1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <drm/amdgpu_drm.h> 25 #include "amdgpu.h" 26 #include "atomfirmware.h" 27 #include "amdgpu_atomfirmware.h" 28 #include "atom.h" 29 #include "atombios.h" 30 #include "soc15_hw_ip.h" 31 32 union firmware_info { 33 struct atom_firmware_info_v3_1 v31; 34 struct atom_firmware_info_v3_2 v32; 35 struct atom_firmware_info_v3_3 v33; 36 struct atom_firmware_info_v3_4 v34; 37 }; 38 39 /* 40 * Helper function to query firmware capability 41 * 42 * @adev: amdgpu_device pointer 43 * 44 * Return firmware_capability in firmwareinfo table on success or 0 if not 45 */ 46 uint32_t amdgpu_atomfirmware_query_firmware_capability(struct amdgpu_device *adev) 47 { 48 struct amdgpu_mode_info *mode_info = &adev->mode_info; 49 int index; 50 u16 data_offset, size; 51 union firmware_info *firmware_info; 52 u8 frev, crev; 53 u32 fw_cap = 0; 54 55 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 56 firmwareinfo); 57 58 if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, 59 index, &size, &frev, &crev, &data_offset)) { 60 /* support firmware_info 3.1 + */ 61 if ((frev == 3 && crev >=1) || (frev > 3)) { 62 firmware_info = (union firmware_info *) 63 (mode_info->atom_context->bios + data_offset); 64 fw_cap = le32_to_cpu(firmware_info->v31.firmware_capability); 65 } 66 } 67 68 return fw_cap; 69 } 70 71 /* 72 * Helper function to query gpu virtualizaiton capability 73 * 74 * @adev: amdgpu_device pointer 75 * 76 * Return true if gpu virtualization is supported or false if not 77 */ 78 bool amdgpu_atomfirmware_gpu_virtualization_supported(struct amdgpu_device *adev) 79 { 80 u32 fw_cap; 81 82 fw_cap = adev->mode_info.firmware_flags; 83 84 return (fw_cap & ATOM_FIRMWARE_CAP_GPU_VIRTUALIZATION) ? true : false; 85 } 86 87 void amdgpu_atomfirmware_scratch_regs_init(struct amdgpu_device *adev) 88 { 89 int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 90 firmwareinfo); 91 uint16_t data_offset; 92 93 if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, NULL, 94 NULL, NULL, &data_offset)) { 95 struct atom_firmware_info_v3_1 *firmware_info = 96 (struct atom_firmware_info_v3_1 *)(adev->mode_info.atom_context->bios + 97 data_offset); 98 99 adev->bios_scratch_reg_offset = 100 le32_to_cpu(firmware_info->bios_scratch_reg_startaddr); 101 } 102 } 103 104 int amdgpu_atomfirmware_allocate_fb_scratch(struct amdgpu_device *adev) 105 { 106 struct atom_context *ctx = adev->mode_info.atom_context; 107 int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 108 vram_usagebyfirmware); 109 struct vram_usagebyfirmware_v2_1 *firmware_usage; 110 uint32_t start_addr, size; 111 uint16_t data_offset; 112 int usage_bytes = 0; 113 114 if (amdgpu_atom_parse_data_header(ctx, index, NULL, NULL, NULL, &data_offset)) { 115 firmware_usage = (struct vram_usagebyfirmware_v2_1 *)(ctx->bios + data_offset); 116 DRM_DEBUG("atom firmware requested %08x %dkb fw %dkb drv\n", 117 le32_to_cpu(firmware_usage->start_address_in_kb), 118 le16_to_cpu(firmware_usage->used_by_firmware_in_kb), 119 le16_to_cpu(firmware_usage->used_by_driver_in_kb)); 120 121 start_addr = le32_to_cpu(firmware_usage->start_address_in_kb); 122 size = le16_to_cpu(firmware_usage->used_by_firmware_in_kb); 123 124 if ((uint32_t)(start_addr & ATOM_VRAM_OPERATION_FLAGS_MASK) == 125 (uint32_t)(ATOM_VRAM_BLOCK_SRIOV_MSG_SHARE_RESERVATION << 126 ATOM_VRAM_OPERATION_FLAGS_SHIFT)) { 127 /* Firmware request VRAM reservation for SR-IOV */ 128 adev->mman.fw_vram_usage_start_offset = (start_addr & 129 (~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10; 130 adev->mman.fw_vram_usage_size = size << 10; 131 /* Use the default scratch size */ 132 usage_bytes = 0; 133 } else { 134 usage_bytes = le16_to_cpu(firmware_usage->used_by_driver_in_kb) << 10; 135 } 136 } 137 ctx->scratch_size_bytes = 0; 138 if (usage_bytes == 0) 139 usage_bytes = 20 * 1024; 140 /* allocate some scratch memory */ 141 ctx->scratch = kzalloc(usage_bytes, GFP_KERNEL); 142 if (!ctx->scratch) 143 return -ENOMEM; 144 ctx->scratch_size_bytes = usage_bytes; 145 return 0; 146 } 147 148 union igp_info { 149 struct atom_integrated_system_info_v1_11 v11; 150 struct atom_integrated_system_info_v1_12 v12; 151 struct atom_integrated_system_info_v2_1 v21; 152 }; 153 154 union umc_info { 155 struct atom_umc_info_v3_1 v31; 156 struct atom_umc_info_v3_2 v32; 157 struct atom_umc_info_v3_3 v33; 158 }; 159 160 union vram_info { 161 struct atom_vram_info_header_v2_3 v23; 162 struct atom_vram_info_header_v2_4 v24; 163 struct atom_vram_info_header_v2_5 v25; 164 struct atom_vram_info_header_v2_6 v26; 165 }; 166 167 union vram_module { 168 struct atom_vram_module_v9 v9; 169 struct atom_vram_module_v10 v10; 170 struct atom_vram_module_v11 v11; 171 }; 172 173 static int convert_atom_mem_type_to_vram_type(struct amdgpu_device *adev, 174 int atom_mem_type) 175 { 176 int vram_type; 177 178 if (adev->flags & AMD_IS_APU) { 179 switch (atom_mem_type) { 180 case Ddr2MemType: 181 case LpDdr2MemType: 182 vram_type = AMDGPU_VRAM_TYPE_DDR2; 183 break; 184 case Ddr3MemType: 185 case LpDdr3MemType: 186 vram_type = AMDGPU_VRAM_TYPE_DDR3; 187 break; 188 case Ddr4MemType: 189 case LpDdr4MemType: 190 vram_type = AMDGPU_VRAM_TYPE_DDR4; 191 break; 192 case Ddr5MemType: 193 case LpDdr5MemType: 194 vram_type = AMDGPU_VRAM_TYPE_DDR5; 195 break; 196 default: 197 vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; 198 break; 199 } 200 } else { 201 switch (atom_mem_type) { 202 case ATOM_DGPU_VRAM_TYPE_GDDR5: 203 vram_type = AMDGPU_VRAM_TYPE_GDDR5; 204 break; 205 case ATOM_DGPU_VRAM_TYPE_HBM2: 206 case ATOM_DGPU_VRAM_TYPE_HBM2E: 207 vram_type = AMDGPU_VRAM_TYPE_HBM; 208 break; 209 case ATOM_DGPU_VRAM_TYPE_GDDR6: 210 vram_type = AMDGPU_VRAM_TYPE_GDDR6; 211 break; 212 default: 213 vram_type = AMDGPU_VRAM_TYPE_UNKNOWN; 214 break; 215 } 216 } 217 218 return vram_type; 219 } 220 221 222 int 223 amdgpu_atomfirmware_get_vram_info(struct amdgpu_device *adev, 224 int *vram_width, int *vram_type, 225 int *vram_vendor) 226 { 227 struct amdgpu_mode_info *mode_info = &adev->mode_info; 228 int index, i = 0; 229 u16 data_offset, size; 230 union igp_info *igp_info; 231 union vram_info *vram_info; 232 union vram_module *vram_module; 233 u8 frev, crev; 234 u8 mem_type; 235 u8 mem_vendor; 236 u32 mem_channel_number; 237 u32 mem_channel_width; 238 u32 module_id; 239 240 if (adev->flags & AMD_IS_APU) 241 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 242 integratedsysteminfo); 243 else 244 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 245 vram_info); 246 247 if (amdgpu_atom_parse_data_header(mode_info->atom_context, 248 index, &size, 249 &frev, &crev, &data_offset)) { 250 if (adev->flags & AMD_IS_APU) { 251 igp_info = (union igp_info *) 252 (mode_info->atom_context->bios + data_offset); 253 switch (frev) { 254 case 1: 255 switch (crev) { 256 case 11: 257 case 12: 258 mem_channel_number = igp_info->v11.umachannelnumber; 259 if (!mem_channel_number) 260 mem_channel_number = 1; 261 /* channel width is 64 */ 262 if (vram_width) 263 *vram_width = mem_channel_number * 64; 264 mem_type = igp_info->v11.memorytype; 265 if (vram_type) 266 *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); 267 break; 268 default: 269 return -EINVAL; 270 } 271 break; 272 case 2: 273 switch (crev) { 274 case 1: 275 case 2: 276 mem_channel_number = igp_info->v21.umachannelnumber; 277 if (!mem_channel_number) 278 mem_channel_number = 1; 279 /* channel width is 