1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 44 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 45 struct amdgpu_device *adev, 46 struct drm_file *filp, 47 union drm_amdgpu_cs *cs) 48 { 49 struct amdgpu_fpriv *fpriv = filp->driver_priv; 50 51 if (cs->in.num_chunks == 0) 52 return -EINVAL; 53 54 memset(p, 0, sizeof(*p)); 55 p->adev = adev; 56 p->filp = filp; 57 58 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 59 if (!p->ctx) 60 return -EINVAL; 61 62 if (atomic_read(&p->ctx->guilty)) { 63 amdgpu_ctx_put(p->ctx); 64 return -ECANCELED; 65 } 66 67 amdgpu_sync_create(&p->sync); 68 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 69 return 0; 70 } 71 72 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 73 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 74 { 75 struct drm_sched_entity *entity; 76 unsigned int i; 77 int r; 78 79 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 80 chunk_ib->ip_instance, 81 chunk_ib->ring, &entity); 82 if (r) 83 return r; 84 85 /* 86 * Abort if there is no run queue associated with this entity. 87 * Possibly because of disabled HW IP. 88 */ 89 if (entity->rq == NULL) 90 return -EINVAL; 91 92 /* Check if we can add this IB to some existing job */ 93 for (i = 0; i < p->gang_size; ++i) 94 if (p->entities[i] == entity) 95 return i; 96 97 /* If not increase the gang size if possible */ 98 if (i == AMDGPU_CS_GANG_SIZE) 99 return -EINVAL; 100 101 p->entities[i] = entity; 102 p->gang_size = i + 1; 103 return i; 104 } 105 106 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 107 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 108 unsigned int *num_ibs) 109 { 110 int r; 111 112 r = amdgpu_cs_job_idx(p, chunk_ib); 113 if (r < 0) 114 return r; 115 116 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 117 return -EINVAL; 118 119 ++(num_ibs[r]); 120 p->gang_leader_idx = r; 121 return 0; 122 } 123 124 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 125 struct drm_amdgpu_cs_chunk_fence *data, 126 uint32_t *offset) 127 { 128 struct drm_gem_object *gobj; 129 unsigned long size; 130 int r; 131 132 gobj = drm_gem_object_lookup(p->filp, data->handle); 133 if (gobj == NULL) 134 return -EINVAL; 135 136 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 137 drm_gem_object_put(gobj); 138 139 size = amdgpu_bo_size(p->uf_bo); 140 if (size != PAGE_SIZE || (data->offset + 8) > size) { 141 r = -EINVAL; 142 goto error_unref; 143 } 144 145 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) { 146 r = -EINVAL; 147 goto error_unref; 148 } 149 150 *offset = data->offset; 151 152 return 0; 153 154 error_unref: 155 amdgpu_bo_unref(&p->uf_bo); 156 return r; 157 } 158 159 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 160 struct drm_amdgpu_bo_list_in *data) 161 { 162 struct drm_amdgpu_bo_list_entry *info; 163 int r; 164 165 r = amdgpu_bo_create_list_entry_array(data, &info); 166 if (r) 167 return r; 168 169 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 170 &p->bo_list); 171 if (r) 172 goto error_free; 173 174 kvfree(info); 175 return 0; 176 177 error_free: 178 kvfree(info); 179 180 return r; 181 } 182 183 /* Copy the data from userspace and go over it the first time */ 184 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 185 union drm_amdgpu_cs *cs) 186 { 187 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 188 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 189 struct amdgpu_vm *vm = &fpriv->vm; 190 uint64_t *chunk_array_user; 191 uint64_t *chunk_array; 192 uint32_t uf_offset = 0; 193 size_t size; 194 int ret; 195 int i; 196 197 chunk_array = kvmalloc_array(cs->in.num_chunks, sizeof(uint64_t), 198 GFP_KERNEL); 199 if (!chunk_array) 200 return -ENOMEM; 201 202 /* get chunks */ 203 chunk_array_user = u64_to_user_ptr(cs->in.chunks); 204 if (copy_from_user(chunk_array, chunk_array_user, 205 sizeof(uint64_t)*cs->in.num_chunks)) { 206 ret = -EFAULT; 207 goto free_chunk; 208 } 209 210 p->nchunks = cs->in.num_chunks; 211 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 212 GFP_KERNEL); 213 if (!p->chunks) { 214 ret = -ENOMEM; 215 goto free_chunk; 216 } 217 218 for (i = 0; i < p->nchunks; i++) { 219 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL; 220 struct drm_amdgpu_cs_chunk user_chunk; 221 uint32_t __user *cdata; 222 223 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 224 if (copy_from_user(&user_chunk, chunk_ptr, 225 sizeof(struct drm_amdgpu_cs_chunk))) { 226 ret = -EFAULT; 227 i--; 228 goto free_partial_kdata; 229 } 230 p->chunks[i].chunk_id = user_chunk.chunk_id; 231 p->chunks[i].length_dw = user_chunk.length_dw; 232 233 size = p->chunks[i].length_dw; 234 cdata = u64_to_user_ptr(user_chunk.chunk_data); 235 236 p->chunks[i].kdata = kvmalloc_array(size, sizeof(uint32_t), 237 GFP_KERNEL); 238 if (p->chunks[i].kdata == NULL) { 239 ret = -ENOMEM; 240 i--; 241 goto free_partial_kdata; 242 } 243 size *= sizeof(uint32_t); 244 if (copy_from_user(p->chunks[i].kdata, cdata, size)) { 245 ret = -EFAULT; 246 goto free_partial_kdata; 247 } 248 249 /* Assume the worst on the following checks */ 250 ret = -EINVAL; 251 switch (p->chunks[i].chunk_id) { 252 case AMDGPU_CHUNK_ID_IB: 253 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 254 goto free_partial_kdata; 255 256 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 257 if (ret) 258 goto free_partial_kdata; 259 break; 260 261 case AMDGPU_CHUNK_ID_FENCE: 262 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 263 goto free_partial_kdata; 264 265 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 266 &uf_offset); 267 if (ret) 268 goto free_partial_kdata; 269 break; 270 271 case AMDGPU_CHUNK_ID_BO_HANDLES: 272 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 273 goto free_partial_kdata; 274 275 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 276 