1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include "amdgpu_object.h" 31 #include "amdgpu_gem.h" 32 #include "amdgpu_vm.h" 33 #include "amdgpu_hmm.h" 34 #include "amdgpu_amdkfd.h" 35 #include "amdgpu_dma_buf.h" 36 #include <uapi/linux/kfd_ioctl.h> 37 #include "amdgpu_xgmi.h" 38 #include "kfd_priv.h" 39 #include "kfd_smi_events.h" 40 #include <drm/ttm/ttm_tt.h> 41 42 /* Userptr restore delay, just long enough to allow consecutive VM 43 * changes to accumulate 44 */ 45 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 46 47 /* 48 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 49 * BO chunk 50 */ 51 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 52 53 /* Impose limit on how much memory KFD can use */ 54 static struct { 55 uint64_t max_system_mem_limit; 56 uint64_t max_ttm_mem_limit; 57 int64_t system_mem_used; 58 int64_t ttm_mem_used; 59 spinlock_t mem_limit_lock; 60 } kfd_mem_limit; 61 62 static const char * const domain_bit_to_string[] = { 63 "CPU", 64 "GTT", 65 "VRAM", 66 "GDS", 67 "GWS", 68 "OA" 69 }; 70 71 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 72 73 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 74 75 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 76 struct kgd_mem *mem) 77 { 78 struct kfd_mem_attachment *entry; 79 80 list_for_each_entry(entry, &mem->attachments, list) 81 if (entry->bo_va->base.vm == avm) 82 return true; 83 84 return false; 85 } 86 87 /** 88 * reuse_dmamap() - Check whether adev can share the original 89 * userptr BO 90 * 91 * If both adev and bo_adev are in direct mapping or 92 * in the same iommu group, they can share the original BO. 93 * 94 * @adev: Device to which can or cannot share the original BO 95 * @bo_adev: Device to which allocated BO belongs to 96 * 97 * Return: returns true if adev can share original userptr BO, 98 * false otherwise. 99 */ 100 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 101 { 102 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 103 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 104 } 105 106 /* Set memory usage limits. Current, limits are 107 * System (TTM + userptr) memory - 15/16th System RAM 108 * TTM memory - 3/8th System RAM 109 */ 110 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 111 { 112 struct sysinfo si; 113 uint64_t mem; 114 115 if (kfd_mem_limit.max_system_mem_limit) 116 return; 117 118 si_meminfo(&si); 119 mem = si.freeram - si.freehigh; 120 mem *= si.mem_unit; 121 122 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 123 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4); 124 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 125 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 126 (kfd_mem_limit.max_system_mem_limit >> 20), 127 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 128 } 129 130 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 131 { 132 kfd_mem_limit.system_mem_used += size; 133 } 134 135 /* Estimate page table size needed to represent a given memory size 136 * 137 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 138 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 139 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 140 * for 2MB pages for TLB efficiency. However, small allocations and 141 * fragmented system memory still need some 4KB pages. We choose a 142 * compromise that should work in most cases without reserving too 143 * much memory for page tables unnecessarily (factor 16K, >> 14). 144 */ 145 146 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 147 148 /** 149 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 150 * of buffer. 151 * 152 * @adev: Device to which allocated BO belongs to 153 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 154 * equivalent to amdgpu_bo_size(BO) 155 * @alloc_flag: Flag used in allocating a BO as noted above 156 * 157 * Return: returns -ENOMEM in case of error, ZERO otherwise 158 */ 159 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 160 uint64_t size, u32 alloc_flag) 161 { 162 uint64_t reserved_for_pt = 163 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 164 size_t system_mem_needed, ttm_mem_needed, vram_needed; 165 int ret = 0; 166 167 system_mem_needed = 0; 168 ttm_mem_needed = 0; 169 vram_needed = 0; 170 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 171 system_mem_needed = size; 172 ttm_mem_needed = size; 173 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 174 /* 175 * Conservatively round up the allocation requirement to 2 MB 176 * to avoid fragmentation caused by 4K allocations in the tail 177 * 2M BO chunk. 178 */ 179 vram_needed = size; 180 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 181 system_mem_needed = size; 182 } else if (!(alloc_flag & 183 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 184 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 185 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 186 return -ENOMEM; 187 } 188 189 spin_lock(&kfd_mem_limit.mem_limit_lock); 190 191 if (kfd_mem_limit.system_mem_used + system_mem_needed > 192 kfd_mem_limit.max_system_mem_limit) 193 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 194 195 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 196 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 197 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 198 kfd_mem_limit.max_ttm_mem_limit) || 199 (adev && adev->kfd.vram_used + vram_needed > 200 adev->gmc.real_vram_size - reserved_for_pt)) { 201 ret = -ENOMEM; 202 goto release; 203 } 204 205 /* Update memory accounting by decreasing available system 206 * memory, TTM memory and GPU memory as computed above 207 */ 208 WARN_ONCE(vram_needed && !adev, 209 "adev reference can't be null when vram is used"); 210 if (adev) { 211 adev->kfd.vram_used += vram_needed; 212 adev->kfd.vram_used_aligned += ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 213 } 214 kfd_mem_limit.system_mem_used += system_mem_needed; 215 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 216 217 release: 218 spin_unlock(&kfd_mem_limit.mem_limit_lock); 219 return ret; 220 } 221 222 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 223 uint64_t size, u32 alloc_flag) 224 { 225 spin_lock(&kfd_mem_limit.mem_limit_lock); 226 227 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 228 kfd_mem_limit.system_mem_used -= size; 229 kfd_mem_limit.ttm_mem_used -= size; 230 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 231 WARN_ONCE(!adev, 232 "adev reference can't be null when alloc mem flags vram is set"); 233 if (adev) { 234 adev->kfd.vram_used -= size; 235 adev->kfd.vram_used_aligned -= ALIGN(size, VRAM_AVAILABLITY_ALIGN); 236 } 237 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 238 kfd_mem_limit.system_mem_used -= size; 239 } else if (!(alloc_flag & 240 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 241 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 242 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 243 goto release; 244 } 245 WARN_ONCE(adev && adev->kfd.vram_used < 0, 246 "KFD VRAM memory accounting unbalanced"); 247 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 248 "KFD TTM memory accounting unbalanced"); 249 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 250 "KFD system memory accounting unbalanced"); 251 252 release: 253 spin_unlock(&kfd_mem_limit.mem_limit_lock); 254 } 255 256 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 257 { 258 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 259 u32 alloc_flags = bo->kfd_bo->alloc_flags; 260 u64 size = amdgpu_bo_size(bo); 261 262 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags); 263 264 kfree(bo->kfd_bo); 265 } 266 267 /** 268 * @create_dmamap_sg_bo: Creates a amdgpu_bo object to reflect information 269 * about USERPTR or DOOREBELL or MMIO BO. 270 * @adev: Device for which dmamap BO is being created 271 * @mem: BO of peer device that is being DMA mapped. Provides parameters 272 * in building the dmamap BO 273 * @bo_out: Output parameter updated with handle of dmamap BO 274 */ 275 static int 276 create_dmamap_sg_bo(struct amdgpu_device *adev, 277 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 278 { 279 struct drm_gem_object *gem_obj; 280 int ret; 281 uint64_t flags = 0; 282 283 ret = amdgpu_bo_reserve(mem->bo, false); 284 if (ret) 285 return ret; 286 287 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 288 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 289 AMDGPU_GEM_CREATE_UNCACHED); 290 291 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 292 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 293 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj); 294 295 amdgpu_bo_unreserve(mem->bo); 296 297 if (ret) { 298 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 299 return -EINVAL; 300 } 301 302 *bo_out = gem_to_amdgpu_bo(gem_obj); 303 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 304 return ret; 305 } 306 307 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 308 * reservation object. 309 * 310 * @bo: [IN] Remove eviction fence(s) from this BO 311 * @ef: [IN] This eviction fence is removed if it 312 * is present in the shared list. 313 * 314 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 315 */ 316 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 317 struct amdgpu_amdkfd_fence *ef) 318 { 319 struct dma_fence *replacement; 320 321 if (!ef) 322 return -EINVAL; 323 324 /* TODO: Instead of block before we should use the fence of the page 325 * table update and TLB flush here directly. 326 */ 327 replacement = dma_fence_get_stub(); 328 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 329 replacement, DMA_RESV_USAGE_BOOKKEEP); 330 dma_fence_put(replacement); 331 return 0; 332 } 333 334 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 335 { 336 struct amdgpu_bo *root = bo; 337 struct amdgpu_vm_bo_base *vm_bo; 338 struct amdgpu_vm *vm; 339 struct amdkfd_process_info *info; 340 struct amdgpu_amdkfd_fence *ef; 341 int ret; 342 343 /* we can always get vm_bo from root PD bo.