1 /* 2 * Copyright 2014-2018 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #define pr_fmt(fmt) "kfd2kgd: " fmt 24 25 #include <linux/list.h> 26 #include <linux/pagemap.h> 27 #include <linux/sched/mm.h> 28 #include <drm/drmP.h> 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_amdkfd.h" 32 33 /* Special VM and GART address alignment needed for VI pre-Fiji due to 34 * a HW bug. 35 */ 36 #define VI_BO_SIZE_ALIGN (0x8000) 37 38 /* BO flag to indicate a KFD userptr BO */ 39 #define AMDGPU_AMDKFD_USERPTR_BO (1ULL << 63) 40 41 /* Userptr restore delay, just long enough to allow consecutive VM 42 * changes to accumulate 43 */ 44 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 45 46 /* Impose limit on how much memory KFD can use */ 47 static struct { 48 uint64_t max_system_mem_limit; 49 uint64_t max_userptr_mem_limit; 50 int64_t system_mem_used; 51 int64_t userptr_mem_used; 52 spinlock_t mem_limit_lock; 53 } kfd_mem_limit; 54 55 /* Struct used for amdgpu_amdkfd_bo_validate */ 56 struct amdgpu_vm_parser { 57 uint32_t domain; 58 bool wait; 59 }; 60 61 static const char * const domain_bit_to_string[] = { 62 "CPU", 63 "GTT", 64 "VRAM", 65 "GDS", 66 "GWS", 67 "OA" 68 }; 69 70 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 71 72 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 73 74 75 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) 76 { 77 return (struct amdgpu_device *)kgd; 78 } 79 80 static bool check_if_add_bo_to_vm(struct amdgpu_vm *avm, 81 struct kgd_mem *mem) 82 { 83 struct kfd_bo_va_list *entry; 84 85 list_for_each_entry(entry, &mem->bo_va_list, bo_list) 86 if (entry->bo_va->base.vm == avm) 87 return false; 88 89 return true; 90 } 91 92 /* Set memory usage limits. Current, limits are 93 * System (kernel) memory - 3/8th System RAM 94 * Userptr memory - 3/4th System RAM 95 */ 96 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 97 { 98 struct sysinfo si; 99 uint64_t mem; 100 101 si_meminfo(&si); 102 mem = si.totalram - si.totalhigh; 103 mem *= si.mem_unit; 104 105 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 106 kfd_mem_limit.max_system_mem_limit = (mem >> 1) - (mem >> 3); 107 kfd_mem_limit.max_userptr_mem_limit = mem - (mem >> 2); 108 pr_debug("Kernel memory limit %lluM, userptr limit %lluM\n", 109 (kfd_mem_limit.max_system_mem_limit >> 20), 110 (kfd_mem_limit.max_userptr_mem_limit >> 20)); 111 } 112 113 static int amdgpu_amdkfd_reserve_system_mem_limit(struct amdgpu_device *adev, 114 uint64_t size, u32 domain) 115 { 116 size_t acc_size; 117 int ret = 0; 118 119 acc_size = ttm_bo_dma_acc_size(&adev->mman.bdev, size, 120 sizeof(struct amdgpu_bo)); 121 122 spin_lock(&kfd_mem_limit.mem_limit_lock); 123 if (domain == AMDGPU_GEM_DOMAIN_GTT) { 124 if (kfd_mem_limit.system_mem_used + (acc_size + size) > 125 kfd_mem_limit.max_system_mem_limit) { 126 ret = -ENOMEM; 127 goto err_no_mem; 128 } 129 kfd_mem_limit.system_mem_used += (acc_size + size); 130 } else if (domain == AMDGPU_GEM_DOMAIN_CPU) { 131 if ((kfd_mem_limit.system_mem_used + acc_size > 132 kfd_mem_limit.max_system_mem_limit) || 133 (kfd_mem_limit.userptr_mem_used + (size + acc_size) > 134 kfd_mem_limit.max_userptr_mem_limit)) { 135 ret = -ENOMEM; 136 goto err_no_mem; 137 } 138 kfd_mem_limit.system_mem_used += acc_size; 139 kfd_mem_limit.userptr_mem_used += size; 140 } 141 err_no_mem: 142 spin_unlock(&kfd_mem_limit.mem_limit_lock); 143 return ret; 144 } 145 146 static void unreserve_system_mem_limit(struct amdgpu_device *adev, 147 uint64_t size, u32 domain) 148 { 149 size_t acc_size; 150 151 acc_size = ttm_bo_dma_acc_size(&adev->mman.bdev, size, 152 sizeof(struct amdgpu_bo)); 153 154 spin_lock(&kfd_mem_limit.mem_limit_lock); 155 if (domain == AMDGPU_GEM_DOMAIN_GTT) { 156 kfd_mem_limit.system_mem_used -= (acc_size + size); 157 } else if (domain == AMDGPU_GEM_DOMAIN_CPU) { 158 kfd_mem_limit.system_mem_used -= acc_size; 159 kfd_mem_limit.userptr_mem_used -= size; 160 } 161 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 162 "kfd system memory accounting unbalanced"); 163 WARN_ONCE(kfd_mem_limit.userptr_mem_used < 0, 164 "kfd userptr memory accounting unbalanced"); 165 166 spin_unlock(&kfd_mem_limit.mem_limit_lock); 167 } 168 169 void amdgpu_amdkfd_unreserve_system_memory_limit(struct amdgpu_bo *bo) 170 { 171 spin_lock(&kfd_mem_limit.mem_limit_lock); 172 173 if (bo->flags & AMDGPU_AMDKFD_USERPTR_BO) { 174 kfd_mem_limit.system_mem_used -= bo->tbo.acc_size; 175 kfd_mem_limit.userptr_mem_used -= amdgpu_bo_size(bo); 176 } else if (bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT) { 177 kfd_mem_limit.system_mem_used -= 178 (bo->tbo.acc_size + amdgpu_bo_size(bo)); 179 } 180 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 181 "kfd system memory accounting unbalanced"); 182 WARN_ONCE(kfd_mem_limit.userptr_mem_used < 0, 183 "kfd userptr memory accounting unbalanced"); 184 185 spin_unlock(&kfd_mem_limit.mem_limit_lock); 186 } 187 188 189 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence(s) from BO's 190 * reservation object. 191 * 192 * @bo: [IN] Remove eviction fence(s) from this BO 193 * @ef: [IN] If ef is specified, then this eviction fence is removed if it 194 * is present in the shared list. 195 * @ef_list: [OUT] Returns list of eviction fences. These fences are removed 196 * from BO's reservation object shared list. 197 * @ef_count: [OUT] Number of fences in ef_list. 198 * 199 * NOTE: If called with ef_list, then amdgpu_amdkfd_add_eviction_fence must be 200 * called to restore the eviction fences and to avoid memory leak. This is 201 * useful for shared BOs. 202 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 203 */ 204 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 205 struct amdgpu_amdkfd_fence *ef, 206 struct amdgpu_amdkfd_fence ***ef_list, 207 unsigned int *ef_count) 208 { 209 struct reservation_object_list *fobj; 210 struct reservation_object *resv; 211 unsigned int i = 0, j = 0, k = 0, shared_count; 212 unsigned int count = 0; 213 struct amdgpu_amdkfd_fence **fence_list; 214 215 if (!ef && !ef_list) 216 return -EINVAL; 217 218 if (ef_list) { 219 *ef_list = NULL; 220 *ef_count = 0; 221 } 222 223 resv = bo->tbo.resv; 224 fobj = reservation_object_get_list(resv); 225 226 if (!fobj) 227 return 0; 228 229 preempt_disable(); 230 write_seqcount_begin(&resv->seq); 231 232 /* Go through all the shared fences in the resevation object. If 233 * ef is specified and it exists in the list, remove it and reduce the 234 * count. If ef is not specified, then get the count of eviction fences 235 * present. 236 */ 237 shared_count = fobj->shared_count; 238 for (i = 0; i < shared_count; ++i) { 239 struct dma_fence *f; 240 241 f = rcu_dereference_protected(fobj->shared[i], 242 reservation_object_held(resv)); 243 244 if (ef) { 245 if (f->context == ef->base.context) { 246 dma_fence_put(f); 247 fobj->shared_count--; 248 } else { 249 RCU_INIT_POINTER(fobj->shared[j++], f); 250 } 251 } else if (to_amdgpu_amdkfd_fence(f)) 252 count++; 253 } 254 write_seqcount_end(&resv->seq); 255 preempt_enable(); 256 257 if (ef || !count) 258 return 0; 259 260 /* Alloc memory for count number of eviction fence pointers. Fill the 261 * ef_list array and ef_count 262 */ 263 fence_list = kcalloc(count, sizeof(struct amdgpu_amdkfd_fence *), 264 GFP_KERNEL); 265 if (!fence_list) 266 return -ENOMEM; 267 268 preempt_disable(); 269 write_seqcount_begin(&resv->seq); 270 271 j = 0; 272 for (i = 0; i < shared_count; ++i) { 273 struct dma_fence *f; 274 struct amdgpu_amdkfd_fence *efence; 275 276 f = rcu_dereference_protected(fobj->shared[i], 277 reservation_object_held(resv)); 278 279 efence = to_amdgpu_amdkfd_fence(f); 280 if (efence) { 281 fence_list[k++] = efence; 282 fobj->shared_count--; 283 } else { 284 RCU_INIT_POINTER(fobj->shared[j++], f); 285 } 286 } 287 288 write_seqcount_end(&resv->seq); 289 preempt_enable(); 290 291 *ef_list = fence_list; 292 *ef_count = k; 293 294 return 0; 295 } 296 297 /* amdgpu_amdkfd_add_eviction_fence - Adds eviction fence(s) back into BO's 298 * reservation object. 