if (ret) 277 goto free_partial_kdata; 278 break; 279 280 case AMDGPU_CHUNK_ID_DEPENDENCIES: 281 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 282 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 283 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 284 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 285 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 286 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 287 break; 288 289 default: 290 goto free_partial_kdata; 291 } 292 } 293 294 if (!p->gang_size) { 295 ret = -EINVAL; 296 goto free_partial_kdata; 297 } 298 299 for (i = 0; i < p->gang_size; ++i) { 300 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 301 num_ibs[i], &p->jobs[i]); 302 if (ret) 303 goto free_all_kdata; 304 } 305 p->gang_leader = p->jobs[p->gang_leader_idx]; 306 307 if (p->ctx->generation != p->gang_leader->generation) { 308 ret = -ECANCELED; 309 goto free_all_kdata; 310 } 311 312 if (p->uf_bo) 313 p->gang_leader->uf_addr = uf_offset; 314 kvfree(chunk_array); 315 316 /* Use this opportunity to fill in task info for the vm */ 317 amdgpu_vm_set_task_info(vm); 318 319 return 0; 320 321 free_all_kdata: 322 i = p->nchunks - 1; 323 free_partial_kdata: 324 for (; i >= 0; i--) 325 kvfree(p->chunks[i].kdata); 326 kvfree(p->chunks); 327 p->chunks = NULL; 328 p->nchunks = 0; 329 free_chunk: 330 kvfree(chunk_array); 331 332 return ret; 333 } 334 335 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 336 struct amdgpu_cs_chunk *chunk, 337 unsigned int *ce_preempt, 338 unsigned int *de_preempt) 339 { 340 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 341 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 342 struct amdgpu_vm *vm = &fpriv->vm; 343 struct amdgpu_ring *ring; 344 struct amdgpu_job *job; 345 struct amdgpu_ib *ib; 346 int r; 347 348 r = amdgpu_cs_job_idx(p, chunk_ib); 349 if (r < 0) 350 return r; 351 352 job = p->jobs[r]; 353 ring = amdgpu_job_ring(job); 354 ib = &job->ibs[job->num_ibs++]; 355 356 /* MM engine doesn't support user fences */ 357 if (p->uf_bo && ring->funcs->no_user_fence) 358 return -EINVAL; 359 360 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 361 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 362 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 363 (*ce_preempt)++; 364 else 365 (*de_preempt)++; 366 367 /* Each GFX command submit allows only 1 IB max 368 * preemptible for CE & DE */ 369 if (*ce_preempt > 1 || *de_preempt > 1) 370 return -EINVAL; 371 } 372 373 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 374 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 375 376 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 377 chunk_ib->ib_bytes : 0, 378 AMDGPU_IB_POOL_DELAYED, ib); 379 if (r) { 380 DRM_ERROR("Failed to get ib !\n"); 381 return r; 382 } 383 384 ib->gpu_addr = chunk_ib->va_start; 385 ib->length_dw = chunk_ib->ib_bytes / 4; 386 ib->flags = chunk_ib->flags; 387 return 0; 388 } 389 390 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 391 struct amdgpu_cs_chunk *chunk) 392 { 393 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 394 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 395 unsigned int num_deps; 396 int i, r; 397 398 num_deps = chunk->length_dw * 4 / 399 sizeof(struct drm_amdgpu_cs_chunk_dep); 400 401 for (i = 0; i < num_deps; ++i) { 402 struct amdgpu_ctx *ctx; 403 struct drm_sched_entity *entity; 404 struct dma_fence *fence; 405 406 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 407 if (ctx == NULL) 408 return -EINVAL; 409 410 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 411 deps[i].ip_instance, 412 deps[i].ring, &entity); 413 if (r) { 414 amdgpu_ctx_put(ctx); 415 return r; 416 } 417 418 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 419 amdgpu_ctx_put(ctx); 420 421 if (IS_ERR(fence)) 422 return PTR_ERR(fence); 423 else if (!fence) 424 continue; 425 426 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 427 struct drm_sched_fence *s_fence; 428 struct dma_fence *old = fence; 429 430 s_fence = to_drm_sched_fence(fence); 431 fence = dma_fence_get(&s_fence->scheduled); 432 dma_fence_put(old); 433 } 434 435 r = amdgpu_sync_fence(&p->sync, fence); 436 dma_fence_put(fence); 437 if (r) 438 return r; 439 } 440 return 0; 441 } 442 443 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 444 uint32_t handle, u64 point, 445 u64 flags) 446 { 447 struct dma_fence *fence; 448 int r; 449 450 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 451 if (r) { 452 DRM_ERROR("syncobj %u failed to find fence @ %llu (%d)!\n", 453 handle, point, r); 454 return r; 455 } 456 457 r = amdgpu_sync_fence(&p->sync, fence); 458 dma_fence_put(fence); 459 return r; 460 } 461 462 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 463 struct amdgpu_cs_chunk *chunk) 464 { 465 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 466 unsigned int num_deps; 467 int i, r; 468 469 num_deps = chunk->length_dw * 4 / 470 sizeof(struct drm_amdgpu_cs_chunk_sem); 471 for (i = 0; i < num_deps; ++i) { 472 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 473 if (r) 474 return r; 475 } 476 477 return 0; 478 } 479 480 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 481 struct amdgpu_cs_chunk *chunk) 482 { 483 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 484 unsigned int num_deps; 485 int i, r; 486 487 num_deps = chunk->length_dw * 4 / 488 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 489 for (i = 0; i < num_deps; ++i) { 490 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 491 syncobj_deps[i].point, 492 syncobj_deps[i].flags); 493 if (r) 494 return r; 495 } 496 497 return 0; 498 } 499 500 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 501 struct amdgpu_cs_chunk *chunk) 502 { 503 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 504 unsigned