*/ 344 while (root->parent) 345 root = root->parent; 346 347 vm_bo = root->vm_bo; 348 if (!vm_bo) 349 return 0; 350 351 vm = vm_bo->vm; 352 if (!vm) 353 return 0; 354 355 info = vm->process_info; 356 if (!info || !info->eviction_fence) 357 return 0; 358 359 ef = container_of(dma_fence_get(&info->eviction_fence->base), 360 struct amdgpu_amdkfd_fence, base); 361 362 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 363 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 364 dma_resv_unlock(bo->tbo.base.resv); 365 366 dma_fence_put(&ef->base); 367 return ret; 368 } 369 370 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 371 bool wait) 372 { 373 struct ttm_operation_ctx ctx = { false, false }; 374 int ret; 375 376 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 377 "Called with userptr BO")) 378 return -EINVAL; 379 380 amdgpu_bo_placement_from_domain(bo, domain); 381 382 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 383 if (ret) 384 goto validate_fail; 385 if (wait) 386 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 387 388 validate_fail: 389 return ret; 390 } 391 392 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 393 { 394 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 395 } 396 397 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 398 * 399 * Page directories are not updated here because huge page handling 400 * during page table updates can invalidate page directory entries 401 * again. Page directories are only updated after updating page 402 * tables. 403 */ 404 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 405 { 406 struct amdgpu_bo *pd = vm->root.bo; 407 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 408 int ret; 409 410 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 411 if (ret) { 412 pr_err("failed to validate PT BOs\n"); 413 return ret; 414 } 415 416 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 417 418 return 0; 419 } 420 421 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 422 { 423 struct amdgpu_bo *pd = vm->root.bo; 424 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 425 int ret; 426 427 ret = amdgpu_vm_update_pdes(adev, vm, false); 428 if (ret) 429 return ret; 430 431 return amdgpu_sync_fence(sync, vm->last_update); 432 } 433 434 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 435 { 436 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 437 AMDGPU_VM_MTYPE_DEFAULT; 438 439 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 440 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 441 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 442 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 443 444 return amdgpu_gem_va_map_flags(adev, mapping_flags); 445 } 446 447 /** 448 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 449 * @addr: The starting address to point to 450 * @size: Size of memory area in bytes being pointed to 451 * 452 * Allocates an instance of sg_table and initializes it to point to memory 453 * area specified by input parameters. The address used to build is assumed 454 * to be DMA mapped, if needed. 455 * 456 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 457 * because they are physically contiguous. 458 * 459 * Return: Initialized instance of SG Table or NULL 460 */ 461 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 462 { 463 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 464 465 if (!sg) 466 return NULL; 467 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 468 kfree(sg); 469 return NULL; 470 } 471 sg_dma_address(sg->sgl) = addr; 472 sg->sgl->length = size; 473 #ifdef CONFIG_NEED_SG_DMA_LENGTH 474 sg->sgl->dma_length = size; 475 #endif 476 return sg; 477 } 478 479 static int 480 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 481 struct kfd_mem_attachment *attachment) 482 { 483 enum dma_data_direction direction = 484 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 485 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 486 struct ttm_operation_ctx ctx = {.interruptible = true}; 487 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 488 struct amdgpu_device *adev = attachment->adev; 489 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 490 struct ttm_tt *ttm = bo->tbo.ttm; 491 int ret; 492 493 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 494 return -EINVAL; 495 496 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 497 if (unlikely(!ttm->sg)) 498 return -ENOMEM; 499 500 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 501 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 502 ttm->num_pages, 0, 503 (u64)ttm->num_pages << PAGE_SHIFT, 504 GFP_KERNEL); 505 if (unlikely(ret)) 506 goto free_sg; 507 508 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 509 if (unlikely(ret)) 510 goto release_sg; 511 512 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 513 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 514 if (ret) 515 goto unmap_sg; 516 517 return 0; 518 519 unmap_sg: 520 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 521 release_sg: 522 pr_err("DMA map userptr failed: %d\n", ret); 523 sg_free_table(ttm->sg); 524 free_sg: 525 kfree(ttm->sg); 526 ttm->sg = NULL; 527 return ret; 528 } 529 530 static int 531 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 532 { 533 struct ttm_operation_ctx ctx = {.interruptible = true}; 534 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 535 int ret; 536 537 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 538 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 539 if (ret) 540 return ret; 541 542 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 543 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 544 } 545 546 /** 547 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 548 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 549 * @attachment: Virtual address attachment of the BO on accessing device 550 * 551 * An access request from the device that owns DOORBELL does not require DMA mapping. 552 * This is because the request doesn't go through PCIe root complex i.e. it instead 553 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 554 * 555 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 556 * device ownership. This is because access requests for MMIO go through PCIe root 557 * complex. 558 * 559 * This is accomplished in two steps: 560 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 561 * in updating requesting device's page table 562 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 563 * accessible. This allows an update of requesting device's page table 564 * with entries associated with DOOREBELL or MMIO memory 565 * 566 * This method is invoked in the following contexts: 567 * - Mapping of DOORBELL or MMIO BO of same or peer device 568 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 569 * 570 * Return: ZERO if successful, NON-ZERO otherwise 571 */ 572 static int 573 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 574 struct kfd_mem_attachment *attachment) 575 { 576 struct ttm_operation_ctx ctx = {.interruptible = true}; 577 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 578 struct amdgpu_device *adev = attachment->adev; 579 struct ttm_tt *ttm = bo->tbo.ttm; 580 enum dma_data_direction dir; 581 dma_addr_t dma_addr; 582 bool mmio; 583 int ret; 584 585 /* Expect SG Table of dmapmap BO to be NULL */ 586 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 587 if (unlikely(ttm->sg)) { 588 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 589 return -EINVAL; 590 } 591 592 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 593 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 594 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 595 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 596 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 597 dma_addr = dma_map_resource(adev->dev, dma_addr, 598 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 599 ret = dma_mapping_error(adev->dev, dma_addr); 600 if (unlikely(ret)) 601 return ret; 602 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 603 604 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 605 if (unlikely(!ttm->sg)) { 606 ret = -ENOMEM; 607 goto unmap_sg; 608 } 609 610 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 611 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 612 if (unlikely(ret)) 613 goto free_sg; 614 615 return ret; 616 617 free_sg: 618 sg_free_table(ttm->sg); 619 kfree(ttm->sg); 620 ttm->sg = NULL; 621 unmap_sg: 622 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 623 dir, DMA_ATTR_SKIP_CPU_SYNC); 624 return ret; 625 } 626 627 static int 628 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 629 struct kfd_mem_attachment *attachment) 630 { 631 switch (attachment->type) { 632 case KFD_MEM_ATT_SHARED: 633 return 0; 634 case KFD_MEM_ATT_USERPTR: 635 return kfd_mem_dmamap_userptr(mem, attachment); 636 case KFD_MEM_ATT_DMABUF: 637 return kfd_mem_dmamap_dmabuf(attachment); 638 case KFD_MEM_ATT_SG: 639 return kfd_mem_dmamap_sg_bo(mem, attachment); 640 default: 641 WARN_ON_ONCE(1); 642 } 643 return -EINVAL; 644 } 645 646 static void 647 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 648 struct kfd_mem_attachment *attachment) 649 { 650 enum dma_data_direction direction = 651 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 652 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 653 struct ttm_operation_ctx ctx = {.interruptible = false}; 654 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 655 struct amdgpu_device *adev = attachment->adev; 656 struct ttm_tt *ttm = bo->tbo.ttm; 657 658 if (unlikely(!ttm->sg)) 659 return; 660 661 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 662 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 663 664 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 665 sg_free_table(ttm->sg); 666 kfree(ttm->sg); 667 ttm->sg = NULL; 668 } 669 670 static void 671 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 672 { 673 /* This is a no-op. We don't want to trigger eviction fences when 674 * unmapping DMABufs. Therefore the invalidation (moving to system 675 * domain) is done in kfd_mem_dmamap_dmabuf. 