM_ERROR("Not enough memory for command submission!\n"); 1420 else if (r != -ERESTARTSYS && r != -EAGAIN) 1421 DRM_ERROR("Failed to process the buffer list %d!\n", r); 1422 goto error_fini; 1423 } 1424 1425 r = amdgpu_cs_patch_jobs(&parser); 1426 if (r) 1427 goto error_backoff; 1428 1429 r = amdgpu_cs_vm_handling(&parser); 1430 if (r) 1431 goto error_backoff; 1432 1433 r = amdgpu_cs_sync_rings(&parser); 1434 if (r) 1435 goto error_backoff; 1436 1437 trace_amdgpu_cs_ibs(&parser); 1438 1439 r = amdgpu_cs_submit(&parser, data); 1440 if (r) 1441 goto error_backoff; 1442 1443 amdgpu_cs_parser_fini(&parser); 1444 return 0; 1445 1446 error_backoff: 1447 ttm_eu_backoff_reservation(&parser.ticket, &parser.validated); 1448 mutex_unlock(&parser.bo_list->bo_list_mutex); 1449 1450 error_fini: 1451 amdgpu_cs_parser_fini(&parser); 1452 return r; 1453 } 1454 1455 /** 1456 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1457 * 1458 * @dev: drm device 1459 * @data: data from userspace 1460 * @filp: file private 1461 * 1462 * Wait for the command submission identified by handle to finish. 1463 */ 1464 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1465 struct drm_file *filp) 1466 { 1467 union drm_amdgpu_wait_cs *wait = data; 1468 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1469 struct drm_sched_entity *entity; 1470 struct amdgpu_ctx *ctx; 1471 struct dma_fence *fence; 1472 long r; 1473 1474 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1475 if (ctx == NULL) 1476 return -EINVAL; 1477 1478 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1479 wait->in.ring, &entity); 1480 if (r) { 1481 amdgpu_ctx_put(ctx); 1482 return r; 1483 } 1484 1485 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1486 if (IS_ERR(fence)) 1487 r = PTR_ERR(fence); 1488 else if (fence) { 1489 r = dma_fence_wait_timeout(fence, true, timeout); 1490 if (r > 0 && fence->error) 1491 r = fence->error; 1492 dma_fence_put(fence); 1493 } else 1494 r = 1; 1495 1496 amdgpu_ctx_put(ctx); 1497 if (r < 0) 1498 return r; 1499 1500 memset(wait, 0, sizeof(*wait)); 1501 wait->out.status = (r == 0); 1502 1503 return 0; 1504 } 1505 1506 /** 1507 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1508 * 1509 * @adev: amdgpu device 1510 * @filp: file private 1511 * @user: drm_amdgpu_fence copied from user space 1512 */ 1513 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1514 struct drm_file *filp, 1515 struct drm_amdgpu_fence *user) 1516 { 1517 struct drm_sched_entity *entity; 1518 struct amdgpu_ctx *ctx; 1519 struct dma_fence *fence; 1520 int r; 1521 1522 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1523 if (ctx == NULL) 1524 return ERR_PTR(-EINVAL); 1525 1526 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1527 user->ring, &entity); 1528 if (r) { 1529 amdgpu_ctx_put(ctx); 1530 return ERR_PTR(r); 1531 } 1532 1533 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1534 amdgpu_ctx_put(ctx); 1535 1536 return fence; 1537 } 1538 1539 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1540 struct drm_file *filp) 1541 { 1542 struct amdgpu_device *adev = drm_to_adev(dev); 1543 union drm_amdgpu_fence_to_handle *info = data; 1544 struct dma_fence *fence; 1545 struct drm_syncobj *syncobj; 1546 struct sync_file *sync_file; 1547 int fd, r; 1548 1549 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1550 if (IS_ERR(fence)) 1551 return PTR_ERR(fence); 1552 1553 if (!fence) 1554 fence = dma_fence_get_stub(); 1555 1556 switch (info->in.what) { 1557 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1558 r = drm_syncobj_create(&syncobj, 0, fence); 1559 dma_fence_put(fence); 1560 if (r) 1561 return r; 1562 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1563 drm_syncobj_put(syncobj); 1564 return r; 1565 1566 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1567 r = drm_syncobj_create(&syncobj, 0, fence); 1568 dma_fence_put(fence); 1569 if (r) 1570 return r; 1571 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1572 drm_syncobj_put(syncobj); 1573 return r; 1574 1575 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1576 fd = get_unused_fd_flags(O_CLOEXEC); 1577 if (fd < 0) { 1578 dma_fence_put(fence); 1579 return fd; 1580 } 1581 1582 sync_file = sync_file_create(fence); 1583 dma_fence_put(fence); 1584 if (!sync_file) { 1585 put_unused_fd(fd); 1586 return -ENOMEM; 1587 } 1588 1589 fd_install(fd, sync_file->file); 1590 info->out.handle = fd; 1591 return 0; 1592 1593 default: 1594 dma_fence_put(fence); 1595 return -EINVAL; 1596 } 1597 } 1598 1599 /** 1600 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1601 * 1602 * @adev: amdgpu device 1603 * @filp: file private 1604 * @wait: wait parameters 1605 * @fences: array of drm_amdgpu_fence 1606 */ 1607 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1608 struct drm_file *filp, 1609 union drm_amdgpu_wait_fences *wait, 1610 struct drm_amdgpu_fence *fences) 1611 { 1612 uint32_t fence_count = wait->in.fence_count; 