1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 #include <linux/list_sort.h> 28 #include <drm/drmP.h> 29 #include <drm/amdgpu_drm.h> 30 #include "amdgpu.h" 31 #include "amdgpu_trace.h" 32 33 #define AMDGPU_CS_MAX_PRIORITY 32u 34 #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1) 35 36 /* This is based on the bucket sort with O(n) time complexity. 37 * An item with priority "i" is added to bucket[i]. The lists are then 38 * concatenated in descending order. 39 */ 40 struct amdgpu_cs_buckets { 41 struct list_head bucket[AMDGPU_CS_NUM_BUCKETS]; 42 }; 43 44 static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b) 45 { 46 unsigned i; 47 48 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) 49 INIT_LIST_HEAD(&b->bucket[i]); 50 } 51 52 static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b, 53 struct list_head *item, unsigned priority) 54 { 55 /* Since buffers which appear sooner in the relocation list are 56 * likely to be used more often than buffers which appear later 57 * in the list, the sort mustn't change the ordering of buffers 58 * with the same priority, i.e. it must be stable. 59 */ 60 list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]); 61 } 62 63 static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b, 64 struct list_head *out_list) 65 { 66 unsigned i; 67 68 /* Connect the sorted buckets in the output list. */ 69 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) { 70 list_splice(&b->bucket[i], out_list); 71 } 72 } 73 74 int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type, 75 u32 ip_instance, u32 ring, 76 struct amdgpu_ring **out_ring) 77 { 78 /* Right now all IPs have only one instance - multiple rings. */ 79 if (ip_instance != 0) { 80 DRM_ERROR("invalid ip instance: %d\n", ip_instance); 81 return -EINVAL; 82 } 83 84 switch (ip_type) { 85 default: 86 DRM_ERROR("unknown ip type: %d\n", ip_type); 87 return -EINVAL; 88 case AMDGPU_HW_IP_GFX: 89 if (ring < adev->gfx.num_gfx_rings) { 90 *out_ring = &adev->gfx.gfx_ring[ring]; 91 } else { 92 DRM_ERROR("only %d gfx rings are supported now\n", 93 adev->gfx.num_gfx_rings); 94 return -EINVAL; 95 } 96 break; 97 case AMDGPU_HW_IP_COMPUTE: 98 if (ring < adev->gfx.num_compute_rings) { 99 *out_ring = &adev->gfx.compute_ring[ring]; 100 } else { 101 DRM_ERROR("only %d compute rings are supported now\n", 102 adev->gfx.num_compute_rings); 103 return -EINVAL; 104 } 105 break; 106 case AMDGPU_HW_IP_DMA: 107 if (ring < 2) { 108 *out_ring = &adev->sdma[ring].ring; 109 } else { 110 DRM_ERROR("only two SDMA rings are supported\n"); 111 return -EINVAL; 112 } 113 break; 114 case AMDGPU_HW_IP_UVD: 115 *out_ring = &adev->uvd.ring; 116 break; 117 case AMDGPU_HW_IP_VCE: 118 if (ring < 2){ 119 *out_ring = &adev->vce.ring[ring]; 120 } else { 121 DRM_ERROR("only two VCE rings are supported\n"); 122 return -EINVAL; 123 } 124 break; 125 } 126 return 0; 127 } 128 129 struct amdgpu_cs_parser *amdgpu_cs_parser_create(struct amdgpu_device *adev, 130 struct drm_file *filp, 131 struct amdgpu_ctx *ctx, 132 struct amdgpu_ib *ibs, 133 uint32_t num_ibs) 134 { 135 struct amdgpu_cs_parser *parser; 136 int i; 137 138 parser = kzalloc(sizeof(struct amdgpu_cs_parser), GFP_KERNEL); 139 if (!parser) 140 return NULL; 141 142 parser->adev = adev; 143 parser->filp = filp; 144 parser->ctx = ctx; 145 parser->ibs = ibs; 146 parser->num_ibs = num_ibs; 147 for (i = 0; i < num_ibs; i++) 148 ibs[i].ctx = ctx; 149 150 return parser; 151 } 152 153 int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data) 154 { 155 union drm_amdgpu_cs *cs = data; 156 uint64_t *chunk_array_user; 157 uint64_t *chunk_array = NULL; 158 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 159 unsigned size, i; 160 