676 */ 677 } 678 679 /** 680 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 681 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 682 * @attachment: Virtual address attachment of the BO on accessing device 683 * 684 * The method performs following steps: 685 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 686 * - Free SG Table that is used to encapsulate DMA mapped memory of 687 * peer device's DOORBELL or MMIO memory 688 * 689 * This method is invoked in the following contexts: 690 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 691 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 692 * 693 * Return: void 694 */ 695 static void 696 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 697 struct kfd_mem_attachment *attachment) 698 { 699 struct ttm_operation_ctx ctx = {.interruptible = true}; 700 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 701 struct amdgpu_device *adev = attachment->adev; 702 struct ttm_tt *ttm = bo->tbo.ttm; 703 enum dma_data_direction dir; 704 705 if (unlikely(!ttm->sg)) { 706 pr_err("SG Table of BO is UNEXPECTEDLY NULL"); 707 return; 708 } 709 710 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 711 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 712 713 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 714 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 715 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 716 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 717 sg_free_table(ttm->sg); 718 kfree(ttm->sg); 719 ttm->sg = NULL; 720 bo->tbo.sg = NULL; 721 } 722 723 static void 724 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 725 struct kfd_mem_attachment *attachment) 726 { 727 switch (attachment->type) { 728 case KFD_MEM_ATT_SHARED: 729 break; 730 case KFD_MEM_ATT_USERPTR: 731 kfd_mem_dmaunmap_userptr(mem, attachment); 732 break; 733 case KFD_MEM_ATT_DMABUF: 734 kfd_mem_dmaunmap_dmabuf(attachment); 735 break; 736 case KFD_MEM_ATT_SG: 737 kfd_mem_dmaunmap_sg_bo(mem, attachment); 738 break; 739 default: 740 WARN_ON_ONCE(1); 741 } 742 } 743 744 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 745 { 746 if (!mem->dmabuf) { 747 struct dma_buf *ret = amdgpu_gem_prime_export( 748 &mem->bo->tbo.base, 749 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 750 DRM_RDWR : 0); 751 if (IS_ERR(ret)) 752 return PTR_ERR(ret); 753 mem->dmabuf = ret; 754 } 755 756 return 0; 757 } 758 759 static int 760 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 761 struct amdgpu_bo **bo) 762 { 763 struct drm_gem_object *gobj; 764 int ret; 765 766 ret = kfd_mem_export_dmabuf(mem); 767 if (ret) 768 return ret; 769 770 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 771 if (IS_ERR(gobj)) 772 return PTR_ERR(gobj); 773 774 *bo = gem_to_amdgpu_bo(gobj); 775 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 776 777 return 0; 778 } 779 780 /* kfd_mem_attach - Add a BO to a VM 781 * 782 * Everything that needs to bo done only once when a BO is first added 783 * to a VM. It can later be mapped and unmapped many times without 784 * repeating these steps. 785 * 786 * 0. Create BO for DMA mapping, if needed 787 * 1. Allocate and initialize BO VA entry data structure 788 * 2. Add BO to the VM 789 * 3. Determine ASIC-specific PTE flags 790 * 4. Alloc page tables and directories if needed 791 * 4a. Validate new page tables and directories 792 */ 793 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 794 struct amdgpu_vm *vm, bool is_aql) 795 { 796 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 797 unsigned long bo_size = mem->bo->tbo.base.size; 798 uint64_t va = mem->va; 799 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 800 struct amdgpu_bo *bo[2] = {NULL, NULL}; 801 bool same_hive = false; 802 int i, ret; 803 804 if (!va) { 805 pr_err("Invalid VA when adding BO to VM\n"); 806 return -EINVAL; 807 } 808 809 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 810 * 811 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 812 * In contrast the access path of VRAM BOs depens upon the type of 813 * link that connects the peer device. Access over PCIe is allowed 814 * if peer device has large BAR. In contrast, access over xGMI is 815 * allowed for both small and large BAR configurations of peer device 816 */ 817 if ((adev != bo_adev) && 818 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 819 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 820 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 821 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 822 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 823 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 824 return -EINVAL; 825 } 826 827 for (i = 0; i <= is_aql; i++) { 828 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 829 if (unlikely(!attachment[i])) { 830 ret = -ENOMEM; 831 goto unwind; 832 } 833 834 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 835 va + bo_size, vm); 836 837 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 838 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 839 same_hive) { 840 /* Mappings on the local GPU, or VRAM mappings in the 841 * local hive, or userptr mapping can reuse dma map 842 * address space share the original BO 843 */ 844 attachment[i]->type = KFD_MEM_ATT_SHARED; 845 bo[i] = mem->bo; 846 drm_gem_object_get(&bo[i]->tbo.base); 847 } else if (i > 0) { 848 /* Multiple mappings on the same GPU share the BO */ 849 attachment[i]->type = KFD_MEM_ATT_SHARED; 850 bo[i] = bo[0]; 851 drm_gem_object_get(&bo[i]->tbo.base); 852 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 853 /* Create an SG BO to DMA-map userptrs on other GPUs */ 854 attachment[i]->type = KFD_MEM_ATT_USERPTR; 855 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 856 if (ret) 857 goto unwind; 858 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 859 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 860 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 861 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 862 "Handing invalid SG BO in ATTACH request"); 863 attachment[i]->type = KFD_MEM_ATT_SG; 864 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 865 if (ret) 866 goto unwind; 867 /* Enable acces to GTT and VRAM BOs of peer devices */ 868 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 869 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 870 attachment[i]->type = KFD_MEM_ATT_DMABUF; 871 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 872 if (ret) 873 goto unwind; 874 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 875 } else { 876 WARN_ONCE(true, "Handling invalid ATTACH request"); 877 ret = -EINVAL; 878 goto unwind; 879 } 880 881 /* Add BO to VM internal data structures */ 882 ret = amdgpu_bo_reserve(bo[i], false); 883 if (ret) { 884 pr_debug("Unable to reserve BO during memory attach"); 885 goto unwind; 886 } 887 attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 888 amdgpu_bo_unreserve(bo[i]); 889 if (unlikely(!attachment[i]->bo_va)) { 890 ret = -ENOMEM; 891 pr_err("Failed to add BO object to VM. ret == %d\n", 892 ret); 893 goto unwind; 894 } 895 attachment[i]->va = va; 896 attachment[i]->pte_flags = get_pte_flags(adev, mem); 897 attachment[i]->adev = adev; 898 list_add(&attachment[i]->list, &mem->attachments); 899 900 va += bo_size; 901 } 902 903 return 0; 904 905 unwind: 906 for (; i >= 0; i--) { 907 if (!attachment[i]) 908 continue; 909 if (attachment[i]->bo_va) { 910 amdgpu_bo_reserve(bo[i], true); 911 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 912 amdgpu_bo_unreserve(bo[i]); 913 list_del(&attachment[i]->list); 914 } 915 if (bo[i]) 916 drm_gem_object_put(&bo[i]->tbo.base); 917 kfree(attachment[i]); 918 } 919 return ret; 920 } 921 922 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 923 { 924 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 925 926 pr_debug("\t remove VA 0x%llx in entry %p\n", 927 attachment->va, attachment); 928 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 929 drm_gem_object_put(&bo->tbo.base); 930 list_del(&attachment->list); 931 kfree(attachment); 932 } 933 934 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 935 struct amdkfd_process_info *process_info, 936 bool userptr) 937 { 938 struct ttm_validate_buffer *entry = &mem->validate_list; 939 struct amdgpu_bo *bo = mem->bo; 940 941 INIT_LIST_HEAD(&entry->head); 942 entry->num_shared = 1; 943 entry->bo = &bo->tbo; 944 mutex_lock(&process_info->lock); 945 if (userptr) 946 list_add_tail(&entry->head, &process_info->userptr_valid_list); 947 else 948 list_add_tail(&entry->head, &process_info->kfd_bo_list); 949 mutex_unlock(&process_info->lock); 950 } 951 952 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 953 struct amdkfd_process_info *process_info) 954 { 955 struct ttm_validate_buffer *bo_list_entry; 956 957 bo_list_entry = &mem->validate_list; 958 mutex_lock(&process_info->lock); 959 list_del(&bo_list_entry->head); 960 mutex_unlock(&process_info->lock); 961 } 962 963 /* Initializes user pages. It registers the MMU notifier and validates 964 * the userptr BO in the GTT domain. 965 * 966 * The BO must already be on the userptr_valid_list. Otherwise an 967 * eviction and restore may happen that leaves the new BO unmapped 968 * with the user mode queues running. 