64 */ 280 if (vram_width) 281 *vram_width = mem_channel_number * 64; 282 mem_type = igp_info->v21.memorytype; 283 if (vram_type) 284 *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); 285 break; 286 default: 287 return -EINVAL; 288 } 289 break; 290 default: 291 return -EINVAL; 292 } 293 } else { 294 vram_info = (union vram_info *) 295 (mode_info->atom_context->bios + data_offset); 296 module_id = (RREG32(adev->bios_scratch_reg_offset + 4) & 0x00ff0000) >> 16; 297 switch (crev) { 298 case 3: 299 if (module_id > vram_info->v23.vram_module_num) 300 module_id = 0; 301 vram_module = (union vram_module *)vram_info->v23.vram_module; 302 while (i < module_id) { 303 vram_module = (union vram_module *) 304 ((u8 *)vram_module + vram_module->v9.vram_module_size); 305 i++; 306 } 307 mem_type = vram_module->v9.memory_type; 308 if (vram_type) 309 *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); 310 mem_channel_number = vram_module->v9.channel_num; 311 mem_channel_width = vram_module->v9.channel_width; 312 if (vram_width) 313 *vram_width = mem_channel_number * (1 << mem_channel_width); 314 mem_vendor = (vram_module->v9.vender_rev_id) & 0xF; 315 if (vram_vendor) 316 *vram_vendor = mem_vendor; 317 break; 318 case 4: 319 if (module_id > vram_info->v24.vram_module_num) 320 module_id = 0; 321 vram_module = (union vram_module *)vram_info->v24.vram_module; 322 while (i < module_id) { 323 vram_module = (union vram_module *) 324 ((u8 *)vram_module + vram_module->v10.vram_module_size); 325 i++; 326 } 327 mem_type = vram_module->v10.memory_type; 328 if (vram_type) 329 *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); 330 mem_channel_number = vram_module->v10.channel_num; 331 mem_channel_width = vram_module->v10.channel_width; 332 if (vram_width) 333 *vram_width = mem_channel_number * (1 << mem_channel_width); 334 mem_vendor = (vram_module->v10.vender_rev_id) & 0xF; 335 if (vram_vendor) 336 *vram_vendor = mem_vendor; 337 break; 338 case 5: 339 if (module_id > vram_info->v25.vram_module_num) 340 module_id = 0; 341 vram_module = (union vram_module *)vram_info->v25.vram_module; 342 while (i < module_id) { 343 vram_module = (union vram_module *) 344 ((u8 *)vram_module + vram_module->v11.vram_module_size); 345 i++; 346 } 347 mem_type = vram_module->v11.memory_type; 348 if (vram_type) 349 *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); 350 mem_channel_number = vram_module->v11.channel_num; 351 mem_channel_width = vram_module->v11.channel_width; 352 if (vram_width) 353 *vram_width = mem_channel_number * (1 << mem_channel_width); 354 mem_vendor = (vram_module->v11.vender_rev_id) & 0xF; 355 if (vram_vendor) 356 *vram_vendor = mem_vendor; 357 break; 358 case 6: 359 if (module_id > vram_info->v26.vram_module_num) 360 module_id = 0; 361 vram_module = (union vram_module *)vram_info->v26.vram_module; 362 while (i < module_id) { 363 vram_module = (union vram_module *) 364 ((u8 *)vram_module + vram_module->v9.vram_module_size); 365 i++; 366 } 367 mem_type = vram_module->v9.memory_type; 368 if (vram_type) 369 *vram_type = convert_atom_mem_type_to_vram_type(adev, mem_type); 370 mem_channel_number = vram_module->v9.channel_num; 371 mem_channel_width = vram_module->v9.channel_width; 372 if (vram_width) 373 *vram_width = mem_channel_number * (1 << mem_channel_width); 374 mem_vendor = (vram_module->v9.vender_rev_id) & 0xF; 375 if (vram_vendor) 376 *vram_vendor = mem_vendor; 377 break; 378 default: 379 return -EINVAL; 380 } 381 } 382 383 } 384 385 return 0; 386 } 387 388 /* 389 * Return true if vbios enabled ecc by default, if umc info table is available 390 * or false if ecc is not enabled or umc info table is not available 391 */ 392 bool amdgpu_atomfirmware_mem_ecc_supported(struct