int num_deps; 505 int i; 506 507 num_deps = chunk->length_dw * 4 / 508 sizeof(struct drm_amdgpu_cs_chunk_sem); 509 510 if (p->post_deps) 511 return -EINVAL; 512 513 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 514 GFP_KERNEL); 515 p->num_post_deps = 0; 516 517 if (!p->post_deps) 518 return -ENOMEM; 519 520 521 for (i = 0; i < num_deps; ++i) { 522 p->post_deps[i].syncobj = 523 drm_syncobj_find(p->filp, deps[i].handle); 524 if (!p->post_deps[i].syncobj) 525 return -EINVAL; 526 p->post_deps[i].chain = NULL; 527 p->post_deps[i].point = 0; 528 p->num_post_deps++; 529 } 530 531 return 0; 532 } 533 534 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 535 struct amdgpu_cs_chunk *chunk) 536 { 537 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 538 unsigned int num_deps; 539 int i; 540 541 num_deps = chunk->length_dw * 4 / 542 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 543 544 if (p->post_deps) 545 return -EINVAL; 546 547 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 548 GFP_KERNEL); 549 p->num_post_deps = 0; 550 551 if (!p->post_deps) 552 return -ENOMEM; 553 554 for (i = 0; i < num_deps; ++i) { 555 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 556 557 dep->chain = NULL; 558 if (syncobj_deps[i].point) { 559 dep->chain = dma_fence_chain_alloc(); 560 if (!dep->chain) 561 return -ENOMEM; 562 } 563 564 dep->syncobj = drm_syncobj_find(p->filp, 565 syncobj_deps[i].handle); 566 if (!dep->syncobj) { 567 dma_fence_chain_free(dep->chain); 568 return -EINVAL; 569 } 570 dep->point = syncobj_deps[i].point; 571 p->num_post_deps++; 572 } 573 574 return 0; 575 } 576 577 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 578 struct amdgpu_cs_chunk *chunk) 579 { 580 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 581 int i; 582 583 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 584 return -EINVAL; 585 586 for (i = 0; i < p->gang_size; ++i) { 587 p->jobs[i]->shadow_va = shadow->shadow_va; 588 p->jobs[i]->csa_va = shadow->csa_va; 589 p->jobs[i]->gds_va = shadow->gds_va; 590 p->jobs[i]->init_shadow = 591 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 592 } 593 594 return 0; 595 } 596 597 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 598 { 599 unsigned int ce_preempt = 0, de_preempt = 0; 600 int i, r; 601 602 for (i = 0; i < p->nchunks; ++i) { 603 struct amdgpu_cs_chunk *chunk; 604 605 chunk = &p->chunks[i]; 606 607 switch (chunk->chunk_id) { 608 case AMDGPU_CHUNK_ID_IB: 609 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 610 if (r) 611 return r; 612 break; 613 case AMDGPU_CHUNK_ID_DEPENDENCIES: 614 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 615 r = amdgpu_cs_p2_dependencies(p, chunk); 616 if (r) 617 return r; 618 break; 619 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 620 r = amdgpu_cs_p2_syncobj_in(p, chunk); 621 if (r) 622 return r; 623 break; 624 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 625 r = amdgpu_cs_p2_syncobj_out(p, chunk); 626 if (r) 627 return r; 628 break; 629 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 630 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 631 if (r) 632 return r; 633 break; 634 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 635 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 636 if (r) 637 return r; 638 break; 639 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 640 r = amdgpu_cs_p2_shadow(p, chunk); 641 if (r) 642 return r; 643 break; 644 } 645 } 646 647 return 0; 648 } 649 650 /* Convert microseconds to bytes. */ 651 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 652 { 653 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 654 return 0; 655 656 /* Since accum_us is incremented by a million per second, just 657 * multiply it by the number of MB/s to get the number of bytes. 658 */ 659 return us << adev->mm_stats.log2_max_MBps; 660 } 661 662 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 663 { 664 if (!adev->mm_stats.log2_max_MBps) 665 return 0; 666 667 return bytes >> adev->mm_stats.log2_max_MBps; 668 } 669 670 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 671 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 672 * which means it can go over the threshold once. If that happens, the driver 673 * will be in debt and no other buffer migrations can be done until that debt 674 * is repaid. 675 * 676 * This approach allows moving a buffer of any size (it's important to allow 677 * that). 678 * 679 * The currency is simply time in microseconds and it increases as the clock 680 * ticks. The accumulated microseconds (us) are converted to bytes and 681 * returned. 682 */ 683 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 684 u64 *max_bytes, 685 u64 *max_vis_bytes) 686 { 687 s64 time_us, increment_us; 688 u64 free_vram, total_vram, used_vram; 689 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 690 * throttling. 691 * 692 * It means that in order to get full max MBps, at least 5 IBs per 693 * second must be submitted and not more than 200ms apart from each 694 * other. 695 */ 696 const s64 us_upper_bound = 200000; 697 698 if (!adev->mm_stats.log2_max_MBps) { 699 *max_bytes = 0; 700 *max_vis_bytes = 0; 701 return; 702 } 703 704 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 705 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 706 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 707 708 spin_lock(&adev->mm_stats.lock); 709 710 /* Increase the amount of accumulated us. */ 711 time_us = ktime_to_us(ktime_get()); 712 increment_us = time_us - adev->mm_stats.last_update_us; 713 adev->mm_stats.last_update_us = time_us; 714 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 715 us_upper_bound); 716 717 /* This prevents the short period of low performance when the VRAM 718 * usage is low and the driver is in debt or doesn't have enough 719 * accumulated us to fill VRAM quickly. 