969 * 970 * Takes the process_info->lock to protect against concurrent restore 971 * workers. 972 * 973 * Returns 0 for success, negative errno for errors. 974 */ 975 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 976 bool criu_resume) 977 { 978 struct amdkfd_process_info *process_info = mem->process_info; 979 struct amdgpu_bo *bo = mem->bo; 980 struct ttm_operation_ctx ctx = { true, false }; 981 struct hmm_range *range; 982 int ret = 0; 983 984 mutex_lock(&process_info->lock); 985 986 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 987 if (ret) { 988 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 989 goto out; 990 } 991 992 ret = amdgpu_hmm_register(bo, user_addr); 993 if (ret) { 994 pr_err("%s: Failed to register MMU notifier: %d\n", 995 __func__, ret); 996 goto out; 997 } 998 999 if (criu_resume) { 1000 /* 1001 * During a CRIU restore operation, the userptr buffer objects 1002 * will be validated in the restore_userptr_work worker at a 1003 * later stage when it is scheduled by another ioctl called by 1004 * CRIU master process for the target pid for restore. 1005 */ 1006 mutex_lock(&process_info->notifier_lock); 1007 mem->invalid++; 1008 mutex_unlock(&process_info->notifier_lock); 1009 mutex_unlock(&process_info->lock); 1010 return 0; 1011 } 1012 1013 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1014 if (ret) { 1015 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1016 goto unregister_out; 1017 } 1018 1019 ret = amdgpu_bo_reserve(bo, true); 1020 if (ret) { 1021 pr_err("%s: Failed to reserve BO\n", __func__); 1022 goto release_out; 1023 } 1024 amdgpu_bo_placement_from_domain(bo, mem->domain); 1025 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1026 if (ret) 1027 pr_err("%s: failed to validate BO\n", __func__); 1028 amdgpu_bo_unreserve(bo); 1029 1030 release_out: 1031 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1032 unregister_out: 1033 if (ret) 1034 amdgpu_hmm_unregister(bo); 1035 out: 1036 mutex_unlock(&process_info->lock); 1037 return ret; 1038 } 1039 1040 /* Reserving a BO and its page table BOs must happen atomically to 1041 * avoid deadlocks. Some operations update multiple VMs at once. Track 1042 * all the reservation info in a context structure. Optionally a sync 1043 * object can track VM updates. 1044 */ 1045 struct bo_vm_reservation_context { 1046 struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */ 1047 unsigned int n_vms; /* Number of VMs reserved */ 1048 struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries */ 1049 struct ww_acquire_ctx ticket; /* Reservation ticket */ 1050 struct list_head list, duplicates; /* BO lists */ 1051 struct amdgpu_sync *sync; /* Pointer to sync object */ 1052 bool reserved; /* Whether BOs are reserved */ 1053 }; 1054 1055 enum bo_vm_match { 1056 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1057 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1058 BO_VM_ALL, /* Match all VMs a BO was added to */ 1059 }; 1060 1061 /** 1062 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1063 * @mem: KFD BO structure. 1064 * @vm: the VM to reserve. 1065 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1066 */ 1067 static int reserve_bo_and_vm(struct kgd_mem *mem, 1068 struct amdgpu_vm *vm, 1069 struct bo_vm_reservation_context *ctx) 1070 { 1071 struct amdgpu_bo *bo = mem->bo; 1072 int ret; 1073 1074 WARN_ON(!vm); 1075 1076 ctx->reserved = false; 1077 ctx->n_vms = 1; 1078 ctx->sync = &mem->sync; 1079 1080 INIT_LIST_HEAD(&ctx->list); 1081 INIT_LIST_HEAD(&ctx->duplicates); 1082 1083 ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL); 1084 if (!ctx->vm_pd) 1085 return -ENOMEM; 1086 1087 ctx->kfd_bo.priority = 0; 1088 ctx->kfd_bo.tv.bo = &bo->tbo; 1089 ctx->kfd_bo.tv.num_shared = 1; 1090 list_add(&ctx->kfd_bo.tv.head, &ctx->list); 1091 1092 amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]); 1093 1094 ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, 1095 false, &ctx->duplicates); 1096 if (ret) { 1097 pr_err("Failed to reserve buffers in ttm.\n"); 1098 kfree(ctx->vm_pd); 1099 ctx->vm_pd = NULL; 1100 return ret; 1101 } 1102 1103 ctx->reserved = true; 1104 return 0; 1105 } 1106 1107 /** 1108 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1109 * @mem: KFD BO structure. 1110 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1111 * is used. Otherwise, a single VM associated with the BO. 1112 * @map_type: the mapping status that will be used to filter the VMs. 1113 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1114 * 1115 * Returns 0 for success, negative for failure. 1116 */ 1117 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1118 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1119 struct bo_vm_reservation_context *ctx) 1120 { 1121 struct amdgpu_bo *bo = mem->bo; 1122 struct kfd_mem_attachment *entry; 1123 unsigned int i; 1124 int ret; 1125 1126 ctx->reserved = false; 1127 ctx->n_vms = 0; 1128 ctx->vm_pd = NULL; 1129 ctx->sync = &mem->sync; 1130 1131 INIT_LIST_HEAD(&ctx->list); 1132 INIT_LIST_HEAD(&ctx->duplicates); 1133 1134 list_for_each_entry(entry, &mem->attachments, list) { 1135 if ((vm && vm != entry->bo_va->base.vm) || 1136 (entry->is_mapped != map_type 1137 && map_type != BO_VM_ALL)) 1138 continue; 1139 1140 ctx->n_vms++; 1141 } 1142 1143 if (ctx->n_vms != 0) { 1144 ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), 1145 GFP_KERNEL); 1146 if (!ctx->vm_pd) 1147 return -ENOMEM; 1148 } 1149 1150 ctx->kfd_bo.priority = 0; 1151 ctx->kfd_bo.tv.bo = &bo->tbo; 1152 ctx->kfd_bo.tv.num_shared = 1; 1153 list_add(&ctx->kfd_bo.tv.head, &ctx->list); 1154 1155 i = 0; 1156 list_for_each_entry(entry, &mem->attachments, list) { 1157 if ((vm && vm != entry->bo_va->base.vm) || 1158 (entry->is_mapped != map_type 1159 && map_type != BO_VM_ALL)) 1160 continue; 1161 1162 amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list, 1163 &ctx->vm_pd[i]); 1164 i++; 1165 } 1166 1167 ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, 1168 false, &ctx->duplicates); 1169 if (ret) { 1170 pr_err("Failed to reserve buffers in ttm.\n"); 1171 kfree(ctx->vm_pd); 1172 ctx->vm_pd = NULL; 1173 return ret; 1174 } 1175 1176 ctx->reserved = true; 1177 return 0; 1178 } 1179 1180 /** 1181 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1182 * @ctx: Reservation context to unreserve 1183 * @wait: Optionally wait for a sync object representing pending VM updates 1184 * @intr: Whether the wait is interruptible 1185 * 1186 * Also frees any resources allocated in 1187 * reserve_bo_and_(cond_)vm(s). Returns the status from 1188 * amdgpu_sync_wait. 1189 */ 1190 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1191 bool wait, bool intr) 1192 { 1193 int ret = 0; 1194 1195 if (wait) 1196 ret = amdgpu_sync_wait(ctx->sync, intr); 1197 1198 if (ctx->reserved) 1199 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list); 1200 kfree(ctx->vm_pd); 1201 1202 ctx->sync = NULL; 1203 1204 ctx->reserved = false; 1205 ctx->vm_pd = NULL; 1206 1207 return ret; 1208 } 1209 1210 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1211 struct kfd_mem_attachment *entry, 1212 struct amdgpu_sync *sync) 1213 { 1214 struct amdgpu_bo_va *bo_va = entry->bo_va; 1215 struct amdgpu_device *adev = entry->adev; 1216 struct amdgpu_vm *vm = bo_va->base.vm; 1217 1218 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1219 1220 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1221 1222 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1223 1224 kfd_mem_dmaunmap_attachment(mem, entry); 1225 } 1226 1227 static int update_gpuvm_pte(struct kgd_mem *mem, 1228 struct kfd_mem_attachment *entry, 1229 struct amdgpu_sync *sync) 1230 { 1231 struct amdgpu_bo_va *bo_va = entry->bo_va; 1232 struct amdgpu_device *adev = entry->adev; 1233 int ret; 1234 1235 ret = kfd_mem_dmamap_attachment(mem, entry); 1236 if (ret) 1237 return ret; 1238 1239 /* Update the page tables */ 1240 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1241 if (ret) { 1242 pr_err("amdgpu_vm_bo_update failed\n"); 1243 return ret; 1244 } 1245 1246 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1247 } 1248 1249 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1250 struct kfd_mem_attachment *entry, 1251 struct amdgpu_sync *sync, 1252 bool no_update_pte) 1253 { 1254 int ret; 1255 1256 /* Set virtual address for the allocation */ 1257 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1258 amdgpu_bo_size(entry->bo_va->base.bo), 1259 entry->pte_flags); 1260 if (ret) { 1261 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1262 entry->va, ret); 1263 return ret; 1264 } 1265 1266 if (no_update_pte) 1267 return 0; 1268 1269 ret = update_gpuvm_pte(mem, entry, sync); 1270 if (ret) { 1271 pr_err("update_gpuvm_pte() failed\n"); 1272 goto update_gpuvm_pte_failed; 1273 } 1274 1275 return 0; 1276 1277 update_gpuvm_pte_failed: 1278 unmap_bo_from_gpuvm(mem, entry, sync); 1279 return ret; 1280 } 1281 1282 static int process_validate_vms(struct amdkfd_process_info *process_info) 1283 { 1284 struct amdgpu_vm *peer_vm; 1285 int ret; 1286 1287 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1288 vm_list_node) { 1289 ret = vm_validate_pt_pd_bos(peer_vm); 1290 if (ret) 1291 return ret; 1292 } 1293 1294 return 0; 1295 } 1296 1297 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1298 struct amdgpu_sync *sync) 1299 { 1300 struct amdgpu_vm *peer_vm; 1301 int ret; 1302 1303 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1304 vm_list_node) { 1305 struct amdgpu_bo *pd = peer_vm->root.bo; 1306 1307 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1308 AMDGPU_SYNC_NE_OWNER, 1309 AMDGPU_FENCE_OWNER_KFD); 1310 if (ret) 1311 return ret; 1312 } 1313 1314 return 0; 1315 } 1316 1317 static int process_update_pds(struct amdkfd_process_info *process_info, 1318 struct amdgpu_sync *sync) 1319 { 1320 struct amdgpu_vm *peer_vm; 1321 int ret; 1322 1323 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1324 vm_list_node) { 1325 ret = vm_update_pds(peer_vm, sync); 1326 if (ret) 1327 return ret; 1328 } 1329 1330 return 0; 1331 } 1332 1333 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1334 struct dma_fence **ef) 1335 { 1336 struct amdkfd_process_info *info = NULL; 1337 int ret; 1338 1339 if (!