299 * 300 * @bo: [IN] Add eviction fences to this BO 301 * @ef_list: [IN] List of eviction fences to be added 302 * @ef_count: [IN] Number of fences in ef_list. 303 * 304 * NOTE: Must call amdgpu_amdkfd_remove_eviction_fence before calling this 305 * function. 306 */ 307 static void amdgpu_amdkfd_add_eviction_fence(struct amdgpu_bo *bo, 308 struct amdgpu_amdkfd_fence **ef_list, 309 unsigned int ef_count) 310 { 311 int i; 312 313 if (!ef_list || !ef_count) 314 return; 315 316 for (i = 0; i < ef_count; i++) { 317 amdgpu_bo_fence(bo, &ef_list[i]->base, true); 318 /* Re-adding the fence takes an additional reference. Drop that 319 * reference. 320 */ 321 dma_fence_put(&ef_list[i]->base); 322 } 323 324 kfree(ef_list); 325 } 326 327 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 328 bool wait) 329 { 330 struct ttm_operation_ctx ctx = { false, false }; 331 int ret; 332 333 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 334 "Called with userptr BO")) 335 return -EINVAL; 336 337 amdgpu_ttm_placement_from_domain(bo, domain); 338 339 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 340 if (ret) 341 goto validate_fail; 342 if (wait) { 343 struct amdgpu_amdkfd_fence **ef_list; 344 unsigned int ef_count; 345 346 ret = amdgpu_amdkfd_remove_eviction_fence(bo, NULL, &ef_list, 347 &ef_count); 348 if (ret) 349 goto validate_fail; 350 351 ttm_bo_wait(&bo->tbo, false, false); 352 amdgpu_amdkfd_add_eviction_fence(bo, ef_list, ef_count); 353 } 354 355 validate_fail: 356 return ret; 357 } 358 359 static int amdgpu_amdkfd_validate(void *param, struct amdgpu_bo *bo) 360 { 361 struct amdgpu_vm_parser *p = param; 362 363 return amdgpu_amdkfd_bo_validate(bo, p->domain, p->wait); 364 } 365 366 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 367 * 368 * Page directories are not updated here because huge page handling 369 * during page table updates can invalidate page directory entries 370 * again. Page directories are only updated after updating page 371 * tables. 372 */ 373 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 374 { 375 struct amdgpu_bo *pd = vm->root.base.bo; 376 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 377 struct amdgpu_vm_parser param; 378 uint64_t addr, flags = AMDGPU_PTE_VALID; 379 int ret; 380 381 param.domain = AMDGPU_GEM_DOMAIN_VRAM; 382 param.wait = false; 383 384 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate, 385 ¶m); 386 if (ret) { 387 pr_err("amdgpu: failed to validate PT BOs\n"); 388 return ret; 389 } 390 391 ret = amdgpu_amdkfd_validate(¶m, pd); 392 if (ret) { 393 pr_err("amdgpu: failed to validate PD\n"); 394 return ret; 395 } 396 397 addr = amdgpu_bo_gpu_offset(vm->root.base.bo); 398 amdgpu_gmc_get_vm_pde(adev, -1, &addr, &flags); 399 vm->pd_phys_addr = addr; 400 401 if (vm->use_cpu_for_update) { 402 ret = amdgpu_bo_kmap(pd, NULL); 403 if (ret) { 404 pr_err("amdgpu: failed to kmap PD, ret=%d\n", ret); 405 return ret; 406 } 407 } 408 409 return 0; 410 } 411 412 static int sync_vm_fence(struct amdgpu_device *adev, struct amdgpu_sync *sync, 413 struct dma_fence *f) 414 { 415 int ret = amdgpu_sync_fence(adev, sync, f, false); 416 417 /* Sync objects can't handle multiple GPUs (contexts) updating 418 * sync->last_vm_update. Fortunately we don't need it for 419 * KFD's purposes, so we can just drop that fence. 420 */ 421 if (sync->last_vm_update) { 422 dma_fence_put(sync->last_vm_update); 423 sync->last_vm_update = NULL; 424 } 425 426 return ret; 427 } 428 429 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 430 { 431 struct amdgpu_bo *pd = vm->root.base.bo; 432 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 433 int ret; 434 435 ret = amdgpu_vm_update_directories(adev, vm); 436 if (ret) 437 return ret; 438 439 return sync_vm_fence(adev, sync, vm->last_update); 440 } 441 442 /* add_bo_to_vm - Add a BO to a VM 443 * 444 * Everything that needs to bo done only once when a BO is first added 445 * to a VM. It can later be mapped and unmapped many times without 446 * repeating these steps. 447 * 448 * 1. Allocate and initialize BO VA entry data structure 449 * 2. Add BO to the VM 450 * 3. Determine ASIC-specific PTE flags 451 * 4. Alloc page tables and directories if needed 452 * 4a. Validate new page tables and directories 453 */ 454 static int add_bo_to_vm(struct amdgpu_device *adev, struct kgd_mem *mem, 455 struct amdgpu_vm *vm, bool is_aql, 456 struct kfd_bo_va_list **p_bo_va_entry) 457 { 458 int ret; 459 struct kfd_bo_va_list *bo_va_entry; 460 struct amdgpu_bo *pd = vm->root.base.bo; 461 struct amdgpu_bo *bo = mem->bo; 462 uint64_t va = mem->va; 463 struct list_head *list_bo_va = &mem->bo_va_list; 464 unsigned long bo_size = bo->tbo.mem.size; 465 466 if (!va) { 467 pr_err("Invalid VA when adding BO to VM\n"); 468 return -EINVAL; 469 } 470 471 if (is_aql) 472 va += bo_size; 473 474 bo_va_entry = kzalloc(sizeof(*bo_va_entry), GFP_KERNEL); 475 if (!bo_va_entry) 476 return -ENOMEM; 477 478 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 479 va + bo_size, vm); 480 481 /* Add BO to VM internal data structures*/ 482 bo_va_entry->bo_va = amdgpu_vm_bo_add(adev, vm, bo); 483 if (!bo_va_entry->bo_va) { 484 ret = -EINVAL; 485 pr_err("Failed to add BO object to VM. ret == %d\n", 486 ret); 487 goto err_vmadd; 488 } 489 490 bo_va_entry->va = va; 491 bo_va_entry->pte_flags = amdgpu_gmc_get_pte_flags(adev, 492 mem->mapping_flags); 493 bo_va_entry->kgd_dev = (void *)adev; 494 list_add(&bo_va_entry->bo_list, list_bo_va); 495 496 if (p_bo_va_entry) 497 *p_bo_va_entry = bo_va_entry; 498 499 /* Allocate new page tables if needed and validate 500 * them. Clearing of new page tables and validate need to wait 501 * on move fences. We don't want that to trigger the eviction 502 * fence, so remove it temporarily. 503 */ 504 amdgpu_amdkfd_remove_eviction_fence(pd, 505 vm->process_info->eviction_fence, 506 NULL, NULL); 507 508 ret = amdgpu_vm_alloc_pts(adev, vm, va, amdgpu_bo_size(bo)); 509 if (ret) { 510 pr_err("Failed to allocate pts, err=%d\n", ret); 511 goto err_alloc_pts; 512 } 513 514 ret = vm_validate_pt_pd_bos(vm); 515 if (ret) { 516 pr_err("validate_pt_pd_bos() failed\n"); 517 goto err_alloc_pts; 518 } 519 520 /* Add the eviction fence back */ 521 amdgpu_bo_fence(pd, &vm->process_info->eviction_fence->base, true); 522 523 return 0; 524 525 err_alloc_pts: 526 amdgpu_bo_fence(pd, &vm->process_info->eviction_fence->base, true); 527 amdgpu_vm_bo_rmv(adev, bo_va_entry->bo_va); 528 list_del(&bo_va_entry->bo_list); 529 err_vmadd: 530 kfree(bo_va_entry); 531 return ret; 532 } 533 534 static void remove_bo_from_vm(struct amdgpu_device *adev, 535 struct kfd_bo_va_list *entry, unsigned long size) 536 { 537 pr_debug("\t remove VA 0x%llx - 0x%llx in entry %p\n", 538 entry->va, 539 entry->va + size, entry); 540 amdgpu_vm_bo_rmv(adev, entry->bo_va); 541 list_del(&entry->bo_list); 542 kfree(entry); 543 } 544 545 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 546 struct amdkfd_process_info *process_info, 547 bool userptr) 548 { 549 struct ttm_validate_buffer *entry = &mem->validate_list; 550 struct amdgpu_bo *bo = mem->bo; 551 552 INIT_LIST_HEAD(&entry->head); 553 entry->shared = true; 554 entry->bo = &bo->tbo; 555 mutex_lock(&process_info->lock); 556 if (userptr) 557 list_add_tail(&entry->head, &process_info->userptr_valid_list); 558 else 559 list_add_tail(&entry->head, &process_info->kfd_bo_list); 560 mutex_unlock(&process_info->lock); 561 } 562 563 /* Initializes user pages. It registers the MMU notifier and validates 564 * the userptr BO in the GTT domain. 