int r = 0; 161 162 if (!cs->in.num_chunks) 163 goto out; 164 165 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 166 if (!p->ctx) { 167 r = -EINVAL; 168 goto out; 169 } 170 p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle); 171 172 /* get chunks */ 173 INIT_LIST_HEAD(&p->validated); 174 chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL); 175 if (chunk_array == NULL) { 176 r = -ENOMEM; 177 goto out; 178 } 179 180 chunk_array_user = (uint64_t __user *)(cs->in.chunks); 181 if (copy_from_user(chunk_array, chunk_array_user, 182 sizeof(uint64_t)*cs->in.num_chunks)) { 183 r = -EFAULT; 184 goto out; 185 } 186 187 p->nchunks = cs->in.num_chunks; 188 p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 189 GFP_KERNEL); 190 if (p->chunks == NULL) { 191 r = -ENOMEM; 192 goto out; 193 } 194 195 for (i = 0; i < p->nchunks; i++) { 196 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; 197 struct drm_amdgpu_cs_chunk user_chunk; 198 uint32_t __user *cdata; 199 200 chunk_ptr = (void __user *)chunk_array[i]; 201 if (copy_from_user(&user_chunk, chunk_ptr, 202 sizeof(struct drm_amdgpu_cs_chunk))) { 203 r = -EFAULT; 204 goto out; 205 } 206 p->chunks[i].chunk_id = user_chunk.chunk_id; 207 p->chunks[i].length_dw = user_chunk.length_dw; 208 209 size = p->chunks[i].length_dw; 210 cdata = (void __user *)user_chunk.chunk_data; 211 p->chunks[i].user_ptr = cdata; 212 213 p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t)); 214 if (p->chunks[i].kdata == NULL) { 215 r = -ENOMEM; 216 goto out; 217 } 218 size *= sizeof(uint32_t); 219 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 220 r = -EFAULT; 221 goto out; 222 } 223 224 switch (p->chunks[i].chunk_id) { 225 case AMDGPU_CHUNK_ID_IB: 226 p->num_ibs++; 227 break; 228 229 case AMDGPU_CHUNK_ID_FENCE: 230 size = sizeof(struct drm_amdgpu_cs_chunk_fence); 231 if (p->chunks[i].length_dw * sizeof(uint32_t) >= size) { 232 uint32_t handle; 233 struct drm_gem_object *gobj; 234 struct drm_amdgpu_cs_chunk_fence *fence_data; 235 236 fence_data = (void *)p->chunks[i].kdata; 237 handle = fence_data->handle; 238 gobj = drm_gem_object_lookup(p->adev->ddev, 239 p->filp, handle); 240 if (gobj == NULL) { 241 r = -EINVAL; 242 goto out; 243 } 244 245 p->uf.bo = gem_to_amdgpu_bo(gobj); 246 p->uf.offset = fence_data->offset; 247 } else { 248 r = -EINVAL; 249 goto out; 250 } 251 break; 252 253 case AMDGPU_CHUNK_ID_DEPENDENCIES: 254 break; 255 256 default: 257 r = -EINVAL; 258 goto out; 259 } 260 } 261 262 263 p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL); 264 if (!p->ibs) 265 r = -ENOMEM; 266 267 out: 268 kfree(chunk_array); 269 return r; 270 } 271 272 /* Returns how many bytes TTM can move per IB. 273 */ 274 static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev) 275 { 276 u64 real_vram_size = adev->mc.real_vram_size; 277 u64 vram_usage = atomic64_read(&adev->vram_usage); 278 279 /* This function is based on the current VRAM usage. 280 * 281 * - If all of VRAM is free, allow relocating the number of bytes that 282 * is equal to 1/4 of the size of VRAM for this IB. 283 284 * - If more than one half of VRAM is occupied, only allow relocating 285 * 1 MB of data for this IB. 286 * 287 * - From 0 to one half of used VRAM, the threshold decreases 288 * linearly. 289 * __________________ 290 * 1/4 of -|\ | 291 * VRAM | \ | 292 * | \ | 293 * | \ | 294 * | \ | 295 * | \ | 296 * | \ | 297 * | \________|1 MB 298 * |----------------| 299 * VRAM 0 % 100 % 300 * used used 301 * 302 * Note: It's a threshold, not a limit. The threshold must be crossed 303 * for buffer relocations to stop, so any buffer of an arbitrary size 304 * can be moved as long as the threshold isn't crossed before 305 * the relocation takes place. We don't want to disable buffer 306 * relocations completely. 