*process_info) { 1340 info = kzalloc(sizeof(*info), GFP_KERNEL); 1341 if (!info) 1342 return -ENOMEM; 1343 1344 mutex_init(&info->lock); 1345 mutex_init(&info->notifier_lock); 1346 INIT_LIST_HEAD(&info->vm_list_head); 1347 INIT_LIST_HEAD(&info->kfd_bo_list); 1348 INIT_LIST_HEAD(&info->userptr_valid_list); 1349 INIT_LIST_HEAD(&info->userptr_inval_list); 1350 1351 info->eviction_fence = 1352 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1353 current->mm, 1354 NULL); 1355 if (!info->eviction_fence) { 1356 pr_err("Failed to create eviction fence\n"); 1357 ret = -ENOMEM; 1358 goto create_evict_fence_fail; 1359 } 1360 1361 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1362 INIT_DELAYED_WORK(&info->restore_userptr_work, 1363 amdgpu_amdkfd_restore_userptr_worker); 1364 1365 *process_info = info; 1366 *ef = dma_fence_get(&info->eviction_fence->base); 1367 } 1368 1369 vm->process_info = *process_info; 1370 1371 /* Validate page directory and attach eviction fence */ 1372 ret = amdgpu_bo_reserve(vm->root.bo, true); 1373 if (ret) 1374 goto reserve_pd_fail; 1375 ret = vm_validate_pt_pd_bos(vm); 1376 if (ret) { 1377 pr_err("validate_pt_pd_bos() failed\n"); 1378 goto validate_pd_fail; 1379 } 1380 ret = amdgpu_bo_sync_wait(vm->root.bo, 1381 AMDGPU_FENCE_OWNER_KFD, false); 1382 if (ret) 1383 goto wait_pd_fail; 1384 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1385 if (ret) 1386 goto reserve_shared_fail; 1387 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1388 &vm->process_info->eviction_fence->base, 1389 DMA_RESV_USAGE_BOOKKEEP); 1390 amdgpu_bo_unreserve(vm->root.bo); 1391 1392 /* Update process info */ 1393 mutex_lock(&vm->process_info->lock); 1394 list_add_tail(&vm->vm_list_node, 1395 &(vm->process_info->vm_list_head)); 1396 vm->process_info->n_vms++; 1397 mutex_unlock(&vm->process_info->lock); 1398 1399 return 0; 1400 1401 reserve_shared_fail: 1402 wait_pd_fail: 1403 validate_pd_fail: 1404 amdgpu_bo_unreserve(vm->root.bo); 1405 reserve_pd_fail: 1406 vm->process_info = NULL; 1407 if (info) { 1408 /* Two fence references: one in info and one in *ef */ 1409 dma_fence_put(&info->eviction_fence->base); 1410 dma_fence_put(*ef); 1411 *ef = NULL; 1412 *process_info = NULL; 1413 put_pid(info->pid); 1414 create_evict_fence_fail: 1415 mutex_destroy(&info->lock); 1416 mutex_destroy(&info->notifier_lock); 1417 kfree(info); 1418 } 1419 return ret; 1420 } 1421 1422 /** 1423 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1424 * @bo: Handle of buffer object being pinned 1425 * @domain: Domain into which BO should be pinned 1426 * 1427 * - USERPTR BOs are UNPINNABLE and will return error 1428 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1429 * PIN count incremented. It is valid to PIN a BO multiple times 1430 * 1431 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1432 */ 1433 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1434 { 1435 int ret = 0; 1436 1437 ret = amdgpu_bo_reserve(bo, false); 1438 if (unlikely(ret)) 1439 return ret; 1440 1441 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1442 if (ret) 1443 pr_err("Error in Pinning BO to domain: %d\n", domain); 1444 1445 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1446 amdgpu_bo_unreserve(bo); 1447 1448 return ret; 1449 } 1450 1451 /** 1452 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1453 * @bo: Handle of buffer object being unpinned 1454 * 1455 * - Is a illegal request for USERPTR BOs and is ignored 1456 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1457 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1458 */ 1459 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1460 { 1461 int ret = 0; 1462 1463 ret = amdgpu_bo_reserve(bo, false); 1464 if (unlikely(ret)) 1465 return; 1466 1467 amdgpu_bo_unpin(bo); 1468 amdgpu_bo_unreserve(bo); 1469 } 1470 1471 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1472 struct amdgpu_vm *avm, u32 pasid) 1473 1474 { 1475 int ret; 1476 1477 /* Free the original amdgpu allocated pasid, 1478 * will be replaced with kfd allocated pasid. 1479 */ 1480 if (avm->pasid) { 1481 amdgpu_pasid_free(avm->pasid); 1482 amdgpu_vm_set_pasid(adev, avm, 0); 1483 } 1484 1485 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1486 if (ret) 1487 return ret; 1488 1489 return 0; 1490 } 1491 1492 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1493 struct amdgpu_vm *avm, 1494 void **process_info, 1495 struct dma_fence **ef) 1496 { 1497 int ret; 1498 1499 /* Already a compute VM? */ 1500 if (avm->process_info) 1501 return -EINVAL; 1502 1503 /* Convert VM into a compute VM */ 1504 ret = amdgpu_vm_make_compute(adev, avm); 1505 if (ret) 1506 return ret; 1507 1508 /* Initialize KFD part of the VM and process info */ 1509 ret = init_kfd_vm(avm, process_info, ef); 1510 if (ret) 1511 return ret; 1512 1513 amdgpu_vm_set_task_info(avm); 1514 1515 return 0; 1516 } 1517 1518 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1519 struct amdgpu_vm *vm) 1520 { 1521 struct amdkfd_process_info *process_info = vm->process_info; 1522 1523 if (!process_info) 1524 return; 1525 1526 /* Update process info */ 1527 mutex_lock(&process_info->lock); 1528 process_info->n_vms--; 1529 list_del(&vm->vm_list_node); 1530 mutex_unlock(&process_info->lock); 1531 1532 vm->process_info = NULL; 1533 1534 /* Release per-process resources when last compute VM is destroyed */ 1535 if (!process_info->n_vms) { 1536 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1537 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1538 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1539 1540 dma_fence_put(&process_info->eviction_fence->base); 1541 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1542 put_pid(process_info->pid); 1543 mutex_destroy(&process_info->lock); 1544 mutex_destroy(&process_info->notifier_lock); 1545 kfree(process_info); 1546 } 1547 } 1548 1549 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1550 void *drm_priv) 1551 { 1552 struct amdgpu_vm *avm; 1553 1554 if (WARN_ON(!adev || !drm_priv)) 1555 return; 1556 1557 avm = drm_priv_to_vm(drm_priv); 1558 1559 pr_debug("Releasing process vm %p\n", avm); 1560 1561 /* The original pasid of amdgpu vm has already been 1562 * released during making a amdgpu vm to a compute vm 1563 * The current pasid is managed by kfd and will be 1564 * released on kfd process destroy. Set amdgpu pasid 1565 * to 0 to avoid duplicate release. 1566 */ 1567 amdgpu_vm_release_compute(adev, avm); 1568 } 1569 1570 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1571 { 1572 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1573 struct amdgpu_bo *pd = avm->root.bo; 1574 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1575 1576 if (adev->asic_type < CHIP_VEGA10) 1577 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1578 return avm->pd_phys_addr; 1579 } 1580 1581 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1582 { 1583 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1584 1585 mutex_lock(&pinfo->lock); 1586 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1587 mutex_unlock(&pinfo->lock); 1588 } 1589 1590 int amdgpu_amdkfd_criu_resume(void *p) 1591 { 1592 int ret = 0; 1593 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1594 1595 mutex_lock(&pinfo->lock); 1596 pr_debug("scheduling work\n"); 1597 mutex_lock(&pinfo->notifier_lock); 1598 pinfo->evicted_bos++; 1599 mutex_unlock(&pinfo->notifier_lock); 1600 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1601 ret = -EINVAL; 1602 goto out_unlock; 1603 } 1604 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1605 schedule_delayed_work(&pinfo->restore_userptr_work, 0); 1606 1607 out_unlock: 1608 mutex_unlock(&pinfo->lock); 1609 return ret; 1610 } 1611 1612 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev) 1613 { 1614 uint64_t reserved_for_pt = 1615 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1616 ssize_t available; 1617 1618 spin_lock(&kfd_mem_limit.mem_limit_lock); 1619 available = adev->gmc.real_vram_size 1620 - adev->kfd.vram_used_aligned 1621 - atomic64_read(&adev->vram_pin_size) 1622 - reserved_for_pt; 1623 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1624 1625 if (available < 0) 1626 available = 0; 1627 1628 return ALIGN_DOWN(available, VRAM_AVAILABLITY_ALIGN); 1629 } 1630 1631 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1632 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1633 void *drm_priv, struct kgd_mem **mem, 1634 uint64_t *offset, uint32_t flags, bool criu_resume) 1635 { 1636 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1637 enum ttm_bo_type bo_type = ttm_bo_type_device; 1638 struct sg_table *sg = NULL; 1639 uint64_t user_addr = 0; 1640 struct amdgpu_bo *bo; 1641 struct drm_gem_object *gobj = NULL; 1642 u32 domain, alloc_domain; 1643 uint64_t aligned_size; 1644 u64 alloc_flags; 1645 int ret; 1646 1647 /* 1648 * Check on which domain to allocate BO 1649 */ 1650 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1651 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1652 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1653 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1654 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1655 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1656 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1657 alloc_flags = 0; 1658 } else { 1659 domain = AMDGPU_GEM_DOMAIN_GTT; 1660 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1661 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1662 1663 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1664 if (!offset || !