565 * 566 * The BO must already be on the userptr_valid_list. Otherwise an 567 * eviction and restore may happen that leaves the new BO unmapped 568 * with the user mode queues running. 569 * 570 * Takes the process_info->lock to protect against concurrent restore 571 * workers. 572 * 573 * Returns 0 for success, negative errno for errors. 574 */ 575 static int init_user_pages(struct kgd_mem *mem, struct mm_struct *mm, 576 uint64_t user_addr) 577 { 578 struct amdkfd_process_info *process_info = mem->process_info; 579 struct amdgpu_bo *bo = mem->bo; 580 struct ttm_operation_ctx ctx = { true, false }; 581 int ret = 0; 582 583 mutex_lock(&process_info->lock); 584 585 ret = amdgpu_ttm_tt_set_userptr(bo->tbo.ttm, user_addr, 0); 586 if (ret) { 587 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 588 goto out; 589 } 590 591 ret = amdgpu_mn_register(bo, user_addr); 592 if (ret) { 593 pr_err("%s: Failed to register MMU notifier: %d\n", 594 __func__, ret); 595 goto out; 596 } 597 598 /* If no restore worker is running concurrently, user_pages 599 * should not be allocated 600 */ 601 WARN(mem->user_pages, "Leaking user_pages array"); 602 603 mem->user_pages = kvmalloc_array(bo->tbo.ttm->num_pages, 604 sizeof(struct page *), 605 GFP_KERNEL | __GFP_ZERO); 606 if (!mem->user_pages) { 607 pr_err("%s: Failed to allocate pages array\n", __func__); 608 ret = -ENOMEM; 609 goto unregister_out; 610 } 611 612 ret = amdgpu_ttm_tt_get_user_pages(bo->tbo.ttm, mem->user_pages); 613 if (ret) { 614 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 615 goto free_out; 616 } 617 618 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, mem->user_pages); 619 620 ret = amdgpu_bo_reserve(bo, true); 621 if (ret) { 622 pr_err("%s: Failed to reserve BO\n", __func__); 623 goto release_out; 624 } 625 amdgpu_ttm_placement_from_domain(bo, mem->domain); 626 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 627 if (ret) 628 pr_err("%s: failed to validate BO\n", __func__); 629 amdgpu_bo_unreserve(bo); 630 631 release_out: 632 if (ret) 633 release_pages(mem->user_pages, bo->tbo.ttm->num_pages); 634 free_out: 635 kvfree(mem->user_pages); 636 mem->user_pages = NULL; 637 unregister_out: 638 if (ret) 639 amdgpu_mn_unregister(bo); 640 out: 641 mutex_unlock(&process_info->lock); 642 return ret; 643 } 644 645 /* Reserving a BO and its page table BOs must happen atomically to 646 * avoid deadlocks. Some operations update multiple VMs at once. Track 647 * all the reservation info in a context structure. Optionally a sync 648 * object can track VM updates. 649 */ 650 struct bo_vm_reservation_context { 651 struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */ 652 unsigned int n_vms; /* Number of VMs reserved */ 653 struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries */ 654 struct ww_acquire_ctx ticket; /* Reservation ticket */ 655 struct list_head list, duplicates; /* BO lists */ 656 struct amdgpu_sync *sync; /* Pointer to sync object */ 657 bool reserved; /* Whether BOs are reserved */ 658 }; 659 660 enum bo_vm_match { 661 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 662 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 663 BO_VM_ALL, /* Match all VMs a BO was added to */ 664 }; 665 666 /** 667 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 668 * @mem: KFD BO structure. 669 * @vm: the VM to reserve. 670 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 671 */ 672 static int reserve_bo_and_vm(struct kgd_mem *mem, 673 struct amdgpu_vm *vm, 674 struct bo_vm_reservation_context *ctx) 675 { 676 struct amdgpu_bo *bo = mem->bo; 677 int ret; 678 679 WARN_ON(!vm); 680 681 ctx->reserved = false; 682 ctx->n_vms = 1; 683 ctx->sync = &mem->sync; 684 685 INIT_LIST_HEAD(&ctx->list); 686 INIT_LIST_HEAD(&ctx->duplicates); 687 688 ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL); 689 if (!ctx->vm_pd) 690 return -ENOMEM; 691 692 ctx->kfd_bo.robj = bo; 693 ctx->kfd_bo.priority = 0; 694 ctx->kfd_bo.tv.bo = &bo->tbo; 695 ctx->kfd_bo.tv.shared = true; 696 ctx->kfd_bo.user_pages = NULL; 697 list_add(&ctx->kfd_bo.tv.head, &ctx->list); 698 699 amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]); 700 701 ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, 702 false, &ctx->duplicates); 703 if (!ret) 704 ctx->reserved = true; 705 else { 706 pr_err("Failed to reserve buffers in ttm\n"); 707 kfree(ctx->vm_pd); 708 ctx->vm_pd = NULL; 709 } 710 711 return ret; 712 } 713 714 /** 715 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 716 * @mem: KFD BO structure. 717 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 718 * is used. Otherwise, a single VM associated with the BO. 719 * @map_type: the mapping status that will be used to filter the VMs. 720 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 721 * 722 * Returns 0 for success, negative for failure. 723 */ 724 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 725 struct amdgpu_vm *vm, enum bo_vm_match map_type, 726 struct bo_vm_reservation_context *ctx) 727 { 728 struct amdgpu_bo *bo = mem->bo; 729 struct kfd_bo_va_list *entry; 730 unsigned int i; 731 int ret; 732 733 ctx->reserved = false; 734 ctx->n_vms = 0; 735 ctx->vm_pd = NULL; 736 ctx->sync = &mem->sync; 737 738 INIT_LIST_HEAD(&ctx->list); 739 INIT_LIST_HEAD(&ctx->duplicates); 740 741 list_for_each_entry(entry, &mem->bo_va_list, bo_list) { 742 if ((vm && vm != entry->bo_va->base.vm) || 743 (entry->is_mapped != map_type 744 && map_type != BO_VM_ALL)) 745 continue; 746 747 ctx->n_vms++; 748 } 749 750 if (ctx->n_vms != 0) { 751 ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), 752 GFP_KERNEL); 753 if (!ctx->vm_pd) 754 return -ENOMEM; 755 } 756 757 ctx->kfd_bo.robj = bo; 758 ctx->kfd_bo.priority = 0; 759 ctx->kfd_bo.tv.bo = &bo->tbo; 760 ctx->kfd_bo.tv.shared = true; 761 ctx->kfd_bo.user_pages = NULL; 762 list_add(&ctx->kfd_bo.tv.head, &ctx->list); 763 764 i = 0; 765 list_for_each_entry(entry, &mem->bo_va_list, bo_list) { 766 if ((vm && vm != entry->bo_va->base.vm) || 767 (entry->is_mapped != map_type 768 && map_type != BO_VM_ALL)) 769 continue; 770 771 amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list, 772 &ctx->vm_pd[i]); 773 i++; 774 } 775 776 ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, 777 false, &ctx->duplicates); 778 if (!ret) 779 ctx->reserved = true; 780 else 781 pr_err("Failed to reserve buffers in ttm.\n"); 782 783 if (ret) { 784 kfree(ctx->vm_pd); 785 ctx->vm_pd = NULL; 786 } 787 788 return ret; 789 } 790 791 /** 792 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 793 * @ctx: Reservation context to unreserve 794 * @wait: Optionally wait for a sync object representing pending VM updates 795 * @intr: Whether the wait is interruptible 796 * 797 * Also frees any resources allocated in 798 * reserve_bo_and_(cond_)vm(s). Returns the status from 799 * amdgpu_sync_wait. 800 */ 801 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 802 bool wait, bool intr) 803 { 804 int ret = 0; 805 806 if (wait) 807 ret = amdgpu_sync_wait(ctx->sync, intr); 808 809 if (ctx->reserved) 810 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list); 811 kfree(ctx->vm_pd); 812 813 ctx->sync = NULL; 814 815 ctx->reserved = false; 816 ctx->vm_pd = NULL; 817 818 return ret; 819 } 820 821 static int unmap_bo_from_gpuvm(struct amdgpu_device *adev, 822 struct kfd_bo_va_list *entry, 823 struct amdgpu_sync *sync) 824 { 825 struct amdgpu_bo_va *bo_va = entry->bo_va; 826 struct amdgpu_vm *vm = bo_va->base.vm; 827 struct amdgpu_bo *pd = vm->root.base.bo; 828 829 /* Remove eviction fence from PD (and thereby from PTs too as 830 * they share the resv. object). Otherwise during PT update 831 * job (see amdgpu_vm_bo_update_mapping), eviction fence would 832 * get added to job->sync object and job execution would 833 * trigger the eviction fence. 