307 * 308 * The idea is that buffers should be placed in VRAM at creation time 309 * and TTM should only do a minimum number of relocations during 310 * command submission. In practice, you need to submit at least 311 * a dozen IBs to move all buffers to VRAM if they are in GTT. 312 * 313 * Also, things can get pretty crazy under memory pressure and actual 314 * VRAM usage can change a lot, so playing safe even at 50% does 315 * consistently increase performance. 316 */ 317 318 u64 half_vram = real_vram_size >> 1; 319 u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage; 320 u64 bytes_moved_threshold = half_free_vram >> 1; 321 return max(bytes_moved_threshold, 1024*1024ull); 322 } 323 324 int amdgpu_cs_list_validate(struct amdgpu_cs_parser *p) 325 { 326 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 327 struct amdgpu_vm *vm = &fpriv->vm; 328 struct amdgpu_device *adev = p->adev; 329 struct amdgpu_bo_list_entry *lobj; 330 struct list_head duplicates; 331 struct amdgpu_bo *bo; 332 u64 bytes_moved = 0, initial_bytes_moved; 333 u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev); 334 int r; 335 336 INIT_LIST_HEAD(&duplicates); 337 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates); 338 if (unlikely(r != 0)) { 339 return r; 340 } 341 342 list_for_each_entry(lobj, &p->validated, tv.head) { 343 bo = lobj->robj; 344 if (!bo->pin_count) { 345 u32 domain = lobj->prefered_domains; 346 u32 current_domain = 347 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type); 348 349 /* Check if this buffer will be moved and don't move it 350 * if we have moved too many buffers for this IB already. 351 * 352 * Note that this allows moving at least one buffer of 353 * any size, because it doesn't take the current "bo" 354 * into account. We don't want to disallow buffer moves 355 * completely. 356 */ 357 if ((lobj->allowed_domains & current_domain) != 0 && 358 (domain & current_domain) == 0 && /* will be moved */ 359 bytes_moved > bytes_moved_threshold) { 360 /* don't move it */ 361 domain = current_domain; 362 } 363 364 retry: 365 amdgpu_ttm_placement_from_domain(bo, domain); 366 initial_bytes_moved = atomic64_read(&adev->num_bytes_moved); 367 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); 368 bytes_moved += atomic64_read(&adev->num_bytes_moved) - 369 initial_bytes_moved; 370 371 if (unlikely(r)) { 372 if (r != -ERESTARTSYS && domain != lobj->allowed_domains) { 373 domain = lobj->allowed_domains; 374 goto retry; 375 } 376 ttm_eu_backoff_reservation(&p->ticket, &p->validated); 377 return r; 378 } 379 } 380 lobj->bo_va = amdgpu_vm_bo_find(vm, bo); 381 } 382 return 0; 383 } 384 385 static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p) 386 { 387 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 388 struct amdgpu_cs_buckets buckets; 389 bool need_mmap_lock = false; 390 int i, r; 391 392 if (p->bo_list) { 393 need_mmap_lock = p->bo_list->has_userptr; 394 amdgpu_cs_buckets_init(&buckets); 395 for (i = 0; i < p->bo_list->num_entries; i++) 396 amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head, 397 p->bo_list->array[i].priority); 398 399 amdgpu_cs_buckets_get_list(&buckets, &p->validated); 400 } 401 402 p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm, 403 &p->validated); 404 405 if (need_mmap_lock) 406 down_read(¤t->mm->mmap_sem); 407 408 r = amdgpu_cs_list_validate(p); 409 410 if (need_mmap_lock) 411 up_read(¤t->mm->mmap_sem); 412 413 return r; 414 } 415 416 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 417 { 418 struct amdgpu_bo_list_entry *e; 419 int r; 420 421 list_for_each_entry(e, &p->validated, tv.head) { 422 struct