1613 unsigned int i; 1614 long r = 1; 1615 1616 for (i = 0; i < fence_count; i++) { 1617 struct dma_fence *fence; 1618 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1619 1620 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1621 if (IS_ERR(fence)) 1622 return PTR_ERR(fence); 1623 else if (!fence) 1624 continue; 1625 1626 r = dma_fence_wait_timeout(fence, true, timeout); 1627 dma_fence_put(fence); 1628 if (r < 0) 1629 return r; 1630 1631 if (r == 0) 1632 break; 1633 1634 if (fence->error) 1635 return fence->error; 1636 } 1637 1638 memset(wait, 0, sizeof(*wait)); 1639 wait->out.status = (r > 0); 1640 1641 return 0; 1642 } 1643 1644 /** 1645 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1646 * 1647 * @adev: amdgpu device 1648 * @filp: file private 1649 * @wait: wait parameters 1650 * @fences: array of drm_amdgpu_fence 1651 */ 1652 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1653 struct drm_file *filp, 1654 union drm_amdgpu_wait_fences *wait, 1655 struct drm_amdgpu_fence *fences) 1656 { 1657 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1658 uint32_t fence_count = wait->in.fence_count; 1659 uint32_t first = ~0; 1660 struct dma_fence **array; 1661 unsigned int i; 1662 long r; 1663 1664 /* Prepare the fence array */ 1665 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1666 1667 if (array == NULL) 1668 return -ENOMEM; 1669 1670 for (i = 0; i < fence_count; i++) { 1671 struct dma_fence *fence; 1672 1673 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1674 if (IS_ERR(fence)) { 1675 r = PTR_ERR(fence); 1676 goto err_free_fence_array; 1677 } else if (fence) { 1678 array[i] = fence; 1679 } else { /* NULL, the fence has been already signaled */ 1680 r = 1; 1681 first = i; 1682 goto out; 1683 } 1684 } 1685 1686 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1687 &first); 1688 if (r < 0) 1689 goto err_free_fence_array; 1690 1691 out: 1692 memset(wait, 0, sizeof(*wait)); 1693 wait->out.status = (r > 0); 1694 wait->out.first_signaled = first; 1695 1696 if (first < fence_count && array[first]) 1697 r = array[first]->error; 1698 else 1699 r = 0; 1700 1701 err_free_fence_array: 1702 for (i = 0; i < fence_count; i++) 1703 dma_fence_put(array[i]); 1704 kfree(array); 1705 1706 return r; 1707 } 1708 1709 /** 1710 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1711 * 1712 * @dev: drm device 1713 * @data: data from userspace 1714 * @filp: file private 1715 */ 1716 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1717 struct drm_file *filp) 1718 { 1719 struct amdgpu_device *adev = drm_to_adev(dev); 1720 union drm_amdgpu_wait_fences *wait = data; 1721 uint32_t fence_count = wait->in.fence_count; 1722 struct drm_amdgpu_fence *fences_user; 1723 struct drm_amdgpu_fence *fences; 1724 int r; 1725 1726 /* Get the fences from userspace */ 1727 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1728 GFP_KERNEL); 1729 if (fences == NULL) 1730 return -ENOMEM; 1731 1732 fences_user = u64_to_user_ptr(wait->in.fences); 1733 if (copy_from_user(fences, fences_user, 1734 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1735 r = -EFAULT; 1736 goto err_free_fences; 1737 } 1738 1739 if (wait->in.wait_all) 1740 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1741 else 1742 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1743 1744 err_free_fences: 1745 kfree(fences); 1746 1747 return r; 1748 } 1749 1750 /** 1751 * amdgpu_cs_find_mapping - find bo_va for VM address 1752 * 1753 * @parser: command submission parser context 1754 * @addr: VM address 1755 * @bo: resulting BO of the mapping found 1756 * @map: Placeholder to return found BO mapping 1757 * 1758 * Search the buffer objects in the command submission context for a certain 1759 * virtual memory address. Returns allocation structure when found, NULL 1760 * otherwise. 1761 */ 1762 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1763 uint64_t addr, struct amdgpu_bo **bo, 1764 struct amdgpu_bo_va_mapping **map) 1765 { 1766 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1767 struct ttm_operation_ctx ctx = { false, false }; 1768 struct amdgpu_vm *vm = &fpriv->vm; 1769 struct amdgpu_bo_va_mapping *mapping; 1770 int r; 1771 1772 addr /= AMDGPU_GPU_PAGE_SIZE; 1773 1774 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1775 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1776 return -EINVAL; 1777 1778 *bo = mapping->bo_va->base.bo; 1779 *map = mapping; 1780 1781 /* Double check that the BO is reserved by this CS */ 1782 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->ticket) 1783 return -EINVAL; 1784 1785 if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) { 1786 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1787 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1788 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1789 if (r) 1790 return r; 1791 } 1792 1793 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1794 } 1795