amdgpu_device *adev) 393 { 394 struct amdgpu_mode_info *mode_info = &adev->mode_info; 395 int index; 396 u16 data_offset, size; 397 union umc_info *umc_info; 398 u8 frev, crev; 399 bool ecc_default_enabled = false; 400 u8 umc_config; 401 u32 umc_config1; 402 403 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 404 umc_info); 405 406 if (amdgpu_atom_parse_data_header(mode_info->atom_context, 407 index, &size, &frev, &crev, &data_offset)) { 408 if (frev == 3) { 409 umc_info = (union umc_info *) 410 (mode_info->atom_context->bios + data_offset); 411 switch (crev) { 412 case 1: 413 umc_config = le32_to_cpu(umc_info->v31.umc_config); 414 ecc_default_enabled = 415 (umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false; 416 break; 417 case 2: 418 umc_config = le32_to_cpu(umc_info->v32.umc_config); 419 ecc_default_enabled = 420 (umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false; 421 break; 422 case 3: 423 umc_config = le32_to_cpu(umc_info->v33.umc_config); 424 umc_config1 = le32_to_cpu(umc_info->v33.umc_config1); 425 ecc_default_enabled = 426 ((umc_config & UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) || 427 (umc_config1 & UMC_CONFIG1__ENABLE_ECC_CAPABLE)) ? true : false; 428 break; 429 default: 430 /* unsupported crev */ 431 return false; 432 } 433 } 434 } 435 436 return ecc_default_enabled; 437 } 438 439 /* 440 * Helper function to query sram ecc capablity 441 * 442 * @adev: amdgpu_device pointer 443 * 444 * Return true if vbios supports sram ecc or false if not 445 */ 446 bool amdgpu_atomfirmware_sram_ecc_supported(struct amdgpu_device *adev) 447 { 448 u32 fw_cap; 449 450 fw_cap = adev->mode_info.firmware_flags; 451 452 return (fw_cap & ATOM_FIRMWARE_CAP_SRAM_ECC) ? true : false; 453 } 454 455 /* 456 * Helper function to query dynamic boot config capability 457 * 458 * @adev: amdgpu_device pointer 459 * 460 * Return true if vbios supports dynamic boot config or false if not 461 */ 462 bool amdgpu_atomfirmware_dynamic_boot_config_supported(struct amdgpu_device *adev) 463 { 464 u32 fw_cap; 465 466 fw_cap = adev->mode_info.firmware_flags; 467 468 return (fw_cap & ATOM_FIRMWARE_CAP_DYNAMIC_BOOT_CFG_ENABLE) ? true : false; 469 } 470 471 /** 472 * amdgpu_atomfirmware_ras_rom_addr -- Get the RAS EEPROM addr from VBIOS 473 * @adev: amdgpu_device pointer 474 * @i2c_address: pointer to u8; if not NULL, will contain 475 * the RAS EEPROM address if the function returns true 476 * 477 * Return true if VBIOS supports RAS EEPROM address reporting, 478 * else return false. If true and @i2c_address is not NULL, 479 * will contain the RAS ROM address. 480 */ 481 bool amdgpu_atomfirmware_ras_rom_addr(struct amdgpu_device *adev, 482 u8 *i2c_address) 483 { 484 struct amdgpu_mode_info *mode_info = &adev->mode_info; 485 int index; 486 u16 data_offset, size; 487 union firmware_info *firmware_info; 488 u8 frev, crev; 489 490 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 491 firmwareinfo); 492 493 if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, 494 index, &size, &frev, &crev, 495 &data_offset)) { 496 /* support firmware_info 3.4 + */ 497 if ((frev == 3 && crev >=4) || (frev > 3)) { 498 firmware_info = (union firmware_info *) 499 (mode_info->atom_context->bios + data_offset); 500 /* The ras_rom_i2c_slave_addr should ideally 501 * be a 19-bit EEPROM address, which would be 502 * used as is by the driver; see top of 503 * amdgpu_eeprom.c. 504 * 505 * When this is the case, 0 is of course a 506 * valid RAS EEPROM address, in which case, 507 * we'll drop the first "if (firm...)" and only 508 * leave the check for the pointer. 