reservation_object *resv = e->robj->tbo.resv; 423 r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp); 424 425 if (r) 426 return r; 427 } 428 return 0; 429 } 430 431 static int cmp_size_smaller_first(void *priv, struct list_head *a, 432 struct list_head *b) 433 { 434 struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head); 435 struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head); 436 437 /* Sort A before B if A is smaller. */ 438 return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages; 439 } 440 441 static void amdgpu_cs_parser_fini_early(struct amdgpu_cs_parser *parser, int error, bool backoff) 442 { 443 if (!error) { 444 /* Sort the buffer list from the smallest to largest buffer, 445 * which affects the order of buffers in the LRU list. 446 * This assures that the smallest buffers are added first 447 * to the LRU list, so they are likely to be later evicted 448 * first, instead of large buffers whose eviction is more 449 * expensive. 450 * 451 * This slightly lowers the number of bytes moved by TTM 452 * per frame under memory pressure. 453 */ 454 list_sort(NULL, &parser->validated, cmp_size_smaller_first); 455 456 ttm_eu_fence_buffer_objects(&parser->ticket, 457 &parser->validated, 458 &parser->ibs[parser->num_ibs-1].fence->base); 459 } else if (backoff) { 460 ttm_eu_backoff_reservation(&parser->ticket, 461 &parser->validated); 462 } 463 } 464 465 static void amdgpu_cs_parser_fini_late(struct amdgpu_cs_parser *parser) 466 { 467 unsigned i; 468 if (parser->ctx) 469 amdgpu_ctx_put(parser->ctx); 470 if (parser->bo_list) 471 amdgpu_bo_list_put(parser->bo_list); 472 473 drm_free_large(parser->vm_bos); 474 for (i = 0; i < parser->nchunks; i++) 475 drm_free_large(parser->chunks[i].kdata); 476 kfree(parser->chunks); 477 if (!amdgpu_enable_scheduler) 478 { 479 if (parser->ibs) 480 for (i = 0; i < parser->num_ibs; i++) 481 amdgpu_ib_free(parser->adev, &parser->ibs[i]); 482 kfree(parser->ibs); 483 if (parser->uf.bo) 484 drm_gem_object_unreference_unlocked(&parser->uf.bo->gem_base); 485 } 486 487 kfree(parser); 488 } 489 490 /** 491 * cs_parser_fini() - clean parser states 492 * @parser: parser structure holding parsing context. 493 * @error: error number 494 * 495 * If error is set than unvalidate buffer, otherwise just free memory 496 * used by parsing context. 497 **/ 498 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff) 499 { 500 amdgpu_cs_parser_fini_early(parser, error, backoff); 501 amdgpu_cs_parser_fini_late(parser); 502 } 503 504 static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p, 505 struct amdgpu_vm *vm) 506 { 507 struct amdgpu_device *adev = p->adev; 508 struct amdgpu_bo_va *bo_va; 509 struct amdgpu_bo *bo; 510 int i, r; 511 512 r = amdgpu_vm_update_page_directory(adev, vm); 513 if (r) 514 return r; 515 516 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence); 517 if (r) 518 return r; 519 520 r = amdgpu_vm_clear_freed(adev, vm); 521 if (r) 522 return r; 523 524 if (p->bo_list) { 525 for (i = 0; i < p->bo_list->num_entries; i++) { 526 struct fence *f; 527 528 /* ignore duplicates */ 529 bo = p->bo_list->array[i].robj; 530 if (!bo) 531 continue; 532 533 bo_va = p->bo_list->array[i].bo_va; 534 if (bo_va == NULL) 535 continue; 536 537 r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem); 538 if (r) 539 return r; 540 541 f = bo_va->last_pt_update; 542 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f); 543 if (r) 544 return r; 545 } 546 } 547 548 return amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync); 549 } 550 551 static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev, 552 struct amdgpu_cs_parser *parser) 553 { 554 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 