834 */ 835 amdgpu_amdkfd_remove_eviction_fence(pd, 836 vm->process_info->eviction_fence, 837 NULL, NULL); 838 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 839 840 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 841 842 /* Add the eviction fence back */ 843 amdgpu_bo_fence(pd, &vm->process_info->eviction_fence->base, true); 844 845 sync_vm_fence(adev, sync, bo_va->last_pt_update); 846 847 return 0; 848 } 849 850 static int update_gpuvm_pte(struct amdgpu_device *adev, 851 struct kfd_bo_va_list *entry, 852 struct amdgpu_sync *sync) 853 { 854 int ret; 855 struct amdgpu_vm *vm; 856 struct amdgpu_bo_va *bo_va; 857 struct amdgpu_bo *bo; 858 859 bo_va = entry->bo_va; 860 vm = bo_va->base.vm; 861 bo = bo_va->base.bo; 862 863 /* Update the page tables */ 864 ret = amdgpu_vm_bo_update(adev, bo_va, false); 865 if (ret) { 866 pr_err("amdgpu_vm_bo_update failed\n"); 867 return ret; 868 } 869 870 return sync_vm_fence(adev, sync, bo_va->last_pt_update); 871 } 872 873 static int map_bo_to_gpuvm(struct amdgpu_device *adev, 874 struct kfd_bo_va_list *entry, struct amdgpu_sync *sync, 875 bool no_update_pte) 876 { 877 int ret; 878 879 /* Set virtual address for the allocation */ 880 ret = amdgpu_vm_bo_map(adev, entry->bo_va, entry->va, 0, 881 amdgpu_bo_size(entry->bo_va->base.bo), 882 entry->pte_flags); 883 if (ret) { 884 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 885 entry->va, ret); 886 return ret; 887 } 888 889 if (no_update_pte) 890 return 0; 891 892 ret = update_gpuvm_pte(adev, entry, sync); 893 if (ret) { 894 pr_err("update_gpuvm_pte() failed\n"); 895 goto update_gpuvm_pte_failed; 896 } 897 898 return 0; 899 900 update_gpuvm_pte_failed: 901 unmap_bo_from_gpuvm(adev, entry, sync); 902 return ret; 903 } 904 905 static int process_validate_vms(struct amdkfd_process_info *process_info) 906 { 907 struct amdgpu_vm *peer_vm; 908 int ret; 909 910 list_for_each_entry(peer_vm, &process_info->vm_list_head, 911 vm_list_node) { 912 ret = vm_validate_pt_pd_bos(peer_vm); 913 if (ret) 914 return ret; 915 } 916 917 return 0; 918 } 919 920 static int process_update_pds(struct amdkfd_process_info *process_info, 921 struct amdgpu_sync *sync) 922 { 923 struct amdgpu_vm *peer_vm; 924 int ret; 925 926 list_for_each_entry(peer_vm, &process_info->vm_list_head, 927 vm_list_node) { 928 ret = vm_update_pds(peer_vm, sync); 929 if (ret) 930 return ret; 931 } 932 933 return 0; 934 } 935 936 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 937 struct dma_fence **ef) 938 { 939 struct amdkfd_process_info *info = NULL; 940 int ret; 941 942 if (!*process_info) { 943 info = kzalloc(sizeof(*info), GFP_KERNEL); 944 if (!info) 945 return -ENOMEM; 946 947 mutex_init(&info->lock); 948 INIT_LIST_HEAD(&info->vm_list_head); 949 INIT_LIST_HEAD(&info->kfd_bo_list); 950 INIT_LIST_HEAD(&info->userptr_valid_list); 951 INIT_LIST_HEAD(&info->userptr_inval_list); 952 953 info->eviction_fence = 954 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 955 current->mm); 956 if (!info->eviction_fence) { 957 pr_err("Failed to create eviction fence\n"); 958 ret = -ENOMEM; 959 goto create_evict_fence_fail; 960 } 961 962 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 963 atomic_set(&info->evicted_bos, 0); 964 INIT_DELAYED_WORK(&info->restore_userptr_work, 965 amdgpu_amdkfd_restore_userptr_worker); 966 967 *process_info = info; 968 *ef = dma_fence_get(&info->eviction_fence->base); 969 } 970 971 vm->process_info = *process_info; 972 973 /* Validate page directory and attach eviction fence */ 974 ret = amdgpu_bo_reserve(vm->root.base.bo, true); 975 if (ret) 976 goto reserve_pd_fail; 977 ret = vm_validate_pt_pd_bos(vm); 978 if (ret) { 979 pr_err("validate_pt_pd_bos() failed\n"); 980 goto validate_pd_fail; 981 } 982 ret = ttm_bo_wait(&vm->root.base.bo->tbo, false, false); 983 if (ret) 984 goto wait_pd_fail; 985 amdgpu_bo_fence(vm->root.base.bo, 986 &vm->process_info->eviction_fence->base, true); 987 amdgpu_bo_unreserve(vm->root.base.bo); 988 989 /* Update process info */ 990 mutex_lock(&vm->process_info->lock); 991 list_add_tail(&vm->vm_list_node, 992 &(vm->process_info->vm_list_head)); 993 vm->process_info->n_vms++; 994 mutex_unlock(&vm->process_info->lock); 995 996 return 0; 997 998 wait_pd_fail: 999 validate_pd_fail: 1000 amdgpu_bo_unreserve(vm->root.base.bo); 1001 reserve_pd_fail: 1002 vm->process_info = NULL; 1003 if (info) { 1004 /* Two fence references: one in info and one in *ef */ 1005 dma_fence_put(&info->eviction_fence->base); 1006 dma_fence_put(*ef); 1007 *ef = NULL; 1008 *process_info = NULL; 1009 put_pid(info->pid); 1010 create_evict_fence_fail: 1011 mutex_destroy(&info->lock); 1012 kfree(info); 1013 } 1014 return ret; 1015 } 1016 1017 int amdgpu_amdkfd_gpuvm_create_process_vm(struct kgd_dev *kgd, void **vm, 1018 void **process_info, 1019 struct dma_fence **ef) 1020 { 1021 struct amdgpu_device *adev = get_amdgpu_device(kgd); 1022 struct amdgpu_vm *new_vm; 1023 int ret; 1024 1025 new_vm = kzalloc(sizeof(*new_vm), GFP_KERNEL); 1026 if (!new_vm) 1027 return -ENOMEM; 1028 1029 /* Initialize AMDGPU part of the VM */ 1030 ret = amdgpu_vm_init(adev, new_vm, AMDGPU_VM_CONTEXT_COMPUTE, 0); 1031 if (ret) { 1032 pr_err("Failed init vm ret %d\n", ret); 1033 goto amdgpu_vm_init_fail; 1034 } 1035 1036 /* Initialize KFD part of the VM and process info */ 1037 ret = init_kfd_vm(new_vm, process_info, ef); 1038 if (ret) 1039 goto init_kfd_vm_fail; 1040 1041 *vm = (void *) new_vm; 1042 1043 return 0; 1044 1045 init_kfd_vm_fail: 1046 amdgpu_vm_fini(adev, new_vm); 1047 amdgpu_vm_init_fail: 1048 kfree(new_vm); 1049 return ret; 1050 } 1051 1052 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct kgd_dev *kgd, 1053 struct file *filp, 1054 void **vm, void **process_info, 1055 struct dma_fence **ef) 1056 { 1057 struct amdgpu_device *adev = get_amdgpu_device(kgd); 1058 struct drm_file *drm_priv = filp->private_data; 1059 struct amdgpu_fpriv *drv_priv = drm_priv->driver_priv; 1060 struct amdgpu_vm *avm = &drv_priv->vm; 1061 int ret; 1062 1063 /* Already a compute VM? */ 1064 if (avm->process_info) 1065 return -EINVAL; 1066 1067 /* Convert VM into a compute VM */ 1068 ret = amdgpu_vm_make_compute(adev, avm); 1069 if (ret) 1070 return ret; 1071 1072 /* Initialize KFD part of the VM and process info */ 1073 ret = init_kfd_vm(avm, process_info, ef); 1074 if (ret) 1075 return ret; 1076 1077 *vm = (void *)avm; 1078 1079 return 0; 1080 } 1081 1082 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1083 struct amdgpu_vm *vm) 1084 { 1085 struct amdkfd_process_info *process_info = vm->process_info; 1086 struct amdgpu_bo *pd = vm->root.base.bo; 1087 1088 if (!process_info) 1089 return; 1090 1091 /* Release eviction fence from PD */ 1092 amdgpu_bo_reserve(pd, false); 1093 amdgpu_bo_fence(pd, NULL, false); 1094 amdgpu_bo_unreserve(pd); 1095 1096 /* Update process info */ 1097 mutex_lock(&process_info->lock); 1098 process_info->n_vms--; 1099 list_del(&vm->vm_list_node); 1100 mutex_unlock(&process_info->lock); 1101 1102 /* Release per-process resources when last compute VM is destroyed */ 1103 if (!process_info->n_vms) { 1104 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1105 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1106 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1107 1108 dma_fence_put(&process_info->eviction_fence->base); 1109 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1110 put_pid(process_info->pid); 1111 mutex_destroy(&process_info->lock); 1112 kfree(process_info); 1113 } 1114 } 1115 1116 void amdgpu_amdkfd_gpuvm_destroy_process_vm(struct kgd_dev *kgd, void *vm) 1117 { 1118 struct amdgpu_device *adev = get_amdgpu_device(kgd); 1119 struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; 1120 1121 if (WARN_ON(!kgd || !vm)) 1122 return; 1123 1124 pr_debug("Destroying process vm %p\n", vm); 1125 1126 /* Release the VM context */ 1127 amdgpu_vm_fini(adev, avm); 1128 kfree(vm); 1129 } 1130 1131 uint32_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *vm) 1132 { 1133 struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; 1134 1135 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1136 } 1137 1138 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1139 struct kgd_dev *kgd, uint64_t va, uint64_t size, 1140 void *vm, struct kgd_mem **mem, 1141 uint64_t *offset, uint32_t flags) 1142 { 1143 struct amdgpu_device *adev = get_amdgpu_device(kgd); 1144 struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; 1145 uint64_t user_addr = 0; 1146 struct amdgpu_bo *bo; 1147 struct amdgpu_bo_param bp; 1148 int byte_align; 1149 u32 domain, alloc_domain; 1150 u64 alloc_flags; 1151 uint32_t mapping_flags; 1152 int ret; 1153 1154 /* 1155 * Check on which domain to allocate BO 1156 */ 1157 if (flags & ALLOC_MEM_FLAGS_VRAM) { 1158 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1159 alloc_flags = AMDGPU_GEM_CREATE_VRAM_CLEARED; 1160 alloc_flags |= (flags & ALLOC_MEM_FLAGS_PUBLIC) ? 1161 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 1162 AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 1163 } else if (flags & ALLOC_MEM_FLAGS_GTT) { 1164 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1165 alloc_flags = 0; 1166 } else if (flags & ALLOC_MEM_FLAGS_USERPTR) { 1167 domain = AMDGPU_GEM_DOMAIN_GTT; 1168 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1169 alloc_flags = 0; 1170 if (!offset || !*offset) 1171 return -EINVAL; 1172 user_addr = *offset; 1173 } else { 1174 return -EINVAL; 1175 } 1176 1177 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1178 if (!*mem) 1179 return -ENOMEM; 1180 INIT_LIST_HEAD(&(*mem)->bo_va_list); 1181 mutex_init(&(*mem)->lock); 1182 (*mem)->aql_queue = !!(flags & ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1183 1184 /* Workaround for AQL queue wraparound bug. Map the same 1185 * memory twice. That means we only actually allocate half 1186 * the memory. 1187 */ 1188 if ((*mem)->aql_queue) 1189 size = size >> 1; 1190 1191 /* Workaround for TLB bug on older VI chips */ 1192 byte_align = (adev->family == AMDGPU_FAMILY_VI && 1193 adev->asic_type != CHIP_FIJI && 1194 adev->asic_type != CHIP_POLARIS10 && 1195 adev->asic_type != CHIP_POLARIS11) ? 1196 VI_BO_SIZE_ALIGN : 1; 1197 1198 mapping_flags = AMDGPU_VM_PAGE_READABLE; 1199 if (flags & ALLOC_MEM_FLAGS_WRITABLE) 1200 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 1201 if (flags & ALLOC_MEM_FLAGS_EXECUTABLE) 1202 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 1203 if (flags & ALLOC_MEM_FLAGS_COHERENT) 1204 mapping_flags |= AMDGPU_VM_MTYPE_UC; 1205 else 1206 mapping_flags |= AMDGPU_VM_MTYPE_NC; 1207 (*mem)->mapping_flags = mapping_flags; 1208 1209 amdgpu_sync_create(&(*mem)->sync); 1210 1211 ret = amdgpu_amdkfd_reserve_system_mem_limit(adev, size, alloc_domain); 1212 if (ret) { 1213 pr_debug("Insufficient system memory\n"); 1214 goto err_reserve_system_mem; 1215 } 1216 1217 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n", 1218 va, size, domain_string(alloc_domain)); 1219 1220 memset(&bp, 0, sizeof(bp)); 1221 bp.size = size; 1222 bp.byte_align = byte_align; 1223 bp.domain = alloc_domain; 1224 bp.flags = alloc_flags; 1225 bp.type = ttm_bo_type_device; 1226 bp.resv = NULL; 1227 ret = amdgpu_bo_create(adev, &bp, &bo); 1228 if (ret) { 1229 pr_debug("Failed to create BO on domain %s. ret %d\n", 1230 domain_string(alloc_domain), ret); 1231 goto err_bo_create; 1232 } 1233 bo->kfd_bo = *mem; 1234 (*mem)->bo = bo; 1235 if (user_addr) 1236 bo->flags |= AMDGPU_AMDKFD_USERPTR_BO; 1237 1238 (*mem)->va = va; 1239 (*mem)->domain = domain; 1240 (*mem)->mapped_to_gpu_memory = 0; 1241 (*mem)->process_info = avm->process_info; 1242 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1243 1244 if (user_addr) { 1245 ret = init_user_pages(*mem, current->mm, user_addr); 1246 if (ret) { 1247 mutex_lock(&avm->process_info->lock); 1248 list_del(&(*mem)->validate_list.head); 1249 mutex_unlock(&avm->process_info->lock); 1250 goto allocate_init_user_pages_failed; 1251 } 1252 } 1253 1254 if (offset) 1255 *offset = amdgpu_bo_mmap_offset(bo); 1256 1257 return 0; 1258 1259 allocate_init_user_pages_failed: 1260 amdgpu_bo_unref(&bo); 1261 /* Don't unreserve system mem limit twice */ 1262 goto err_reserve_system_mem; 1263 err_bo_create: 1264 unreserve_system_mem_limit(adev, size, alloc_domain); 1265 err_reserve_system_mem: 1266 mutex_destroy(&(*mem)->lock); 1267 kfree(*mem); 1268 return ret; 1269 } 1270 1271 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1272 struct kgd_dev *kgd, struct kgd_mem *mem) 1273 { 1274 struct amdkfd_process_info *process_info = mem->process_info; 1275 unsigned long bo_size = mem->bo->tbo.mem.size; 1276 struct kfd_bo_va_list *entry, *tmp; 1277 struct bo_vm_reservation_context ctx; 1278 struct ttm_validate_buffer *bo_list_entry; 1279 int ret; 1280 1281 mutex_lock(&mem->lock); 1282 1283 if (mem->mapped_to_gpu_memory > 0) { 1284 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1285 mem->va, bo_size); 1286 mutex_unlock(&mem->lock); 1287 return -EBUSY; 1288 } 1289 1290 mutex_unlock(&mem->lock); 1291 /* lock is not needed after this, since mem is unused and will 1292 * be freed anyway 1293 */ 1294 1295 /* No more MMU notifiers */ 1296 amdgpu_mn_unregister(mem->bo); 1297 1298 /* Make sure restore workers don't access the BO any more */ 1299 bo_list_entry = &mem->validate_list; 1300 mutex_lock(&process_info->lock); 1301 list_del(&bo_list_entry->head); 1302 mutex_unlock(&process_info->lock); 1303 1304 /* Free user pages if necessary */ 1305 if (mem->user_pages) { 1306 pr_debug("%s: Freeing user_pages array\n", __func__); 1307 if (mem->user_pages[0]) 1308 release_pages(mem->user_pages, 1309 mem->bo->tbo.ttm->num_pages); 1310 kvfree(mem->user_pages); 1311 } 1312 1313 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1314 if (unlikely(ret)) 1315 return ret; 1316 1317 /* The eviction fence should be removed by the last unmap. 1318 * TODO: Log an error condition if the bo still has the eviction fence 1319 * attached 1320 */ 1321 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1322 process_info->eviction_fence, 1323 NULL, NULL); 1324 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1325 mem->va + bo_size * (1 + mem->aql_queue)); 1326 1327 /* Remove from VM internal data structures */ 1328 list_for_each_entry_safe(entry, tmp, &mem->bo_va_list, bo_list) 1329 remove_bo_from_vm((struct amdgpu_device *)entry->kgd_dev, 1330 entry, bo_size); 1331 1332 ret = unreserve_bo_and_vms(&ctx, false, false); 1333 1334 /* Free the sync object */ 1335 amdgpu_sync_free(&mem->sync); 1336 1337 /* Free the BO*/ 1338 amdgpu_bo_unref(&mem->bo); 1339 mutex_destroy(&mem->lock); 1340 kfree(mem); 1341 1342 return ret; 1343 } 1344 1345 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1346 struct kgd_dev *kgd, struct kgd_mem *mem, void *vm) 1347 { 1348 struct amdgpu_device *adev = get_amdgpu_device(kgd); 1349 struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; 1350 int ret; 1351 struct amdgpu_bo *bo; 1352 uint32_t domain; 1353 struct kfd_bo_va_list *entry; 1354 struct bo_vm_reservation_context ctx; 1355 struct kfd_bo_va_list *bo_va_entry = NULL; 1356 struct kfd_bo_va_list *bo_va_entry_aql = NULL; 1357 unsigned long bo_size; 1358 bool is_invalid_userptr = false; 1359 1360 bo = mem->bo; 1361 if (!bo) { 1362 pr_err("Invalid BO when mapping memory to GPU\n"); 1363 return -EINVAL; 1364 } 1365 1366 /* Make sure restore is not running concurrently. Since we 1367 * don't map invalid userptr