*offset) 1665 return -EINVAL; 1666 user_addr = untagged_addr(*offset); 1667 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1668 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1669 bo_type = ttm_bo_type_sg; 1670 if (size > UINT_MAX) 1671 return -EINVAL; 1672 sg = create_sg_table(*offset, size); 1673 if (!sg) 1674 return -ENOMEM; 1675 } else { 1676 return -EINVAL; 1677 } 1678 } 1679 1680 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1681 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1682 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1683 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1684 1685 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1686 if (!*mem) { 1687 ret = -ENOMEM; 1688 goto err; 1689 } 1690 INIT_LIST_HEAD(&(*mem)->attachments); 1691 mutex_init(&(*mem)->lock); 1692 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1693 1694 /* Workaround for AQL queue wraparound bug. Map the same 1695 * memory twice. That means we only actually allocate half 1696 * the memory. 1697 */ 1698 if ((*mem)->aql_queue) 1699 size >>= 1; 1700 aligned_size = PAGE_ALIGN(size); 1701 1702 (*mem)->alloc_flags = flags; 1703 1704 amdgpu_sync_create(&(*mem)->sync); 1705 1706 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags); 1707 if (ret) { 1708 pr_debug("Insufficient memory\n"); 1709 goto err_reserve_limit; 1710 } 1711 1712 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n", 1713 va, (*mem)->aql_queue ? size << 1 : size, domain_string(alloc_domain)); 1714 1715 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1716 bo_type, NULL, &gobj); 1717 if (ret) { 1718 pr_debug("Failed to create BO on domain %s. ret %d\n", 1719 domain_string(alloc_domain), ret); 1720 goto err_bo_create; 1721 } 1722 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1723 if (ret) { 1724 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1725 goto err_node_allow; 1726 } 1727 bo = gem_to_amdgpu_bo(gobj); 1728 if (bo_type == ttm_bo_type_sg) { 1729 bo->tbo.sg = sg; 1730 bo->tbo.ttm->sg = sg; 1731 } 1732 bo->kfd_bo = *mem; 1733 (*mem)->bo = bo; 1734 if (user_addr) 1735 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1736 1737 (*mem)->va = va; 1738 (*mem)->domain = domain; 1739 (*mem)->mapped_to_gpu_memory = 0; 1740 (*mem)->process_info = avm->process_info; 1741 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1742 1743 if (user_addr) { 1744 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1745 ret = init_user_pages(*mem, user_addr, criu_resume); 1746 if (ret) 1747 goto allocate_init_user_pages_failed; 1748 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1749 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1750 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1751 if (ret) { 1752 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1753 goto err_pin_bo; 1754 } 1755 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1756 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1757 } 1758 1759 if (offset) 1760 *offset = amdgpu_bo_mmap_offset(bo); 1761 1762 return 0; 1763 1764 allocate_init_user_pages_failed: 1765 err_pin_bo: 1766 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1767 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1768 err_node_allow: 1769 /* Don't unreserve system mem limit twice */ 1770 goto err_reserve_limit; 1771 err_bo_create: 1772 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags); 1773 err_reserve_limit: 1774 mutex_destroy(&(*mem)->lock); 1775 if (gobj) 1776 drm_gem_object_put(gobj); 1777 else 1778 kfree(*mem); 1779 err: 1780 if (sg) { 1781 sg_free_table(sg); 1782 kfree(sg); 1783 } 1784 return ret; 1785 } 1786 1787 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1788 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1789 uint64_t *size) 1790 { 1791 struct amdkfd_process_info *process_info = mem->process_info; 1792 unsigned long bo_size = mem->bo->tbo.base.size; 1793 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1794 struct kfd_mem_attachment *entry, *tmp; 1795 struct bo_vm_reservation_context ctx; 1796 struct ttm_validate_buffer *bo_list_entry; 1797 unsigned int mapped_to_gpu_memory; 1798 int ret; 1799 bool is_imported = false; 1800 1801 mutex_lock(&mem->lock); 1802 1803 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1804 if (mem->alloc_flags & 1805 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1806 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1807 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1808 } 1809 1810 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1811 is_imported = mem->is_imported; 1812 mutex_unlock(&mem->lock); 1813 /* lock is not needed after this, since mem is unused and will 1814 * be freed anyway 1815 */ 1816 1817 if (mapped_to_gpu_memory > 0) { 1818 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1819 mem->va, bo_size); 1820 return -EBUSY; 1821 } 1822 1823 /* Make sure restore workers don't access the BO any more */ 1824 bo_list_entry = &mem->validate_list; 1825 mutex_lock(&process_info->lock); 1826 list_del(&bo_list_entry->head); 1827 mutex_unlock(&process_info->lock); 1828 1829 /* Cleanup user pages and MMU notifiers */ 1830 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1831 amdgpu_hmm_unregister(mem->bo); 1832 mutex_lock(&process_info->notifier_lock); 1833 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1834 mutex_unlock(&process_info->notifier_lock); 1835 } 1836 1837 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1838 if (unlikely(ret)) 1839 return ret; 1840 1841 /* The eviction fence should be removed by the last unmap. 1842 * TODO: Log an error condition if the bo still has the eviction fence 1843 * attached 1844 */ 1845 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1846 process_info->eviction_fence); 1847 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1848 mem->va + bo_size * (1 + mem->aql_queue)); 1849 1850 /* Remove from VM internal data structures */ 1851 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) 1852 kfd_mem_detach(entry); 1853 1854 ret = unreserve_bo_and_vms(&ctx, false, false); 1855 1856 /* Free the sync object */ 1857 amdgpu_sync_free(&mem->sync); 1858 1859 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1860 * remap BO. We need to free it. 1861 */ 1862 if (mem->bo->tbo.sg) { 1863 sg_free_table(mem->bo->tbo.sg); 1864 kfree(mem->bo->tbo.sg); 1865 } 1866 1867 /* Update the size of the BO being freed if it was allocated from 1868 * VRAM and is not imported. 1869 */ 1870 if (size) { 1871 if ((mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM) && 1872 (!is_imported)) 1873 *size = bo_size; 1874 else 1875 *size = 0; 1876 } 1877 1878 /* Free the BO*/ 1879 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1880 if (mem->dmabuf) 1881 dma_buf_put(mem->dmabuf); 1882 mutex_destroy(&mem->lock); 1883 1884 /* If this releases the last reference, it will end up calling 1885 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1886 * this needs to be the last call here. 1887 */ 1888 drm_gem_object_put(&mem->bo->tbo.base); 1889 1890 /* 1891 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1892 * explicitly free it here. 1893 */ 1894 if (!use_release_notifier) 1895 kfree(mem); 1896 1897 return ret; 1898 } 1899 1900 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1901 struct amdgpu_device *adev, struct kgd_mem *mem, 1902 void *drm_priv) 1903 { 1904 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1905 int ret; 1906 struct amdgpu_bo *bo; 1907 uint32_t domain; 1908 struct kfd_mem_attachment *entry; 1909 struct bo_vm_reservation_context ctx; 1910 unsigned long bo_size; 1911 bool is_invalid_userptr = false; 1912 1913 bo = mem->bo; 1914 if (!bo) { 1915 pr_err("Invalid BO when mapping memory to GPU\n"); 1916 return -EINVAL; 1917 } 1918 1919 /* Make sure restore is not running concurrently. Since we 1920 * don't map invalid userptr BOs, we rely on the next restore 1921 * worker to do the mapping 1922 */ 1923 mutex_lock(&mem->process_info->lock); 1924 1925 /* Lock notifier lock. If we find an invalid userptr BO, we can be 1926 * sure that the MMU notifier is no longer running 1927 * concurrently and the queues are actually stopped 1928 */ 1929 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1930 mutex_lock(&mem->process_info->notifier_lock); 1931 is_invalid_userptr = !!mem->invalid; 1932 mutex_unlock(&mem->process_info->notifier_lock); 1933 } 1934 1935 mutex_lock(&mem->lock); 1936 1937 domain = mem->domain; 1938 bo_size = bo->tbo.base.size; 1939 1940 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 1941 mem->va, 1942 mem->va + bo_size * (1 + mem->aql_queue), 1943 avm, domain_string(domain)); 1944 1945 if (!kfd_mem_is_attached(avm, mem)) { 1946 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 1947 if (ret) 1948 goto out; 1949 } 1950 1951 ret = reserve_bo_and_vm(mem, avm, &ctx); 1952 if (unlikely(ret)) 1953 goto out; 1954 1955 /* Userptr can be marked as "not invalid", but not actually be 1956 * validated yet (still in the system domain). In that case 1957 * the queues are still stopped and we can leave mapping for 1958 * the next restore worker 1959 */ 1960 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 1961 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 1962 is_invalid_userptr = true; 1963 1964 ret = vm_validate_pt_pd_bos(avm); 1965 if (unlikely(ret)) 1966 goto out_unreserve; 1967 1968 if (mem->mapped_to_gpu_memory == 0 && 1969 !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1970 /* Validate BO only once. The eviction fence gets added to BO 1971 * the first time it is mapped. Validate will wait for all 1972 * background evictions to complete. 