720 * 721 * The situation can occur in these cases: 722 * - a lot of VRAM is freed by userspace 723 * - the presence of a big buffer causes a lot of evictions 724 * (solution: split buffers into smaller ones) 725 * 726 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 727 * accum_us to a positive number. 728 */ 729 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 730 s64 min_us; 731 732 /* Be more aggressive on dGPUs. Try to fill a portion of free 733 * VRAM now. 734 */ 735 if (!(adev->flags & AMD_IS_APU)) 736 min_us = bytes_to_us(adev, free_vram / 4); 737 else 738 min_us = 0; /* Reset accum_us on APUs. */ 739 740 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 741 } 742 743 /* This is set to 0 if the driver is in debt to disallow (optional) 744 * buffer moves. 745 */ 746 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 747 748 /* Do the same for visible VRAM if half of it is free */ 749 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 750 u64 total_vis_vram = adev->gmc.visible_vram_size; 751 u64 used_vis_vram = 752 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 753 754 if (used_vis_vram < total_vis_vram) { 755 u64 free_vis_vram = total_vis_vram - used_vis_vram; 756 757 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 758 increment_us, us_upper_bound); 759 760 if (free_vis_vram >= total_vis_vram / 2) 761 adev->mm_stats.accum_us_vis = 762 max(bytes_to_us(adev, free_vis_vram / 2), 763 adev->mm_stats.accum_us_vis); 764 } 765 766 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 767 } else { 768 *max_vis_bytes = 0; 769 } 770 771 spin_unlock(&adev->mm_stats.lock); 772 } 773 774 /* Report how many bytes have really been moved for the last command 775 * submission. This can result in a debt that can stop buffer migrations 776 * temporarily. 777 */ 778 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 779 u64 num_vis_bytes) 780 { 781 spin_lock(&adev->mm_stats.lock); 782 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 783 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 784 spin_unlock(&adev->mm_stats.lock); 785 } 786 787 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 788 { 789 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 790 struct amdgpu_cs_parser *p = param; 791 struct ttm_operation_ctx ctx = { 792 .interruptible = true, 793 .no_wait_gpu = false, 794 .resv = bo->tbo.base.resv 795 }; 796 uint32_t domain; 797 int r; 798 799 if (bo->tbo.pin_count) 800 return 0; 801 802 /* Don't move this buffer if we have depleted our allowance 803 * to move it. Don't move anything if the threshold is zero. 804 */ 805 if (p->bytes_moved < p->bytes_moved_threshold && 806 (!bo->tbo.base.dma_buf || 807 list_empty(&bo->tbo.base.dma_buf->attachments))) { 808 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 809 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 810 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 811 * visible VRAM if we've depleted our allowance to do 812 * that. 813 */ 814 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 815 domain = bo->preferred_domains; 816 else 817 domain = bo->allowed_domains; 818 } else { 819 domain = bo->preferred_domains; 820 } 821 } else { 822 domain = bo->allowed_domains; 823 } 824 825 retry: 826 amdgpu_bo_placement_from_domain(bo, domain); 827 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 828 829 p->bytes_moved += ctx.bytes_moved; 830 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 831 amdgpu_bo_in_cpu_visible_vram(bo)) 832 p->bytes_moved_vis += ctx.bytes_moved; 833 834 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 835 domain = bo->allowed_domains; 836 goto retry; 837 } 838 839 return r; 840 } 841 842 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 843 union drm_amdgpu_cs *cs) 844 { 845 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 846 struct ttm_operation_ctx ctx = { true, false }; 847 struct amdgpu_vm *vm = &fpriv->vm; 848 struct amdgpu_bo_list_entry *e; 849 struct drm_gem_object *obj; 850 unsigned long index; 851 unsigned int i; 852 int r; 853 854 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 855 if (cs->in.bo_list_handle) { 856 if (p->bo_list) 857 return -EINVAL; 858 859 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 860 &p->bo_list); 861 if (r) 862 return r; 863 } else if (!p->bo_list) { 864 /* Create a empty bo_list when no handle is provided */ 865 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 866 &p->bo_list); 867 if (r) 868 return r; 869 } 870 871 mutex_lock(&p->bo_list->bo_list_mutex); 872 873 /* Get userptr backing pages. If pages are updated after registered 874 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 875 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 876 */ 877 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 878 bool userpage_invalidated = false; 879 struct amdgpu_bo *bo = e->bo; 880 int i; 881 882 e->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, 883 sizeof(struct page *), 884 GFP_KERNEL | __GFP_ZERO); 885 if (!e->user_pages) { 886 DRM_ERROR("kvmalloc_array failure\n"); 887 r = -ENOMEM; 888 goto out_free_user_pages; 889 } 890 891 r = amdgpu_ttm_tt_get_user_pages(bo, e->user_pages, &e->range); 892 if (r) { 893 kvfree(e->user_pages); 894 e->user_pages = NULL; 895 goto out_free_user_pages; 896 } 897 898 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 899 if (bo->tbo.ttm->pages[i] != e->user_pages[i]) { 900 userpage_invalidated = true; 901 break; 902 } 903 } 904 e->user_invalidated = userpage_invalidated; 905 } 906 907 drm_exec_until_all_locked(&p->exec) { 908 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 909 drm_exec_retry_on_contention(&p->exec); 910 if (unlikely(r)) 911 goto out_free_user_pages; 912 913 