BOs, we rely on the next restore 1368 * worker to do the mapping 1369 */ 1370 mutex_lock(&mem->process_info->lock); 1371 1372 /* Lock mmap-sem. If we find an invalid userptr BO, we can be 1373 * sure that the MMU notifier is no longer running 1374 * concurrently and the queues are actually stopped 1375 */ 1376 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1377 down_write(¤t->mm->mmap_sem); 1378 is_invalid_userptr = atomic_read(&mem->invalid); 1379 up_write(¤t->mm->mmap_sem); 1380 } 1381 1382 mutex_lock(&mem->lock); 1383 1384 domain = mem->domain; 1385 bo_size = bo->tbo.mem.size; 1386 1387 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 1388 mem->va, 1389 mem->va + bo_size * (1 + mem->aql_queue), 1390 vm, domain_string(domain)); 1391 1392 ret = reserve_bo_and_vm(mem, vm, &ctx); 1393 if (unlikely(ret)) 1394 goto out; 1395 1396 /* Userptr can be marked as "not invalid", but not actually be 1397 * validated yet (still in the system domain). In that case 1398 * the queues are still stopped and we can leave mapping for 1399 * the next restore worker 1400 */ 1401 if (bo->tbo.mem.mem_type == TTM_PL_SYSTEM) 1402 is_invalid_userptr = true; 1403 1404 if (check_if_add_bo_to_vm(avm, mem)) { 1405 ret = add_bo_to_vm(adev, mem, avm, false, 1406 &bo_va_entry); 1407 if (ret) 1408 goto add_bo_to_vm_failed; 1409 if (mem->aql_queue) { 1410 ret = add_bo_to_vm(adev, mem, avm, 1411 true, &bo_va_entry_aql); 1412 if (ret) 1413 goto add_bo_to_vm_failed_aql; 1414 } 1415 } else { 1416 ret = vm_validate_pt_pd_bos(avm); 1417 if (unlikely(ret)) 1418 goto add_bo_to_vm_failed; 1419 } 1420 1421 if (mem->mapped_to_gpu_memory == 0 && 1422 !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1423 /* Validate BO only once. The eviction fence gets added to BO 1424 * the first time it is mapped. Validate will wait for all 1425 * background evictions to complete. 1426 */ 1427 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 1428 if (ret) { 1429 pr_debug("Validate failed\n"); 1430 goto map_bo_to_gpuvm_failed; 1431 } 1432 } 1433 1434 list_for_each_entry(entry, &mem->bo_va_list, bo_list) { 1435 if (entry->bo_va->base.vm == vm && !entry->is_mapped) { 1436 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 1437 entry->va, entry->va + bo_size, 1438 entry); 1439 1440 ret = map_bo_to_gpuvm(adev, entry, ctx.sync, 1441 is_invalid_userptr); 1442 if (ret) { 1443 pr_err("Failed to map radeon bo to gpuvm\n"); 1444 goto map_bo_to_gpuvm_failed; 1445 } 1446 1447 ret = vm_update_pds(vm, ctx.sync); 1448 if (ret) { 1449 pr_err("Failed to update page directories\n"); 1450 goto map_bo_to_gpuvm_failed; 1451 } 1452 1453 entry->is_mapped = true; 1454 mem->mapped_to_gpu_memory++; 1455 pr_debug("\t INC mapping count %d\n", 1456 mem->mapped_to_gpu_memory); 1457 } 1458 } 1459 1460 if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->pin_count) 1461 amdgpu_bo_fence(bo, 1462 &avm->process_info->eviction_fence->base, 1463 true); 1464 ret = unreserve_bo_and_vms(&ctx, false, false); 1465 1466 goto out; 1467 1468 map_bo_to_gpuvm_failed: 1469 if (bo_va_entry_aql) 1470 remove_bo_from_vm(adev, bo_va_entry_aql, bo_size); 1471 add_bo_to_vm_failed_aql: 1472 if (bo_va_entry) 1473 remove_bo_from_vm(adev, bo_va_entry, bo_size); 1474 add_bo_to_vm_failed: 1475 unreserve_bo_and_vms(&ctx, false, false); 1476 out: 1477 mutex_unlock(&mem->process_info->lock); 1478 mutex_unlock(&mem->lock); 1479 return ret; 1480 } 1481 1482 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1483 struct kgd_dev *kgd, struct kgd_mem *mem, void *vm) 1484 { 1485 struct amdgpu_device *adev = get_amdgpu_device(kgd); 1486 struct amdkfd_process_info *process_info = 1487 ((struct amdgpu_vm *)vm)->process_info; 1488 unsigned long bo_size = mem->bo->tbo.mem.size; 1489 struct kfd_bo_va_list *entry; 1490 struct bo_vm_reservation_context ctx; 1491 int ret; 1492 1493 mutex_lock(&mem->lock); 1494 1495 ret = reserve_bo_and_cond_vms(mem, vm, BO_VM_MAPPED, &ctx); 1496 if (unlikely(ret)) 1497 goto out; 1498 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 1499 if (ctx.n_vms == 0) { 1500 ret = -EINVAL; 1501 goto unreserve_out; 1502 } 1503 1504 ret = vm_validate_pt_pd_bos((struct amdgpu_vm *)vm); 1505 if (unlikely(ret)) 1506 goto unreserve_out; 1507 1508 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 1509 mem->va, 1510 mem->va + bo_size * (1 + mem->aql_queue), 1511 vm); 1512 1513 list_for_each_entry(entry, &mem->bo_va_list, bo_list) { 1514 if (entry->bo_va->base.vm == vm && entry->is_mapped) { 1515 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 1516 entry->va, 1517 entry->va + bo_size, 1518 entry); 1519 1520 ret = unmap_bo_from_gpuvm(adev, entry, ctx.sync); 1521 if (ret == 0) { 1522 entry->is_mapped = false; 1523 } else { 1524 pr_err("failed to unmap VA 0x%llx\n", 1525 mem->va); 1526 goto unreserve_out; 1527 } 1528 1529 mem->mapped_to_gpu_memory--; 1530 pr_debug("\t DEC mapping count %d\n", 1531 mem->mapped_to_gpu_memory); 1532 } 1533 } 1534 1535 /* If BO is unmapped from all VMs, unfence it. It can be evicted if 1536 * required. 1537 */ 1538 if (mem->mapped_to_gpu_memory == 0 && 1539 !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && !mem->bo->pin_count) 1540 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1541 process_info->eviction_fence, 1542 NULL, NULL); 1543 1544 unreserve_out: 1545 unreserve_bo_and_vms(&ctx, false, false); 1546 out: 1547 mutex_unlock(&mem->lock); 1548 return ret; 1549 } 1550 1551 int amdgpu_amdkfd_gpuvm_sync_memory( 1552 struct kgd_dev *kgd, struct kgd_mem *mem, bool intr) 1553 { 1554 struct amdgpu_sync sync; 1555 int ret; 1556 1557 amdgpu_sync_create(&sync); 1558 1559 mutex_lock(&mem->lock); 1560 amdgpu_sync_clone(&mem->sync, &sync); 1561 mutex_unlock(&mem->lock); 1562 1563 ret = amdgpu_sync_wait(&sync, intr); 1564 amdgpu_sync_free(&sync); 1565 return ret; 1566 } 1567 1568 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_dev *kgd, 1569 struct kgd_mem *mem, void **kptr, uint64_t *size) 1570 { 1571 int ret; 1572 struct amdgpu_bo *bo = mem->bo; 1573 1574 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1575 pr_err("userptr can't be mapped to kernel\n"); 1576 return -EINVAL; 1577 } 1578 1579 /* delete kgd_mem from kfd_bo_list to avoid re-validating 1580 * this BO in BO's restoring after eviction. 1581 */ 1582 mutex_lock(&mem->process_info->lock); 1583 1584 ret = amdgpu_bo_reserve(bo, true); 1585 if (ret) { 1586 pr_err("Failed to reserve bo. ret %d\n", ret); 1587 goto bo_reserve_failed; 1588 } 1589 1590 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT, NULL); 1591 if (ret) { 1592 pr_err("Failed to pin bo. ret %d\n", ret); 1593 goto pin_failed; 1594 } 1595 1596 ret = amdgpu_bo_kmap(bo, kptr); 1597 if (ret) { 1598 pr_err("Failed to map bo to kernel. ret %d\n", ret); 1599 goto kmap_failed; 1600 } 1601 1602 amdgpu_amdkfd_remove_eviction_fence( 1603 bo, mem->process_info->eviction_fence, NULL, NULL); 1604 list_del_init(&mem->validate_list.head); 1605 1606 if (size) 1607 *size = amdgpu_bo_size(bo); 1608 1609 amdgpu_bo_unreserve(bo); 1610 1611 mutex_unlock(&mem->process_info->lock); 1612 return 0; 1613 1614 kmap_failed: 1615 amdgpu_bo_unpin(bo); 1616 pin_failed: 1617 amdgpu_bo_unreserve(bo); 1618 bo_reserve_failed: 1619 mutex_unlock(&mem->process_info->lock); 1620 1621 return ret; 1622 } 1623 1624 /* Evict a userptr BO by stopping the queues if necessary 1625 * 1626 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 1627 * cannot do any memory allocations, and cannot take any locks that 1628 * are held elsewhere while allocating memory. Therefore this is as 1629 * simple as possible, using atomic counters. 1630 * 1631 * It doesn't do anything to the BO itself. The real work happens in 1632 * restore, where we get updated page addresses. This function only 1633 * ensures that GPU access to the BO is stopped. 