509 * 510 * The reason this works right now is because 511 * ras_rom_i2c_slave_addr contains the EEPROM 512 * device type qualifier 1010b in the top 4 513 * bits. 514 */ 515 if (firmware_info->v34.ras_rom_i2c_slave_addr) { 516 if (i2c_address) 517 *i2c_address = firmware_info->v34.ras_rom_i2c_slave_addr; 518 return true; 519 } 520 } 521 } 522 523 return false; 524 } 525 526 527 union smu_info { 528 struct atom_smu_info_v3_1 v31; 529 }; 530 531 int amdgpu_atomfirmware_get_clock_info(struct amdgpu_device *adev) 532 { 533 struct amdgpu_mode_info *mode_info = &adev->mode_info; 534 struct amdgpu_pll *spll = &adev->clock.spll; 535 struct amdgpu_pll *mpll = &adev->clock.mpll; 536 uint8_t frev, crev; 537 uint16_t data_offset; 538 int ret = -EINVAL, index; 539 540 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 541 firmwareinfo); 542 if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, 543 &frev, &crev, &data_offset)) { 544 union firmware_info *firmware_info = 545 (union firmware_info *)(mode_info->atom_context->bios + 546 data_offset); 547 548 adev->clock.default_sclk = 549 le32_to_cpu(firmware_info->v31.bootup_sclk_in10khz); 550 adev->clock.default_mclk = 551 le32_to_cpu(firmware_info->v31.bootup_mclk_in10khz); 552 553 adev->pm.current_sclk = adev->clock.default_sclk; 554 adev->pm.current_mclk = adev->clock.default_mclk; 555 556 ret = 0; 557 } 558 559 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 560 smu_info); 561 if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, 562 &frev, &crev, &data_offset)) { 563 union smu_info *smu_info = 564 (union smu_info *)(mode_info->atom_context->bios + 565 data_offset); 566 567 /* system clock */ 568 spll->reference_freq = le32_to_cpu(smu_info->v31.core_refclk_10khz); 569 570 spll->reference_div = 0; 571 spll->min_post_div = 1; 572 spll->max_post_div = 1; 573 spll->min_ref_div = 2; 574 spll->max_ref_div = 0xff; 575 spll->min_feedback_div = 4; 576 spll->max_feedback_div = 0xff; 577 spll->best_vco = 0; 578 579 ret = 0; 580 } 581 582 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 583 umc_info); 584 if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, 585 &frev, &crev, &data_offset)) { 586 union umc_info *umc_info = 587 (union umc_info *)(mode_info->atom_context->bios + 588 data_offset); 589 590 /* memory clock */ 591 mpll->reference_freq = le32_to_cpu(umc_info->v31.mem_refclk_10khz); 592 593 mpll->reference_div = 0; 594 mpll->min_post_div = 1; 595 mpll->max_post_div = 1; 596 mpll->min_ref_div = 2; 597 mpll->max_ref_div = 0xff; 598 mpll->min_feedback_div = 4; 599 mpll->max_feedback_div = 0xff; 600 mpll->best_vco = 0; 601 602 ret = 0; 603 } 604 605 /* if asic is Navi+, the rlc reference clock is used for system clock 606 * from vbios gfx_info table */ 607 if (adev->asic_type >= CHIP_NAVI10) { 608 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 609 gfx_info); 610 if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, 611 &frev, &crev, &data_offset)) { 612 struct atom_gfx_info_v2_2 *gfx_info = (struct atom_gfx_info_v2_2*) 613 (mode_info->atom_context->bios + data_offset); 614 if ((frev == 2) && (crev >= 2)) 615 spll->reference_freq = le32_to_cpu(gfx_info->rlc_gpu_timer_refclk); 616 ret = 0; 617 } 618 } 619 620 return ret; 621 } 622 623 union gfx_info { 624 struct atom_gfx_info_v2_4 v24; 625 struct atom_gfx_info_v2_7 v27; 626 }; 627 628 int amdgpu_atomfirmware_get_gfx_info(struct amdgpu_device *adev) 629 { 630 struct amdgpu_mode_info *mode_info = &adev->mode_info; 631 int index; 632 uint8_t frev, crev; 633 uint16_t data_offset; 634 635 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 636 gfx_info); 637 if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL, 638 &frev, &crev, &data_offset)) { 639 union gfx_info *gfx_info = (union gfx_info *) 640 (mode_info->atom_context->bios + data_offset); 641 switch (crev) { 642 case 4: 643 adev->gfx.config.max_shader_engines = gfx_info->v24.max_shader_engines; 644 adev->gfx.config.max_cu_per_sh = gfx_info->v24.max_cu_per_sh; 645 adev->gfx.config.max_sh_per_se = gfx_info->v24.max_sh_per_se; 646 adev->gfx.config.max_backends_per_se = gfx_info->v24.max_backends_per_se; 647 adev->gfx.config.max_texture_channel_caches = gfx_info->v24.max_texture_channel_caches; 648 adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v24.gc_num_gprs); 649 adev->gfx.config.max_gs_threads = gfx_info->v24.gc_num_max_gs_thds; 650 adev->gfx.config.gs_vgt_table_depth = gfx_info->v24.gc_gs_table_depth; 651 adev->gfx.config.gs_prim_buffer_depth = 652 le16_to_cpu(gfx_info->v24.gc_gsprim_buff_depth); 653 adev->gfx.config.double_offchip_lds_buf = 654 gfx_info->v24.gc_double_offchip_lds_buffer; 655 adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v24.gc_wave_size); 656 adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v24.gc_max_waves_per_simd); 657 adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v24.gc_max_scratch_slots_per_cu; 658 adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v24.gc_lds_size); 659 return 0; 660 case 7: 661 adev->gfx.config.max_shader_engines = gfx_info->v27.max_shader_engines; 662 adev->gfx.config.max_cu_per_sh = gfx_info->v27.max_cu_per_sh; 663 adev->gfx.config.max_sh_per_se = gfx_info->v27.max_sh_per_se; 664 adev->gfx.config.max_backends_per_se = gfx_info->v27.max_backends_per_se; 665 adev->gfx.config.max_texture_channel_caches = gfx_info->v27.max_texture_channel_caches; 666 adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v27.gc_num_gprs); 667 adev->gfx.config.max_gs_threads = gfx_info->v27.gc_num_max_gs_thds; 668 adev->gfx.config.gs_vgt_table_depth = gfx_info->v27.gc_gs_table_depth; 669 adev->gfx.config.gs_prim_buffer_depth = le16_to_cpu(gfx_info->v27.gc_gsprim_buff_depth); 670 adev->gfx.config.double_offchip_lds_buf = gfx_info->v27.gc_double_offchip_lds_buffer; 671 adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v27.gc_wave_size); 672 adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v27.gc_max_waves_per_simd); 673 adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v27.gc_max_scratch_slots_per_cu; 674 adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v27.gc_lds_size); 675 return 0; 676 default: 677 return -EINVAL; 678 } 679 680 } 681 return -EINVAL; 682 } 683 684 /* 685 * Helper function to query two stage mem training capability 686 * 687 * @adev: amdgpu_device pointer 688 * 689 * Return true if two stage mem training is supported or false if not 690 */ 691 bool amdgpu_atomfirmware_mem_training_supported(struct amdgpu_device *adev) 692 { 693 u32 fw_cap; 694 695 fw_cap = adev->mode_info.firmware_flags; 696 697 return (fw_cap & ATOM_FIRMWARE_CAP_ENABLE_2STAGE_BIST_TRAINING) ? true : false; 698 } 699 700 int amdgpu_atomfirmware_get_fw_reserved_fb_size(struct amdgpu_device *adev) 701 { 702 struct atom_context *ctx = adev->mode_info.atom_context; 703 union firmware_info *firmware_info; 704 int index; 705 u16 data_offset, size; 706 u8 frev, crev; 707 int fw_reserved_fb_size; 708 709 index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, 710 firmwareinfo); 711 712 if (!amdgpu_atom_parse_data_header(ctx, index, &size, 713 &frev, &crev, &data_offset)) 714 /* fail to parse data_header */ 715 return 0; 716 717 firmware_info = (union firmware_info *)(ctx->bios + data_offset); 718 719 if (frev !=3) 720 return -EINVAL; 721 722 switch (crev) { 723 case 4: 724 fw_reserved_fb_size = 725 (firmware_info->v34.fw_reserved_size_in_kb << 10); 726 break; 727 default: 728 fw_reserved_fb_size = 0; 729 break; 730 } 731 732 return fw_reserved_fb_size; 733 } 734