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 914 /* One fence for TTM and one for each CS job */ 915 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 916 1 + p->gang_size); 917 drm_exec_retry_on_contention(&p->exec); 918 if (unlikely(r)) 919 goto out_free_user_pages; 920 921 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 922 } 923 924 if (p->uf_bo) { 925 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 926 1 + p->gang_size); 927 drm_exec_retry_on_contention(&p->exec); 928 if (unlikely(r)) 929 goto out_free_user_pages; 930 } 931 } 932 933 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 934 struct mm_struct *usermm; 935 936 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 937 if (usermm && usermm != current->mm) { 938 r = -EPERM; 939 goto out_free_user_pages; 940 } 941 942 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 943 e->user_invalidated && e->user_pages) { 944 amdgpu_bo_placement_from_domain(e->bo, 945 AMDGPU_GEM_DOMAIN_CPU); 946 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 947 &ctx); 948 if (r) 949 goto out_free_user_pages; 950 951 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 952 e->user_pages); 953 } 954 955 kvfree(e->user_pages); 956 e->user_pages = NULL; 957 } 958 959 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 960 &p->bytes_moved_vis_threshold); 961 p->bytes_moved = 0; 962 p->bytes_moved_vis = 0; 963 964 r = amdgpu_vm_validate_pt_bos(p->adev, &fpriv->vm, 965 amdgpu_cs_bo_validate, p); 966 if (r) { 967 DRM_ERROR("amdgpu_vm_validate_pt_bos() failed.\n"); 968 goto out_free_user_pages; 969 } 970 971 drm_exec_for_each_locked_object(&p->exec, index, obj) { 972 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 973 if (unlikely(r)) 974 goto out_free_user_pages; 975 } 976 977 if (p->uf_bo) { 978 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 979 if (unlikely(r)) 980 goto out_free_user_pages; 981 982 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 983 } 984 985 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 986 p->bytes_moved_vis); 987 988 for (i = 0; i < p->gang_size; ++i) 989 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 990 p->bo_list->gws_obj, 991 p->bo_list->oa_obj); 992 return 0; 993 994 out_free_user_pages: 995 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 996 struct amdgpu_bo *bo = e->bo; 997 998 if (!e->user_pages) 999 continue; 1000 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, e->range); 1001 kvfree(e->user_pages); 1002 e->user_pages = NULL; 1003 e->range = NULL; 1004 } 1005 mutex_unlock(&p->bo_list->bo_list_mutex); 1006 return r; 1007 } 1008 1009 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1010 { 1011 int i, j; 1012 1013 if (!trace_amdgpu_cs_enabled()) 1014 return; 1015 1016 for (i = 0; i < p->gang_size; ++i) { 1017 struct amdgpu_job *job = p->jobs[i]; 1018 1019 for (j = 0; j < job->num_ibs; ++j) 1020 trace_amdgpu_cs(p, job, &job->ibs[j]); 1021 } 1022 } 1023 1024 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1025 struct amdgpu_job *job) 1026 { 1027 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1028 unsigned int i; 1029 int r; 1030 1031 /* Only for UVD/VCE VM emulation */ 1032 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1033 return 0; 1034 1035 for (i = 0; i < job->num_ibs; ++i) { 1036 struct amdgpu_ib *ib = &job->ibs[i]; 1037 struct amdgpu_bo_va_mapping *m; 1038 struct amdgpu_bo *aobj; 1039 uint64_t va_start; 1040 uint8_t *kptr; 1041 1042 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1043 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1044 if (r) { 1045 DRM_ERROR("IB va_start is invalid\n"); 1046 return r; 1047 } 1048 1049 if ((va_start + ib->length_dw * 4) > 1050 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1051 DRM_ERROR("IB va_start+ib_bytes is invalid\n"); 1052 return -EINVAL; 1053 } 1054 1055 /* the IB should be reserved at this point */ 1056 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1057 if (r) 1058 return r; 1059 1060 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1061 1062 if (ring->funcs->parse_cs) { 1063 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1064 amdgpu_bo_kunmap(aobj); 1065 1066 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1067 if (r) 1068 return r; 1069 } else { 1070 ib->ptr = (uint32_t *)kptr; 1071 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1072 amdgpu_bo_kunmap(aobj); 1073 if (r) 1074 return r; 1075 } 1076 } 1077 1078 return 0; 1079 } 1080 1081 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1082 { 1083 unsigned int i; 1084 int r; 1085 1086 for (i = 0; i < p->gang_size; ++i) { 1087 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1088 if (r) 1089 return r; 1090 } 1091 return 0; 1092 } 1093 1094 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1095 { 1096 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1097 struct amdgpu_job *job = p->gang_leader; 1098 struct amdgpu_device *adev = p->adev; 1099 struct amdgpu_vm *vm = &fpriv->vm; 1100 struct amdgpu_bo_list_entry *e; 1101 struct amdgpu_bo_va *bo_va; 1102 unsigned int i; 1103 int r; 1104 1105 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1106 if (r) 1107 return r; 1108 1109 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1110 if (r) 1111 return r; 1112 1113 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update); 1114 if (r) 1115 return r; 1116 1117 if (fpriv->csa_va) { 1118 bo_va = fpriv->csa_va; 1119 BUG_ON(!bo_va); 1120 r = amdgpu_vm_bo_update(adev, bo_va, false); 1121 if (r) 1122 return r; 1123 1124 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1125 if (r) 1126 return r; 1127 } 1128 1129 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1130 bo_va = e->bo_va; 1131 if (bo_va == NULL) 1132 continue; 1133 1134 r = amdgpu_vm_bo_update(adev, bo_va, false); 1135 if (r) 1136 return r; 1137 