1973 */ 1974 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 1975 if (ret) { 1976 pr_debug("Validate failed\n"); 1977 goto out_unreserve; 1978 } 1979 } 1980 1981 list_for_each_entry(entry, &mem->attachments, list) { 1982 if (entry->bo_va->base.vm != avm || entry->is_mapped) 1983 continue; 1984 1985 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 1986 entry->va, entry->va + bo_size, entry); 1987 1988 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 1989 is_invalid_userptr); 1990 if (ret) { 1991 pr_err("Failed to map bo to gpuvm\n"); 1992 goto out_unreserve; 1993 } 1994 1995 ret = vm_update_pds(avm, ctx.sync); 1996 if (ret) { 1997 pr_err("Failed to update page directories\n"); 1998 goto out_unreserve; 1999 } 2000 2001 entry->is_mapped = true; 2002 mem->mapped_to_gpu_memory++; 2003 pr_debug("\t INC mapping count %d\n", 2004 mem->mapped_to_gpu_memory); 2005 } 2006 2007 if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count) 2008 dma_resv_add_fence(bo->tbo.base.resv, 2009 &avm->process_info->eviction_fence->base, 2010 DMA_RESV_USAGE_BOOKKEEP); 2011 ret = unreserve_bo_and_vms(&ctx, false, false); 2012 2013 goto out; 2014 2015 out_unreserve: 2016 unreserve_bo_and_vms(&ctx, false, false); 2017 out: 2018 mutex_unlock(&mem->process_info->lock); 2019 mutex_unlock(&mem->lock); 2020 return ret; 2021 } 2022 2023 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2024 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2025 { 2026 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2027 struct amdkfd_process_info *process_info = avm->process_info; 2028 unsigned long bo_size = mem->bo->tbo.base.size; 2029 struct kfd_mem_attachment *entry; 2030 struct bo_vm_reservation_context ctx; 2031 int ret; 2032 2033 mutex_lock(&mem->lock); 2034 2035 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2036 if (unlikely(ret)) 2037 goto out; 2038 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2039 if (ctx.n_vms == 0) { 2040 ret = -EINVAL; 2041 goto unreserve_out; 2042 } 2043 2044 ret = vm_validate_pt_pd_bos(avm); 2045 if (unlikely(ret)) 2046 goto unreserve_out; 2047 2048 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2049 mem->va, 2050 mem->va + bo_size * (1 + mem->aql_queue), 2051 avm); 2052 2053 list_for_each_entry(entry, &mem->attachments, list) { 2054 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2055 continue; 2056 2057 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2058 entry->va, entry->va + bo_size, entry); 2059 2060 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2061 entry->is_mapped = false; 2062 2063 mem->mapped_to_gpu_memory--; 2064 pr_debug("\t DEC mapping count %d\n", 2065 mem->mapped_to_gpu_memory); 2066 } 2067 2068 /* If BO is unmapped from all VMs, unfence it. It can be evicted if 2069 * required. 2070 */ 2071 if (mem->mapped_to_gpu_memory == 0 && 2072 !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && 2073 !mem->bo->tbo.pin_count) 2074 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 2075 process_info->eviction_fence); 2076 2077 unreserve_out: 2078 unreserve_bo_and_vms(&ctx, false, false); 2079 out: 2080 mutex_unlock(&mem->lock); 2081 return ret; 2082 } 2083 2084 int amdgpu_amdkfd_gpuvm_sync_memory( 2085 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2086 { 2087 struct amdgpu_sync sync; 2088 int ret; 2089 2090 amdgpu_sync_create(&sync); 2091 2092 mutex_lock(&mem->lock); 2093 amdgpu_sync_clone(&mem->sync, &sync); 2094 mutex_unlock(&mem->lock); 2095 2096 ret = amdgpu_sync_wait(&sync, intr); 2097 amdgpu_sync_free(&sync); 2098 return ret; 2099 } 2100 2101 /** 2102 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2103 * @adev: Device to which allocated BO belongs 2104 * @bo: Buffer object to be mapped 2105 * 2106 * Before return, bo reference count is incremented. To release the reference and unpin/ 2107 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2108 */ 2109 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2110 { 2111 int ret; 2112 2113 ret = amdgpu_bo_reserve(bo, true); 2114 if (ret) { 2115 pr_err("Failed to reserve bo. ret %d\n", ret); 2116 goto err_reserve_bo_failed; 2117 } 2118 2119 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2120 if (ret) { 2121 pr_err("Failed to pin bo. ret %d\n", ret); 2122 goto err_pin_bo_failed; 2123 } 2124 2125 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2126 if (ret) { 2127 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2128 goto err_map_bo_gart_failed; 2129 } 2130 2131 amdgpu_amdkfd_remove_eviction_fence( 2132 bo, bo->vm_bo->vm->process_info->eviction_fence); 2133 2134 amdgpu_bo_unreserve(bo); 2135 2136 bo = amdgpu_bo_ref(bo); 2137 2138 return 0; 2139 2140 err_map_bo_gart_failed: 2141 amdgpu_bo_unpin(bo); 2142 err_pin_bo_failed: 2143 amdgpu_bo_unreserve(bo); 2144 err_reserve_bo_failed: 2145 2146 return ret; 2147 } 2148 2149 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2150 * 2151 * @mem: Buffer object to be mapped for CPU access 2152 * @kptr[out]: pointer in kernel CPU address space 2153 * @size[out]: size of the buffer 2154 * 2155 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2156 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2157 * validate_list, so the GPU mapping can be restored after a page table was 2158 * evicted. 2159 * 2160 * Return: 0 on success, error code on failure 2161 */ 2162 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2163 void **kptr, uint64_t *size) 2164 { 2165 int ret; 2166 struct amdgpu_bo *bo = mem->bo; 2167 2168 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2169 pr_err("userptr can't be mapped to kernel\n"); 2170 return -EINVAL; 2171 } 2172 2173 mutex_lock(&mem->process_info->lock); 2174 2175 ret = amdgpu_bo_reserve(bo, true); 2176 if (ret) { 2177 pr_err("Failed to reserve bo. ret %d\n", ret); 2178 goto bo_reserve_failed; 2179 } 2180 2181 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2182 if (ret) { 2183 pr_err("Failed to pin bo. ret %d\n", ret); 2184 goto pin_failed; 2185 } 2186 2187 ret = amdgpu_bo_kmap(bo, kptr); 2188 if (ret) { 2189 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2190 goto kmap_failed; 2191 } 2192 2193 amdgpu_amdkfd_remove_eviction_fence( 2194 bo, mem->process_info->eviction_fence); 2195 2196 if (size) 2197 *size = amdgpu_bo_size(bo); 2198 2199 amdgpu_bo_unreserve(bo); 2200 2201 mutex_unlock(&mem->process_info->lock); 2202 return 0; 2203 2204 kmap_failed: 2205 amdgpu_bo_unpin(bo); 2206 pin_failed: 2207 amdgpu_bo_unreserve(bo); 2208 bo_reserve_failed: 2209 mutex_unlock(&mem->process_info->lock); 2210 2211 return ret; 2212 } 2213 2214 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2215 * 2216 * @mem: Buffer object to be unmapped for CPU access 2217 * 2218 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2219 * eviction fence, so this function should only be used for cleanup before the 2220 * BO is destroyed. 2221 */ 2222 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2223 { 2224 struct amdgpu_bo *bo = mem->bo; 2225 2226 amdgpu_bo_reserve(bo, true); 2227 amdgpu_bo_kunmap(bo); 2228 amdgpu_bo_unpin(bo); 2229 amdgpu_bo_unreserve(bo); 2230 } 2231 2232 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2233 struct kfd_vm_fault_info *mem) 2234 { 2235 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2236 *mem = *adev->gmc.vm_fault_info; 2237 mb(); /* make sure read happened */ 2238 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2239 } 2240 return 0; 2241 } 2242 2243 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev, 2244 struct dma_buf *dma_buf, 2245 uint64_t va, void *drm_priv, 2246 struct kgd_mem **mem, uint64_t *size, 2247 uint64_t *mmap_offset) 2248 { 2249 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2250 struct drm_gem_object *obj; 2251 struct amdgpu_bo *bo; 2252 int ret; 2253 2254 obj = amdgpu_gem_prime_import(adev_to_drm(adev), dma_buf); 2255 if (IS_ERR(obj)) 2256 return PTR_ERR(obj); 2257 2258 bo = gem_to_amdgpu_bo(obj); 2259 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2260 AMDGPU_GEM_DOMAIN_GTT))) { 2261 /* Only VRAM and GTT BOs are supported */ 2262 ret = -EINVAL; 2263 goto err_put_obj; 2264 } 2265 2266 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2267 if (!*mem) { 2268 ret = -ENOMEM; 2269 goto err_put_obj; 2270 } 2271 2272 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2273 if (ret) 2274 goto err_free_mem; 2275 2276 if (size) 2277 *size = amdgpu_bo_size(bo); 2278 2279 if (mmap_offset) 2280 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2281 2282 INIT_LIST_HEAD(&(*mem)->attachments); 2283 mutex_init(&(*mem)->lock); 2284 2285 (*mem)->alloc_flags = 2286 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2287 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2288 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2289 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2290 2291 get_dma_buf(dma_buf); 2292 (*mem)->dmabuf = dma_buf; 2293 (*mem)->bo = bo; 2294 (*mem)->va = va; 2295 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2296 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2297 (*mem)->mapped_to_gpu_memory = 0; 2298 (*mem)->process_info = avm->process_info; 2299 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2300 amdgpu_sync_create(&(*mem)->sync); 2301 (*mem)->is_imported = true; 2302 2303 return 0; 2304 2305 err_free_mem: 2306 kfree(*mem); 2307 err_put_obj: 2308 drm_gem_object_put(obj); 2309 return ret; 2310 } 2311 2312 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2313 struct dma_buf **dma_buf) 2314 { 2315 int ret; 2316 2317 mutex_lock(&mem->lock); 2318 ret = kfd_mem_export_dmabuf(mem); 2319 if (ret) 2320 goto out; 2321 2322 get_dma_buf(mem->dmabuf); 2323 *dma_buf = mem->dmabuf; 2324 out: 2325 mutex_unlock(&mem->lock); 2326 return ret; 2327 } 2328 2329 /* Evict a userptr BO by stopping the queues if necessary 2330 * 2331 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2332 * cannot do any memory allocations, and cannot take any locks that 2333 * are held elsewhere while allocating memory. 