555 struct amdgpu_vm *vm = &fpriv->vm; 556 struct amdgpu_ring *ring; 557 int i, r; 558 559 if (parser->num_ibs == 0) 560 return 0; 561 562 /* Only for UVD/VCE VM emulation */ 563 for (i = 0; i < parser->num_ibs; i++) { 564 ring = parser->ibs[i].ring; 565 if (ring->funcs->parse_cs) { 566 r = amdgpu_ring_parse_cs(ring, parser, i); 567 if (r) 568 return r; 569 } 570 } 571 572 mutex_lock(&vm->mutex); 573 r = amdgpu_bo_vm_update_pte(parser, vm); 574 if (r) { 575 goto out; 576 } 577 amdgpu_cs_sync_rings(parser); 578 if (!amdgpu_enable_scheduler) 579 r = amdgpu_ib_schedule(adev, parser->num_ibs, parser->ibs, 580 parser->filp); 581 582 out: 583 mutex_unlock(&vm->mutex); 584 return r; 585 } 586 587 static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r) 588 { 589 if (r == -EDEADLK) { 590 r = amdgpu_gpu_reset(adev); 591 if (!r) 592 r = -EAGAIN; 593 } 594 return r; 595 } 596 597 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev, 598 struct amdgpu_cs_parser *parser) 599 { 600 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 601 struct amdgpu_vm *vm = &fpriv->vm; 602 int i, j; 603 int r; 604 605 for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) { 606 struct amdgpu_cs_chunk *chunk; 607 struct amdgpu_ib *ib; 608 struct drm_amdgpu_cs_chunk_ib *chunk_ib; 609 struct amdgpu_ring *ring; 610 611 chunk = &parser->chunks[i]; 612 ib = &parser->ibs[j]; 613 chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata; 614 615 if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB) 616 continue; 617 618 r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type, 619 chunk_ib->ip_instance, chunk_ib->ring, 620 &ring); 621 if (r) 622 return r; 623 624 if (ring->funcs->parse_cs) { 625 struct amdgpu_bo_va_mapping *m; 626 struct amdgpu_bo *aobj = NULL; 627 uint64_t offset; 628 uint8_t *kptr; 629 630 m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start, 631 &aobj); 632 if (!aobj) { 633 DRM_ERROR("IB va_start is invalid\n"); 634 return -EINVAL; 635 } 636 637 if ((chunk_ib->va_start + chunk_ib->ib_bytes) > 638 (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) { 639 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 640 return -EINVAL; 641 } 642 643 /* the IB should be reserved at this point */ 644 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 645 if (r) { 646 return r; 647 } 648 649 offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE; 650 kptr += chunk_ib->va_start - offset; 651 652 r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib); 653 if (r) { 654 DRM_ERROR("Failed to get ib !\n"); 655 return r; 656 } 657 658 memcpy(ib->ptr, kptr, chunk_ib->ib_bytes); 659 amdgpu_bo_kunmap(aobj); 660 } else { 661 r = amdgpu_ib_get(ring, vm, 0, ib); 662 if (r) { 663 DRM_ERROR("Failed to get ib !\n"); 664 return r; 665 } 666 667 ib->gpu_addr = chunk_ib->va_start; 668 } 669 670 ib->length_dw = chunk_ib->ib_bytes / 4; 671 ib->flags = chunk_ib->flags; 672 ib->ctx = parser->ctx; 673 j++; 674 } 675 676 if (!parser->num_ibs) 677 return 0; 678 679 /* add GDS resources to first IB */ 680 if (parser->bo_list) { 681 struct amdgpu_bo *gds = parser->bo_list->gds_obj; 682 struct amdgpu_bo *gws = parser->bo_list->gws_obj; 683 struct amdgpu_bo *oa = parser->bo_list->oa_obj; 684 struct amdgpu_ib *ib = &parser->ibs[0]; 685 686 if (gds) { 687 ib->gds_base = amdgpu_bo_gpu_offset(gds); 688 ib->gds_size = amdgpu_bo_size(gds); 689 } 690 if (gws) { 691 ib->gws_base = amdgpu_bo_gpu_offset(gws); 692 ib->gws_size = amdgpu_bo_size(gws); 693 } 694 if (oa) { 695 ib->oa_base = amdgpu_bo_gpu_offset(oa); 696 ib->oa_size = amdgpu_bo_size(oa); 697 } 698 } 699 /* wrap the last IB with user fence */ 700 if (parser->uf.bo) { 701 struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1]; 