1138 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update); 1139 if (r) 1140 return r; 1141 } 1142 1143 r = amdgpu_vm_handle_moved(adev, vm); 1144 if (r) 1145 return r; 1146 1147 r = amdgpu_vm_update_pdes(adev, vm, false); 1148 if (r) 1149 return r; 1150 1151 r = amdgpu_sync_fence(&p->sync, vm->last_update); 1152 if (r) 1153 return r; 1154 1155 for (i = 0; i < p->gang_size; ++i) { 1156 job = p->jobs[i]; 1157 1158 if (!job->vm) 1159 continue; 1160 1161 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1162 } 1163 1164 if (amdgpu_vm_debug) { 1165 /* Invalidate all BOs to test for userspace bugs */ 1166 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1167 struct amdgpu_bo *bo = e->bo; 1168 1169 /* ignore duplicates */ 1170 if (!bo) 1171 continue; 1172 1173 amdgpu_vm_bo_invalidate(adev, bo, false); 1174 } 1175 } 1176 1177 return 0; 1178 } 1179 1180 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1181 { 1182 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1183 struct drm_gpu_scheduler *sched; 1184 struct drm_gem_object *obj; 1185 struct dma_fence *fence; 1186 unsigned long index; 1187 unsigned int i; 1188 int r; 1189 1190 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1191 if (r) { 1192 if (r != -ERESTARTSYS) 1193 DRM_ERROR("amdgpu_ctx_wait_prev_fence failed.\n"); 1194 return r; 1195 } 1196 1197 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1198 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1199 1200 struct dma_resv *resv = bo->tbo.base.resv; 1201 enum amdgpu_sync_mode sync_mode; 1202 1203 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1204 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1205 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1206 &fpriv->vm); 1207 if (r) 1208 return r; 1209 } 1210 1211 for (i = 0; i < p->gang_size; ++i) { 1212 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1213 if (r) 1214 return r; 1215 } 1216 1217 sched = p->gang_leader->base.entity->rq->sched; 1218 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1219 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1220 1221 /* 1222 * When we have an dependency it might be necessary to insert a 1223 * pipeline sync to make sure that all caches etc are flushed and the 1224 * next job actually sees the results from the previous one 1225 * before we start executing on the same scheduler ring. 1226 */ 1227 if (!s_fence || s_fence->sched != sched) { 1228 dma_fence_put(fence); 1229 continue; 1230 } 1231 1232 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence); 1233 dma_fence_put(fence); 1234 if (r) 1235 return r; 1236 } 1237 return 0; 1238 } 1239 1240 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1241 { 1242 int i; 1243 1244 for (i = 0; i < p->num_post_deps; ++i) { 1245 if (p->post_deps[i].chain && p->post_deps[i].point) { 1246 drm_syncobj_add_point(p->post_deps[i].syncobj, 1247 p->post_deps[i].chain, 1248 p->fence, p->post_deps[i].point); 1249 p->post_deps[i].chain = NULL; 1250 } else { 1251 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1252 p->fence); 1253 } 1254 } 1255 } 1256 1257 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1258 union drm_amdgpu_cs *cs) 1259 { 1260 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1261 struct amdgpu_job *leader = p->gang_leader; 1262 struct amdgpu_bo_list_entry *e; 1263 struct drm_gem_object *gobj; 1264 unsigned long index; 1265 unsigned int i; 1266 uint64_t seq; 1267 int r; 1268 1269 for (i = 0; i < p->gang_size; ++i) 1270 drm_sched_job_arm(&p->jobs[i]->base); 1271 1272 for (i = 0; i < p->gang_size; ++i) { 1273 struct dma_fence *fence; 1274 1275 if (p->jobs[i] == leader) 1276 continue; 1277 1278 fence = &p->jobs[i]->base.s_fence->scheduled; 1279 dma_fence_get(fence); 1280 r = drm_sched_job_add_dependency(&leader->base, fence); 1281 if (r) { 1282 dma_fence_put(fence); 1283 return r; 1284 } 1285 } 1286 1287 if (p->gang_size > 1) { 1288 for (i = 0; i < p->gang_size; ++i) 1289 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1290 } 1291 1292 /* No memory allocation is allowed while holding the notifier lock. 1293 * The lock is held until amdgpu_cs_submit is finished and fence is 1294 * added to BOs. 1295 */ 1296 mutex_lock(&p->adev->notifier_lock); 1297 1298 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1299 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1300 */ 1301 r = 0; 1302 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1303 r |= !amdgpu_ttm_tt_get_user_pages_done(e->bo->tbo.ttm, 1304 e->range); 1305 e->range = NULL; 1306 } 1307 if (r) { 1308 r = -EAGAIN; 1309 mutex_unlock(&p->adev->notifier_lock); 1310 return r; 1311 } 1312 1313 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1314 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1315 1316 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1317 1318 /* Everybody except for the gang leader uses READ */ 1319 for (i = 0; i < p->gang_size; ++i) { 1320 if (p->jobs[i] == leader) 1321 continue; 1322 1323 dma_resv_add_fence(gobj->resv, 1324 &p->jobs[i]->base.s_fence->finished, 1325 DMA_RESV_USAGE_READ); 1326 } 1327 1328 /* The gang leader as remembered as writer */ 1329 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1330 } 1331 1332 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1333 p->fence); 1334 amdgpu_cs_post_dependencies(p); 1335 1336 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1337 !p->ctx->preamble_presented) { 1338 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1339 p->ctx->preamble_presented = true; 1340 } 1341 1342 cs->out.handle = seq; 1343 leader->uf_sequence = seq; 1344 1345 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1346 for (i = 0; i < p->gang_size; ++i) { 1347 amdgpu_job_free_resources(p->jobs[i]); 1348 trace_amdgpu_cs_ioctl(p->jobs[i]); 1349 drm_sched_entity_push_job(&p->jobs[i]->base); 