1634 */ 1635 int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem, 1636 struct mm_struct *mm) 1637 { 1638 struct amdkfd_process_info *process_info = mem->process_info; 1639 int invalid, evicted_bos; 1640 int r = 0; 1641 1642 invalid = atomic_inc_return(&mem->invalid); 1643 evicted_bos = atomic_inc_return(&process_info->evicted_bos); 1644 if (evicted_bos == 1) { 1645 /* First eviction, stop the queues */ 1646 r = kgd2kfd->quiesce_mm(mm); 1647 if (r) 1648 pr_err("Failed to quiesce KFD\n"); 1649 schedule_delayed_work(&process_info->restore_userptr_work, 1650 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 1651 } 1652 1653 return r; 1654 } 1655 1656 /* Update invalid userptr BOs 1657 * 1658 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 1659 * userptr_inval_list and updates user pages for all BOs that have 1660 * been invalidated since their last update. 1661 */ 1662 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 1663 struct mm_struct *mm) 1664 { 1665 struct kgd_mem *mem, *tmp_mem; 1666 struct amdgpu_bo *bo; 1667 struct ttm_operation_ctx ctx = { false, false }; 1668 int invalid, ret; 1669 1670 /* Move all invalidated BOs to the userptr_inval_list and 1671 * release their user pages by migration to the CPU domain 1672 */ 1673 list_for_each_entry_safe(mem, tmp_mem, 1674 &process_info->userptr_valid_list, 1675 validate_list.head) { 1676 if (!atomic_read(&mem->invalid)) 1677 continue; /* BO is still valid */ 1678 1679 bo = mem->bo; 1680 1681 if (amdgpu_bo_reserve(bo, true)) 1682 return -EAGAIN; 1683 amdgpu_ttm_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 1684 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1685 amdgpu_bo_unreserve(bo); 1686 if (ret) { 1687 pr_err("%s: Failed to invalidate userptr BO\n", 1688 __func__); 1689 return -EAGAIN; 1690 } 1691 1692 list_move_tail(&mem->validate_list.head, 1693 &process_info->userptr_inval_list); 1694 } 1695 1696 if (list_empty(&process_info->userptr_inval_list)) 1697 return 0; /* All evicted userptr BOs were freed */ 1698 1699 /* Go through userptr_inval_list and update any invalid user_pages */ 1700 list_for_each_entry(mem, &process_info->userptr_inval_list, 1701 validate_list.head) { 1702 invalid = atomic_read(&mem->invalid); 1703 if (!invalid) 1704 /* BO hasn't been invalidated since the last 1705 * revalidation attempt. Keep its BO list. 1706 */ 1707 continue; 1708 1709 bo = mem->bo; 1710 1711 if (!mem->user_pages) { 1712 mem->user_pages = 1713 kvmalloc_array(bo->tbo.ttm->num_pages, 1714 sizeof(struct page *), 1715 GFP_KERNEL | __GFP_ZERO); 1716 if (!mem->user_pages) { 1717 pr_err("%s: Failed to allocate pages array\n", 1718 __func__); 1719 return -ENOMEM; 1720 } 1721 } else if (mem->user_pages[0]) { 1722 release_pages(mem->user_pages, bo->tbo.ttm->num_pages); 1723 } 1724 1725 /* Get updated user pages */ 1726 ret = amdgpu_ttm_tt_get_user_pages(bo->tbo.ttm, 1727 mem->user_pages); 1728 if (ret) { 1729 mem->user_pages[0] = NULL; 1730 pr_info("%s: Failed to get user pages: %d\n", 1731 __func__, ret); 1732 /* Pretend it succeeded. It will fail later 1733 * with a VM fault if the GPU tries to access 1734 * it. Better than hanging indefinitely with 1735 * stalled user mode queues. 1736 */ 1737 } 1738 1739 /* Mark the BO as valid unless it was invalidated 1740 * again concurrently 1741 */ 1742 if (atomic_cmpxchg(&mem->invalid, invalid, 0) != invalid) 1743 return -EAGAIN; 1744 } 1745 1746 return 0; 1747 } 1748 1749 /* Validate invalid userptr BOs 1750 * 1751 * Validates BOs on the userptr_inval_list, and moves them back to the 1752 * userptr_valid_list. Also updates GPUVM page tables with new page 1753 * addresses and waits for the page table updates to complete. 1754 */ 1755 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 1756 { 1757 struct amdgpu_bo_list_entry *pd_bo_list_entries; 1758 struct list_head resv_list, duplicates; 1759 struct ww_acquire_ctx ticket; 1760 struct amdgpu_sync sync; 1761 1762 struct amdgpu_vm *peer_vm; 1763 struct kgd_mem *mem, *tmp_mem; 1764 struct amdgpu_bo *bo; 1765 struct ttm_operation_ctx ctx = { false, false }; 1766 int i, ret; 1767 1768 pd_bo_list_entries = kcalloc(process_info->n_vms, 1769 sizeof(struct amdgpu_bo_list_entry), 1770 GFP_KERNEL); 1771 if (!pd_bo_list_entries) { 1772 pr_err("%s: Failed to allocate PD BO list entries\n", __func__); 1773 return -ENOMEM; 1774 } 1775 1776 INIT_LIST_HEAD(&resv_list); 1777 INIT_LIST_HEAD(&duplicates); 1778 1779 /* Get all the page directory BOs that need to be reserved */ 1780 i = 0; 1781 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1782 vm_list_node) 1783 amdgpu_vm_get_pd_bo(peer_vm, &resv_list, 1784 &pd_bo_list_entries[i++]); 1785 /* Add the userptr_inval_list entries to resv_list */ 1786 list_for_each_entry(mem, &process_info->userptr_inval_list, 1787 validate_list.head) { 1788 list_add_tail(&mem->resv_list.head, &resv_list); 1789 mem->resv_list.bo = mem->validate_list.bo; 1790 mem->resv_list.shared = mem->validate_list.shared; 1791 } 1792 1793 /* Reserve all BOs and page tables for validation */ 1794 ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates); 1795 WARN(!list_empty(&duplicates), "Duplicates should be empty"); 1796 if (ret) 1797 goto out; 1798 1799 amdgpu_sync_create(&sync); 1800 1801 /* Avoid triggering eviction fences when unmapping invalid 1802 * userptr BOs (waits for all fences, doesn't use 1803 * FENCE_OWNER_VM) 1804 */ 1805 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1806 vm_list_node) 1807 amdgpu_amdkfd_remove_eviction_fence(peer_vm->root.base.bo, 1808 process_info->eviction_fence, 1809 NULL, NULL); 1810 1811 ret = process_validate_vms(process_info); 1812 if (ret) 1813 goto unreserve_out; 1814 1815 /* Validate BOs and update GPUVM page tables */ 1816 list_for_each_entry_safe(mem, tmp_mem, 1817 &process_info->userptr_inval_list, 1818 validate_list.head) { 1819 struct kfd_bo_va_list *bo_va_entry; 1820 1821 bo = mem->bo; 1822 1823 /* Copy pages array and validate the BO if we got user pages */ 1824 if (mem->user_pages[0]) { 1825 amdgpu_ttm_tt_set_user_pages(bo->tbo.ttm, 1826 mem->user_pages); 1827 amdgpu_ttm_placement_from_domain(bo, mem->domain); 1828 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1829 if (ret) { 1830 pr_err("%s: failed to validate BO\n", __func__); 1831 goto unreserve_out; 1832 } 1833 } 1834 1835 /* Validate succeeded, now the BO owns the pages, free 1836 * our copy of the pointer array. Put this BO back on 1837 * the userptr_valid_list. If we need to revalidate 1838 * it, we need to start from scratch. 1839 */ 1840 kvfree(mem->user_pages); 1841 mem->user_pages = NULL; 1842 list_move_tail(&mem->validate_list.head, 1843 &process_info->userptr_valid_list); 1844 1845 /* Update mapping. If the BO was not validated 1846 * (because we couldn't get user pages), this will 1847 * clear the page table entries, which will result in 1848 * VM faults if the GPU tries to access the invalid 1849 * memory. 1850 */ 1851 list_for_each_entry(bo_va_entry, &mem->bo_va_list, bo_list) { 1852 if (!bo_va_entry->is_mapped) 1853 continue; 1854 1855 ret = update_gpuvm_pte((struct amdgpu_device *) 1856 bo_va_entry->kgd_dev, 1857 bo_va_entry, &sync); 1858 if (ret) { 1859 pr_err("%s: update PTE failed\n", __func__); 1860 /* make sure this gets validated again */ 1861 atomic_inc(&mem->invalid); 1862 goto unreserve_out; 1863 } 1864 } 1865 } 1866 1867 /* Update page directories */ 1868 ret = process_update_pds(process_info, &sync); 1869 1870 unreserve_out: 1871 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1872 vm_list_node) 1873 amdgpu_bo_fence(peer_vm->root.base.bo, 1874 &process_info->eviction_fence->base, true); 1875 ttm_eu_backoff_reservation(&ticket, &resv_list); 1876 amdgpu_sync_wait(&sync, false); 1877 amdgpu_sync_free(&sync); 1878 out: 1879 kfree(pd_bo_list_entries); 1880 1881 return ret; 1882 } 1883 1884 /* Worker callback to restore evicted userptr BOs 1885 * 1886 * Tries to update and validate all userptr BOs. If successful and no 1887 * concurrent evictions happened, the queues are restarted. Otherwise, 1888 * reschedule for another attempt later. 