702 703 /* UVD & VCE fw doesn't support user fences */ 704 if (ib->ring->type == AMDGPU_RING_TYPE_UVD || 705 ib->ring->type == AMDGPU_RING_TYPE_VCE) 706 return -EINVAL; 707 708 ib->user = &parser->uf; 709 } 710 711 return 0; 712 } 713 714 static int amdgpu_cs_dependencies(struct amdgpu_device *adev, 715 struct amdgpu_cs_parser *p) 716 { 717 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 718 struct amdgpu_ib *ib; 719 int i, j, r; 720 721 if (!p->num_ibs) 722 return 0; 723 724 /* Add dependencies to first IB */ 725 ib = &p->ibs[0]; 726 for (i = 0; i < p->nchunks; ++i) { 727 struct drm_amdgpu_cs_chunk_dep *deps; 728 struct amdgpu_cs_chunk *chunk; 729 unsigned num_deps; 730 731 chunk = &p->chunks[i]; 732 733 if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES) 734 continue; 735 736 deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata; 737 num_deps = chunk->length_dw * 4 / 738 sizeof(struct drm_amdgpu_cs_chunk_dep); 739 740 for (j = 0; j < num_deps; ++j) { 741 struct amdgpu_ring *ring; 742 struct amdgpu_ctx *ctx; 743 struct fence *fence; 744 745 r = amdgpu_cs_get_ring(adev, deps[j].ip_type, 746 deps[j].ip_instance, 747 deps[j].ring, &ring); 748 if (r) 749 return r; 750 751 ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id); 752 if (ctx == NULL) 753 return -EINVAL; 754 755 fence = amdgpu_ctx_get_fence(ctx, ring, 756 deps[j].handle); 757 if (IS_ERR(fence)) { 758 r = PTR_ERR(fence); 759 amdgpu_ctx_put(ctx); 760 return r; 761 762 } else if (fence) { 763 r = amdgpu_sync_fence(adev, &ib->sync, fence); 764 fence_put(fence); 765 amdgpu_ctx_put(ctx); 766 if (r) 767 return r; 768 } 769 } 770 } 771 772 return 0; 773 } 774 775 static int amdgpu_cs_free_job(struct amdgpu_job *sched_job) 776 { 777 int i; 778 if (sched_job->ibs) 779 for (i = 0; i < sched_job->num_ibs; i++) 780 amdgpu_ib_free(sched_job->adev, &sched_job->ibs[i]); 781 kfree(sched_job->ibs); 782 if (sched_job->uf.bo) 783 drm_gem_object_unreference_unlocked(&sched_job->uf.bo->gem_base); 784 return 0; 785 } 786 787 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 788 { 789 struct amdgpu_device *adev = dev->dev_private; 790 union drm_amdgpu_cs *cs = data; 791 struct amdgpu_cs_parser *parser; 792 bool reserved_buffers = false; 793 int i, r; 794 795 down_read(&adev->exclusive_lock); 796 if (!adev->accel_working) { 797 up_read(&adev->exclusive_lock); 798 return -EBUSY; 799 } 800 801 parser = amdgpu_cs_parser_create(adev, filp, NULL, NULL, 0); 802 if (!parser) 803 return -ENOMEM; 804 r = amdgpu_cs_parser_init(parser, data); 805 if (r) { 806 DRM_ERROR("Failed to initialize parser !\n"); 807 amdgpu_cs_parser_fini(parser, r, false); 808 up_read(&adev->exclusive_lock); 809 r = amdgpu_cs_handle_lockup(adev, r); 810 return r; 811 } 812 813 r = amdgpu_cs_parser_relocs(parser); 814 if (r == -ENOMEM) 815 DRM_ERROR("Not enough memory for command submission!\n"); 816 else if (r && r != -ERESTARTSYS) 817 DRM_ERROR("Failed to process the buffer list %d!\n", r); 818 else if (!r) { 819 reserved_buffers = true; 820 r = amdgpu_cs_ib_fill(adev, parser); 821 } 822 823 if (!r) { 824 r = amdgpu_cs_dependencies(adev, parser); 825 if (r) 826 DRM_ERROR("Failed in the dependencies handling %d!