1350 p->jobs[i] = NULL; 1351 } 1352 1353 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1354 1355 mutex_unlock(&p->adev->notifier_lock); 1356 mutex_unlock(&p->bo_list->bo_list_mutex); 1357 return 0; 1358 } 1359 1360 /* Cleanup the parser structure */ 1361 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1362 { 1363 unsigned int i; 1364 1365 amdgpu_sync_free(&parser->sync); 1366 drm_exec_fini(&parser->exec); 1367 1368 for (i = 0; i < parser->num_post_deps; i++) { 1369 drm_syncobj_put(parser->post_deps[i].syncobj); 1370 kfree(parser->post_deps[i].chain); 1371 } 1372 kfree(parser->post_deps); 1373 1374 dma_fence_put(parser->fence); 1375 1376 if (parser->ctx) 1377 amdgpu_ctx_put(parser->ctx); 1378 if (parser->bo_list) 1379 amdgpu_bo_list_put(parser->bo_list); 1380 1381 for (i = 0; i < parser->nchunks; i++) 1382 kvfree(parser->chunks[i].kdata); 1383 kvfree(parser->chunks); 1384 for (i = 0; i < parser->gang_size; ++i) { 1385 if (parser->jobs[i]) 1386 amdgpu_job_free(parser->jobs[i]); 1387 } 1388 amdgpu_bo_unref(&parser->uf_bo); 1389 } 1390 1391 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1392 { 1393 struct amdgpu_device *adev = drm_to_adev(dev); 1394 struct amdgpu_cs_parser parser; 1395 int r; 1396 1397 if (amdgpu_ras_intr_triggered()) 1398 return -EHWPOISON; 1399 1400 if (!adev->accel_working) 1401 return -EBUSY; 1402 1403 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1404 if (r) { 1405 if (printk_ratelimit()) 1406 DRM_ERROR("Failed to initialize parser %d!\n", r); 1407 return r; 1408 } 1409 1410 r = amdgpu_cs_pass1(&parser, data); 1411 if (r) 1412 goto error_fini; 1413 1414 r = amdgpu_cs_pass2(&parser); 1415 if (r) 1416 goto error_fini; 1417 1418 r = amdgpu_cs_parser_bos(&parser, data); 1419 if (r) { 1420 if (r == -ENOMEM) 1421 DRM_ERROR("Not enough memory for command submission!\n"); 1422 else if (r != -ERESTARTSYS && r != -EAGAIN) 1423 DRM_ERROR("Failed to process the buffer list %d!\n", r); 1424 goto error_fini; 1425 } 1426 1427 r = amdgpu_cs_patch_jobs(&parser); 1428 if (r) 1429 goto error_backoff; 1430 1431 r = amdgpu_cs_vm_handling(&parser); 1432 if (r) 1433 goto error_backoff; 1434 1435 r = amdgpu_cs_sync_rings(&parser); 1436 if (r) 1437 goto error_backoff; 1438 1439 trace_amdgpu_cs_ibs(&parser); 1440 1441 r = amdgpu_cs_submit(&parser, data); 1442 if (r) 1443 goto error_backoff; 1444 1445 amdgpu_cs_parser_fini(&parser); 1446 return 0; 1447 1448 error_backoff: 1449 mutex_unlock(&parser.bo_list->bo_list_mutex); 1450 1451 error_fini: 1452 amdgpu_cs_parser_fini(&parser); 1453 return r; 1454 } 1455 1456 /** 1457 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1458 * 1459 * @dev: drm device 1460 * @data: data from userspace 1461 * @filp: file private 1462 * 1463 * Wait for the command submission identified by handle to finish. 1464 */ 1465 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1466 struct drm_file *filp) 1467 { 1468 union drm_amdgpu_wait_cs *wait = data; 1469 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1470 struct drm_sched_entity *entity; 1471 struct amdgpu_ctx *ctx; 1472 struct dma_fence *fence; 1473 long r; 1474 1475 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1476 if (ctx == NULL) 1477 return -EINVAL; 1478 1479 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1480 wait->in.ring, &entity); 1481 if (r) { 1482 amdgpu_ctx_put(ctx); 1483 return r; 1484 } 1485 1486 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1487 if (IS_ERR(fence)) 1488 r = PTR_ERR(fence); 1489 else if (fence) { 1490 r = dma_fence_wait_timeout(fence, true, timeout); 1491 if (r > 0 && fence->error) 1492 r = fence->error; 1493 dma_fence_put(fence); 1494 } else 1495 r = 1; 1496 1497 amdgpu_ctx_put(ctx); 1498 if (r < 0) 1499 return r; 1500 1501 memset(wait, 0, sizeof(*wait)); 1502 wait->out.status = (r == 0); 1503 1504 return 0; 1505 } 1506 1507 /** 1508 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1509 * 1510 * @adev: amdgpu device 1511 * @filp: file private 1512 * @user: drm_amdgpu_fence copied from user space 1513 */ 1514 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1515 struct drm_file *filp, 1516 struct drm_amdgpu_fence *user) 1517 { 1518 struct drm_sched_entity *entity; 1519 struct amdgpu_ctx *ctx; 1520 struct dma_fence *fence; 1521 int r; 1522 1523 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1524 if (ctx == NULL) 1525 return ERR_PTR(-EINVAL); 1526 1527 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1528 user->ring, &entity); 1529 if (r) { 1530 amdgpu_ctx_put(ctx); 1531 return ERR_PTR(r); 1532 } 1533 1534 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1535 amdgpu_ctx_put(ctx); 1536 1537 return fence; 1538 } 1539 1540 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1541 struct drm_file *filp) 1542 { 1543 struct amdgpu_device *adev = drm_to_adev(dev); 1544 union drm_amdgpu_fence_to_handle *info = data; 1545 struct dma_fence *fence; 1546 struct drm_syncobj *syncobj; 1547 struct sync_file *sync_file; 1548 int fd, r; 1549 1550 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1551 if (IS_ERR(fence)) 1552 return PTR_ERR(fence); 1553 1554 if (!fence) 1555 fence = dma_fence_get_stub(); 1556 1557 switch (info->in.what) { 1558 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1559 r = drm_syncobj_create(&syncobj, 0, fence); 1560 dma_fence_put(fence); 1561 if (r) 1562 return r; 1563 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1564 drm_syncobj_put(syncobj); 1565 return r; 1566 1567 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1568 r = drm_syncobj_create(&syncobj, 0, fence); 1569 dma_fence_put(fence); 1570 if (r) 1571 return r; 1572 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1573 drm_syncobj_put(syncobj); 1574 return r; 1575 1576 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1577 