1889 */ 1890 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 1891 { 1892 struct delayed_work *dwork = to_delayed_work(work); 1893 struct amdkfd_process_info *process_info = 1894 container_of(dwork, struct amdkfd_process_info, 1895 restore_userptr_work); 1896 struct task_struct *usertask; 1897 struct mm_struct *mm; 1898 int evicted_bos; 1899 1900 evicted_bos = atomic_read(&process_info->evicted_bos); 1901 if (!evicted_bos) 1902 return; 1903 1904 /* Reference task and mm in case of concurrent process termination */ 1905 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 1906 if (!usertask) 1907 return; 1908 mm = get_task_mm(usertask); 1909 if (!mm) { 1910 put_task_struct(usertask); 1911 return; 1912 } 1913 1914 mutex_lock(&process_info->lock); 1915 1916 if (update_invalid_user_pages(process_info, mm)) 1917 goto unlock_out; 1918 /* userptr_inval_list can be empty if all evicted userptr BOs 1919 * have been freed. In that case there is nothing to validate 1920 * and we can just restart the queues. 1921 */ 1922 if (!list_empty(&process_info->userptr_inval_list)) { 1923 if (atomic_read(&process_info->evicted_bos) != evicted_bos) 1924 goto unlock_out; /* Concurrent eviction, try again */ 1925 1926 if (validate_invalid_user_pages(process_info)) 1927 goto unlock_out; 1928 } 1929 /* Final check for concurrent evicton and atomic update. If 1930 * another eviction happens after successful update, it will 1931 * be a first eviction that calls quiesce_mm. The eviction 1932 * reference counting inside KFD will handle this case. 1933 */ 1934 if (atomic_cmpxchg(&process_info->evicted_bos, evicted_bos, 0) != 1935 evicted_bos) 1936 goto unlock_out; 1937 evicted_bos = 0; 1938 if (kgd2kfd->resume_mm(mm)) { 1939 pr_err("%s: Failed to resume KFD\n", __func__); 1940 /* No recovery from this failure. Probably the CP is 1941 * hanging. No point trying again. 1942 */ 1943 } 1944 unlock_out: 1945 mutex_unlock(&process_info->lock); 1946 mmput(mm); 1947 put_task_struct(usertask); 1948 1949 /* If validation failed, reschedule another attempt */ 1950 if (evicted_bos) 1951 schedule_delayed_work(&process_info->restore_userptr_work, 1952 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 1953 } 1954 1955 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 1956 * KFD process identified by process_info 1957 * 1958 * @process_info: amdkfd_process_info of the KFD process 1959 * 1960 * After memory eviction, restore thread calls this function. The function 1961 * should be called when the Process is still valid. BO restore involves - 1962 * 1963 * 1. Release old eviction fence and create new one 1964 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 1965 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 1966 * BOs that need to be reserved. 1967 * 4. Reserve all the BOs 1968 * 5. Validate of PD and PT BOs. 1969 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 1970 * 7. Add fence to all PD and PT BOs. 1971 * 8. Unreserve all BOs 1972 */ 1973 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 1974 { 1975 struct amdgpu_bo_list_entry *pd_bo_list; 1976 struct amdkfd_process_info *process_info = info; 1977 struct amdgpu_vm *peer_vm; 1978 struct kgd_mem *mem; 1979 struct bo_vm_reservation_context ctx; 1980 struct amdgpu_amdkfd_fence *new_fence; 1981 int ret = 0, i; 1982 struct list_head duplicate_save; 1983 struct amdgpu_sync sync_obj; 1984 1985 INIT_LIST_HEAD(&duplicate_save); 1986 INIT_LIST_HEAD(&ctx.list); 1987 INIT_LIST_HEAD(&ctx.duplicates); 1988 1989 pd_bo_list = kcalloc(process_info->n_vms, 1990 sizeof(struct amdgpu_bo_list_entry), 1991 GFP_KERNEL); 1992 if (!pd_bo_list) 1993 return -ENOMEM; 1994 1995 i = 0; 1996 mutex_lock(&process_info->lock); 1997 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1998 vm_list_node) 1999 amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]); 2000 2001 /* Reserve all BOs and page tables/directory. Add all BOs from 2002 * kfd_bo_list to ctx.list 2003 */ 2004 list_for_each_entry(mem, &process_info->kfd_bo_list, 2005 validate_list.head) { 2006 2007 list_add_tail(&mem->resv_list.head, &ctx.list); 2008 mem->resv_list.bo = mem->validate_list.bo; 2009 mem->resv_list.shared = mem->validate_list.shared; 2010 } 2011 2012 ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list, 2013 false, &duplicate_save); 2014 if (ret) { 2015 pr_debug("Memory eviction: TTM Reserve Failed. Try again\n"); 2016 goto ttm_reserve_fail; 2017 } 2018 2019 amdgpu_sync_create(&sync_obj); 2020 2021 /* Validate PDs and PTs */ 2022 ret = process_validate_vms(process_info); 2023 if (ret) 2024 goto validate_map_fail; 2025 2026 /* Wait for PD/PTs validate to finish */ 2027 /* FIXME: I think this isn't needed */ 2028 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2029 vm_list_node) { 2030 struct amdgpu_bo *bo = peer_vm->root.base.bo; 2031 2032 ttm_bo_wait(&bo->tbo, false, false); 2033 } 2034 2035 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2036 list_for_each_entry(mem, &process_info->kfd_bo_list, 2037 validate_list.head) { 2038 2039 struct amdgpu_bo *bo = mem->bo; 2040 uint32_t domain = mem->domain; 2041 struct kfd_bo_va_list *bo_va_entry; 2042 2043 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2044 if (ret) { 2045 pr_debug("Memory eviction: Validate BOs failed. Try again\n"); 2046 goto validate_map_fail; 2047 } 2048 2049 list_for_each_entry(bo_va_entry, &mem->bo_va_list, 2050 bo_list) { 2051 ret = update_gpuvm_pte((struct amdgpu_device *) 2052 bo_va_entry->kgd_dev, 2053 bo_va_entry, 2054 &sync_obj); 2055 if (ret) { 2056 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2057 goto validate_map_fail; 2058 } 2059 } 2060 } 2061 2062 /* Update page directories */ 2063 ret = process_update_pds(process_info, &sync_obj); 2064 if (ret) { 2065 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2066 goto validate_map_fail; 2067 } 2068 2069 amdgpu_sync_wait(&sync_obj, false); 2070 2071 /* Release old eviction fence and create new one, because fence only 2072 * goes from unsignaled to signaled, fence cannot be reused. 2073 * Use context and mm from the old fence. 2074 */ 2075 new_fence = amdgpu_amdkfd_fence_create( 2076 process_info->eviction_fence->base.context, 2077 process_info->eviction_fence->mm); 2078 if (!new_fence) { 2079 pr_err("Failed to create eviction fence\n"); 2080 ret = -ENOMEM; 2081 goto validate_map_fail; 2082 } 2083 dma_fence_put(&process_info->eviction_fence->base); 2084 process_info->eviction_fence = new_fence; 2085 *ef = dma_fence_get(&new_fence->base); 2086 2087 /* Wait for validate to finish and attach new eviction fence */ 2088 list_for_each_entry(mem, &process_info->kfd_bo_list, 2089 validate_list.head) 2090 ttm_bo_wait(&mem->bo->tbo, false, false); 2091 list_for_each_entry(mem, &process_info->kfd_bo_list, 2092 validate_list.head) 2093 amdgpu_bo_fence(mem->bo, 2094 &process_info->eviction_fence->base, true); 2095 2096 /* Attach eviction fence to PD / PT BOs */ 2097 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2098 vm_list_node) { 2099 struct amdgpu_bo *bo = peer_vm->root.base.bo; 2100 2101 amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true); 2102 } 2103 2104 validate_map_fail: 2105 ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list); 2106 amdgpu_sync_free(&sync_obj); 2107 ttm_reserve_fail: 2108 mutex_unlock(&process_info->lock); 2109 kfree(pd_bo_list); 2110 return ret; 2111 } 2112