\n", r); 827 } 828 829 if (r) 830 goto out; 831 832 for (i = 0; i < parser->num_ibs; i++) 833 trace_amdgpu_cs(parser, i); 834 835 r = amdgpu_cs_ib_vm_chunk(adev, parser); 836 if (r) 837 goto out; 838 839 if (amdgpu_enable_scheduler && parser->num_ibs) { 840 struct amdgpu_job *job; 841 struct amdgpu_ring * ring = parser->ibs->ring; 842 job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL); 843 if (!job) 844 return -ENOMEM; 845 job->base.sched = ring->scheduler; 846 job->base.s_entity = &parser->ctx->rings[ring->idx].entity; 847 job->adev = parser->adev; 848 job->ibs = parser->ibs; 849 job->num_ibs = parser->num_ibs; 850 job->base.owner = parser->filp; 851 mutex_init(&job->job_lock); 852 if (job->ibs[job->num_ibs - 1].user) { 853 memcpy(&job->uf, &parser->uf, 854 sizeof(struct amdgpu_user_fence)); 855 job->ibs[job->num_ibs - 1].user = &job->uf; 856 } 857 858 job->free_job = amdgpu_cs_free_job; 859 mutex_lock(&job->job_lock); 860 r = amd_sched_entity_push_job((struct amd_sched_job *)job); 861 if (r) { 862 mutex_unlock(&job->job_lock); 863 amdgpu_cs_free_job(job); 864 kfree(job); 865 goto out; 866 } 867 cs->out.handle = 868 amdgpu_ctx_add_fence(parser->ctx, ring, 869 &job->base.s_fence->base); 870 parser->ibs[parser->num_ibs - 1].sequence = cs->out.handle; 871 872 list_sort(NULL, &parser->validated, cmp_size_smaller_first); 873 ttm_eu_fence_buffer_objects(&parser->ticket, 874 &parser->validated, 875 &job->base.s_fence->base); 876 877 mutex_unlock(&job->job_lock); 878 amdgpu_cs_parser_fini_late(parser); 879 up_read(&adev->exclusive_lock); 880 return 0; 881 } 882 883 cs->out.handle = parser->ibs[parser->num_ibs - 1].sequence; 884 out: 885 amdgpu_cs_parser_fini(parser, r, reserved_buffers); 886 up_read(&adev->exclusive_lock); 887 r = amdgpu_cs_handle_lockup(adev, r); 888 return r; 889 } 890 891 /** 892 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 893 * 894 * @dev: drm device 895 * @data: data from userspace 896 * @filp: file private 897 * 898 * Wait for the command submission identified by handle to finish. 899 */ 900 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 901 struct drm_file *filp) 902 { 903 union drm_amdgpu_wait_cs *wait = data; 904 struct amdgpu_device *adev = dev->dev_private; 905 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 906 struct amdgpu_ring *ring = NULL; 907 struct amdgpu_ctx *ctx; 908 struct fence *fence; 909 long r; 910 911 r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance, 912 wait->in.ring, &ring); 913 if (r) 914 return r; 915 916 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 917 if (ctx == NULL) 918 return -EINVAL; 919 920 fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle); 921 if (IS_ERR(fence)) 922 r = PTR_ERR(fence); 923 else if (fence) { 924 r = fence_wait_timeout(fence, true, timeout); 925 fence_put(fence); 926 } else 927 r = 1; 928 929 amdgpu_ctx_put(ctx); 930 if (r < 0) 931 return r; 932 933 memset(wait, 0, sizeof(*wait)); 934 wait->out.status = (r == 0); 935 936 return 0; 937 } 938 939 /** 940 * amdgpu_cs_find_bo_va - find bo_va for VM address 941 * 942 * @parser: command submission parser context 943 * @addr: VM address 944 * @bo: resulting BO of the mapping found 945 * 946 * Search the buffer objects in the command submission context for a certain 947 * virtual memory address. Returns allocation structure when found, NULL 948 * otherwise. 949 */ 950 struct amdgpu_bo_va_mapping * 951 amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 952 uint64_t addr, struct amdgpu_bo **bo) 953 { 954 struct amdgpu_bo_list_entry *reloc; 955 struct amdgpu_bo_va_mapping *mapping; 956 957 addr /= AMDGPU_GPU_PAGE_SIZE; 958 959 list_for_each_entry(reloc, &parser->validated, tv.head) { 960 if (!reloc->bo_va) 961 continue; 962 963 list_for_each_entry(mapping, &reloc->bo_va->valids, list) { 964 if (mapping->it.start > addr || 965 addr > mapping->it.last) 966 continue; 967 968 *bo = reloc->bo_va->bo; 969 return mapping; 970 } 971 972 list_for_each_entry(mapping, &reloc->bo_va->invalids, list) { 973 if (mapping->it.start > addr || 974 addr > mapping->it.last) 975 continue; 976 977 *bo = reloc->bo_va->bo; 978 return mapping; 979 } 980 } 981 982 return NULL; 983 } 984