fd = get_unused_fd_flags(O_CLOEXEC); 1578 if (fd < 0) { 1579 dma_fence_put(fence); 1580 return fd; 1581 } 1582 1583 sync_file = sync_file_create(fence); 1584 dma_fence_put(fence); 1585 if (!sync_file) { 1586 put_unused_fd(fd); 1587 return -ENOMEM; 1588 } 1589 1590 fd_install(fd, sync_file->file); 1591 info->out.handle = fd; 1592 return 0; 1593 1594 default: 1595 dma_fence_put(fence); 1596 return -EINVAL; 1597 } 1598 } 1599 1600 /** 1601 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1602 * 1603 * @adev: amdgpu device 1604 * @filp: file private 1605 * @wait: wait parameters 1606 * @fences: array of drm_amdgpu_fence 1607 */ 1608 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1609 struct drm_file *filp, 1610 union drm_amdgpu_wait_fences *wait, 1611 struct drm_amdgpu_fence *fences) 1612 { 1613 uint32_t fence_count = wait->in.fence_count; 1614 unsigned int i; 1615 long r = 1; 1616 1617 for (i = 0; i < fence_count; i++) { 1618 struct dma_fence *fence; 1619 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1620 1621 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1622 if (IS_ERR(fence)) 1623 return PTR_ERR(fence); 1624 else if (!fence) 1625 continue; 1626 1627 r = dma_fence_wait_timeout(fence, true, timeout); 1628 if (r > 0 && fence->error) 1629 r = fence->error; 1630 1631 dma_fence_put(fence); 1632 if (r < 0) 1633 return r; 1634 1635 if (r == 0) 1636 break; 1637 } 1638 1639 memset(wait, 0, sizeof(*wait)); 1640 wait->out.status = (r > 0); 1641 1642 return 0; 1643 } 1644 1645 /** 1646 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1647 * 1648 * @adev: amdgpu device 1649 * @filp: file private 1650 * @wait: wait parameters 1651 * @fences: array of drm_amdgpu_fence 1652 */ 1653 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1654 struct drm_file *filp, 1655 union drm_amdgpu_wait_fences *wait, 1656 struct drm_amdgpu_fence *fences) 1657 { 1658 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1659 uint32_t fence_count = wait->in.fence_count; 1660 uint32_t first = ~0; 1661 struct dma_fence **array; 1662 unsigned int i; 1663 long r; 1664 1665 /* Prepare the fence array */ 1666 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1667 1668 if (array == NULL) 1669 return -ENOMEM; 1670 1671 for (i = 0; i < fence_count; i++) { 1672 struct dma_fence *fence; 1673 1674 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1675 if (IS_ERR(fence)) { 1676 r = PTR_ERR(fence); 1677 goto err_free_fence_array; 1678 } else if (fence) { 1679 array[i] = fence; 1680 } else { /* NULL, the fence has been already signaled */ 1681 r = 1; 1682 first = i; 1683 goto out; 1684 } 1685 } 1686 1687 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1688 &first); 1689 if (r < 0) 1690 goto err_free_fence_array; 1691 1692 out: 1693 memset(wait, 0, sizeof(*wait)); 1694 wait->out.status = (r > 0); 1695 wait->out.first_signaled = first; 1696 1697 if (first < fence_count && array[first]) 1698 r = array[first]->error; 1699 else 1700 r = 0; 1701 1702 err_free_fence_array: 1703 for (i = 0; i < fence_count; i++) 1704 dma_fence_put(array[i]); 1705 kfree(array); 1706 1707 return r; 1708 } 1709 1710 /** 1711 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1712 * 1713 * @dev: drm device 1714 * @data: data from userspace 1715 * @filp: file private 1716 */ 1717 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1718 struct drm_file *filp) 1719 { 1720 struct amdgpu_device *adev = drm_to_adev(dev); 1721 union drm_amdgpu_wait_fences *wait = data; 1722 uint32_t fence_count = wait->in.fence_count; 1723 struct drm_amdgpu_fence *fences_user; 1724 struct drm_amdgpu_fence *fences; 1725 int r; 1726 1727 /* Get the fences from userspace */ 1728 fences = kmalloc_array(fence_count, sizeof(struct drm_amdgpu_fence), 1729 GFP_KERNEL); 1730 if (fences == NULL) 1731 return -ENOMEM; 1732 1733 fences_user = u64_to_user_ptr(wait->in.fences); 1734 if (copy_from_user(fences, fences_user, 1735 sizeof(struct drm_amdgpu_fence) * fence_count)) { 1736 r = -EFAULT; 1737 goto err_free_fences; 1738 } 1739 1740 if (wait->in.wait_all) 1741 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1742 else 1743 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1744 1745 err_free_fences: 1746 kfree(fences); 1747 1748 return r; 1749 } 1750 1751 /** 1752 * amdgpu_cs_find_mapping - find bo_va for VM address 1753 * 1754 * @parser: command submission parser context 1755 * @addr: VM address 1756 * @bo: resulting BO of the mapping found 1757 * @map: Placeholder to return found BO mapping 1758 * 1759 * Search the buffer objects in the command submission context for a certain 1760 * virtual memory address. Returns allocation structure when found, NULL 1761 * otherwise. 1762 */ 1763 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1764 uint64_t addr, struct amdgpu_bo **bo, 1765 struct amdgpu_bo_va_mapping **map) 1766 { 1767 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1768 struct ttm_operation_ctx ctx = { false, false }; 1769 struct amdgpu_vm *vm = &fpriv->vm; 1770 struct amdgpu_bo_va_mapping *mapping; 1771 int r; 1772 1773 addr /= AMDGPU_GPU_PAGE_SIZE; 1774 1775 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1776 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1777 return -EINVAL; 1778 1779 *bo = mapping->bo_va->base.bo; 1780 *map = mapping; 1781 1782 /* Double check that the BO is reserved by this CS */ 1783 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1784 return -EINVAL; 1785 1786 if (!((*bo)->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS)) { 1787 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1788 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1789 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1790 if (r) 1791 return r; 1792 } 1793 1794 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1795 } 1796