2334 * 2335 * It doesn't do anything to the BO itself. The real work happens in 2336 * restore, where we get updated page addresses. This function only 2337 * ensures that GPU access to the BO is stopped. 2338 */ 2339 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2340 unsigned long cur_seq, struct kgd_mem *mem) 2341 { 2342 struct amdkfd_process_info *process_info = mem->process_info; 2343 int r = 0; 2344 2345 /* Do not process MMU notifications during CRIU restore until 2346 * KFD_CRIU_OP_RESUME IOCTL is received 2347 */ 2348 if (READ_ONCE(process_info->block_mmu_notifications)) 2349 return 0; 2350 2351 mutex_lock(&process_info->notifier_lock); 2352 mmu_interval_set_seq(mni, cur_seq); 2353 2354 mem->invalid++; 2355 if (++process_info->evicted_bos == 1) { 2356 /* First eviction, stop the queues */ 2357 r = kgd2kfd_quiesce_mm(mni->mm, 2358 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2359 if (r) 2360 pr_err("Failed to quiesce KFD\n"); 2361 schedule_delayed_work(&process_info->restore_userptr_work, 2362 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2363 } 2364 mutex_unlock(&process_info->notifier_lock); 2365 2366 return r; 2367 } 2368 2369 /* Update invalid userptr BOs 2370 * 2371 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2372 * userptr_inval_list and updates user pages for all BOs that have 2373 * been invalidated since their last update. 2374 */ 2375 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2376 struct mm_struct *mm) 2377 { 2378 struct kgd_mem *mem, *tmp_mem; 2379 struct amdgpu_bo *bo; 2380 struct ttm_operation_ctx ctx = { false, false }; 2381 uint32_t invalid; 2382 int ret = 0; 2383 2384 mutex_lock(&process_info->notifier_lock); 2385 2386 /* Move all invalidated BOs to the userptr_inval_list */ 2387 list_for_each_entry_safe(mem, tmp_mem, 2388 &process_info->userptr_valid_list, 2389 validate_list.head) 2390 if (mem->invalid) 2391 list_move_tail(&mem->validate_list.head, 2392 &process_info->userptr_inval_list); 2393 2394 /* Go through userptr_inval_list and update any invalid user_pages */ 2395 list_for_each_entry(mem, &process_info->userptr_inval_list, 2396 validate_list.head) { 2397 invalid = mem->invalid; 2398 if (!invalid) 2399 /* BO hasn't been invalidated since the last 2400 * revalidation attempt. Keep its page list. 2401 */ 2402 continue; 2403 2404 bo = mem->bo; 2405 2406 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2407 mem->range = NULL; 2408 2409 /* BO reservations and getting user pages (hmm_range_fault) 2410 * must happen outside the notifier lock 2411 */ 2412 mutex_unlock(&process_info->notifier_lock); 2413 2414 /* Move the BO to system (CPU) domain if necessary to unmap 2415 * and free the SG table 2416 */ 2417 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2418 if (amdgpu_bo_reserve(bo, true)) 2419 return -EAGAIN; 2420 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2421 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2422 amdgpu_bo_unreserve(bo); 2423 if (ret) { 2424 pr_err("%s: Failed to invalidate userptr BO\n", 2425 __func__); 2426 return -EAGAIN; 2427 } 2428 } 2429 2430 /* Get updated user pages */ 2431 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2432 &mem->range); 2433 if (ret) { 2434 pr_debug("Failed %d to get user pages\n", ret); 2435 2436 /* Return -EFAULT bad address error as success. It will 2437 * fail later with a VM fault if the GPU tries to access 2438 * it. Better than hanging indefinitely with stalled 2439 * user mode queues. 2440 * 2441 * Return other error -EBUSY or -ENOMEM to retry restore 2442 */ 2443 if (ret != -EFAULT) 2444 return ret; 2445 2446 ret = 0; 2447 } 2448 2449 mutex_lock(&process_info->notifier_lock); 2450 2451 /* Mark the BO as valid unless it was invalidated 2452 * again concurrently. 2453 */ 2454 if (mem->invalid != invalid) { 2455 ret = -EAGAIN; 2456 goto unlock_out; 2457 } 2458 /* set mem valid if mem has hmm range associated */ 2459 if (mem->range) 2460 mem->invalid = 0; 2461 } 2462 2463 unlock_out: 2464 mutex_unlock(&process_info->notifier_lock); 2465 2466 return ret; 2467 } 2468 2469 /* Validate invalid userptr BOs 2470 * 2471 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2472 * with new page addresses and waits for the page table updates to complete. 2473 */ 2474 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2475 { 2476 struct amdgpu_bo_list_entry *pd_bo_list_entries; 2477 struct list_head resv_list, duplicates; 2478 struct ww_acquire_ctx ticket; 2479 struct amdgpu_sync sync; 2480 2481 struct amdgpu_vm *peer_vm; 2482 struct kgd_mem *mem, *tmp_mem; 2483 struct amdgpu_bo *bo; 2484 struct ttm_operation_ctx ctx = { false, false }; 2485 int i, ret; 2486 2487 pd_bo_list_entries = kcalloc(process_info->n_vms, 2488 sizeof(struct amdgpu_bo_list_entry), 2489 GFP_KERNEL); 2490 if (!pd_bo_list_entries) { 2491 pr_err("%s: Failed to allocate PD BO list entries\n", __func__); 2492 ret = -ENOMEM; 2493 goto out_no_mem; 2494 } 2495 2496 INIT_LIST_HEAD(&resv_list); 2497 INIT_LIST_HEAD(&duplicates); 2498 2499 /* Get all the page directory BOs that need to be reserved */ 2500 i = 0; 2501 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2502 vm_list_node) 2503 amdgpu_vm_get_pd_bo(peer_vm, &resv_list, 2504 &pd_bo_list_entries[i++]); 2505 /* Add the userptr_inval_list entries to resv_list */ 2506 list_for_each_entry(mem, &process_info->userptr_inval_list, 2507 validate_list.head) { 2508 list_add_tail(&mem->resv_list.head, &resv_list); 2509 mem->resv_list.bo = mem->validate_list.bo; 2510 mem->resv_list.num_shared = mem->validate_list.num_shared; 2511 } 2512 2513 /* Reserve all BOs and page tables for validation */ 2514 ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates); 2515 WARN(!list_empty(&duplicates), "Duplicates should be empty"); 2516 if (ret) 2517 goto out_free; 2518 2519 amdgpu_sync_create(&sync); 2520 2521 ret = process_validate_vms(process_info); 2522 if (ret) 2523 goto unreserve_out; 2524 2525 /* Validate BOs and update GPUVM page tables */ 2526 list_for_each_entry_safe(mem, tmp_mem, 2527 &process_info->userptr_inval_list, 2528 validate_list.head) { 2529 struct kfd_mem_attachment *attachment; 2530 2531 bo = mem->bo; 2532 2533 /* Validate the BO if we got user pages */ 2534 if (bo->tbo.ttm->pages[0]) { 2535 amdgpu_bo_placement_from_domain(bo, mem->domain); 2536 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2537 if (ret) { 2538 pr_err("%s: failed to validate BO\n", __func__); 2539 goto unreserve_out; 2540 } 2541 } 2542 2543 /* Update mapping. If the BO was not validated 2544 * (because we couldn't get user pages), this will 2545 * clear the page table entries, which will result in 2546 * VM faults if the GPU tries to access the invalid 2547 * memory. 2548 */ 2549 list_for_each_entry(attachment, &mem->attachments, list) { 2550 if (!attachment->is_mapped) 2551 continue; 2552 2553 kfd_mem_dmaunmap_attachment(mem, attachment); 2554 ret = update_gpuvm_pte(mem, attachment, &sync); 2555 if (ret) { 2556 pr_err("%s: update PTE failed\n", __func__); 2557 /* make sure this gets validated again */ 2558 mutex_lock(&process_info->notifier_lock); 2559 mem->invalid++; 2560 mutex_unlock(&process_info->notifier_lock); 2561 goto unreserve_out; 2562 } 2563 } 2564 } 2565 2566 /* Update page directories */ 2567 ret = process_update_pds(process_info, &sync); 2568 2569 unreserve_out: 2570 ttm_eu_backoff_reservation(&ticket, &resv_list); 2571 amdgpu_sync_wait(&sync, false); 2572 amdgpu_sync_free(&sync); 2573 out_free: 2574 kfree(pd_bo_list_entries); 2575 out_no_mem: 2576 2577 return ret; 2578 } 2579 2580 /* Confirm that all user pages are valid while holding the notifier lock 2581 * 2582 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2583 */ 2584 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2585 { 2586 struct kgd_mem *mem, *tmp_mem; 2587 int ret = 0; 2588 2589 list_for_each_entry_safe(mem, tmp_mem, 2590 &process_info->userptr_inval_list, 2591 validate_list.head) { 2592 bool valid; 2593 2594 /* keep mem without hmm range at userptr_inval_list */ 2595 if (!mem->range) 2596 continue; 2597 2598 /* Only check mem with hmm range associated */ 2599 valid = amdgpu_ttm_tt_get_user_pages_done( 2600 mem->bo->tbo.ttm, mem->range); 2601 2602 mem->range = NULL; 2603 if (!valid) { 2604 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2605 ret = -EAGAIN; 2606 continue; 2607 } 2608 2609 if (mem->invalid) { 2610 WARN(1, "Valid BO is marked invalid"); 2611 ret = -EAGAIN; 2612 continue; 2613 } 2614 2615 list_move_tail(&mem->validate_list.head, 2616 &process_info->userptr_valid_list); 2617 } 2618 2619 return ret; 2620 } 2621 2622 /* Worker callback to restore evicted userptr BOs 2623 * 2624 * Tries to update and validate all userptr BOs. If successful and no 2625 * concurrent evictions happened, the queues are restarted. Otherwise, 2626 * reschedule for another attempt later. 2627 */ 2628 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2629 { 2630 struct delayed_work *dwork = to_delayed_work(work); 2631 struct amdkfd_process_info *process_info = 2632 container_of(dwork, struct amdkfd_process_info, 2633 restore_userptr_work); 2634 struct task_struct *usertask; 2635 struct mm_struct *mm; 2636 uint32_t evicted_bos; 2637 2638 mutex_lock(&process_info->notifier_lock); 2639 evicted_bos = process_info->evicted_bos; 2640 mutex_unlock(&process_info->notifier_lock); 2641 if (!evicted_bos) 2642 return; 2643 2644 /* Reference task and mm in case of concurrent process termination */ 2645 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2646 if (!usertask) 2647 return; 2648 mm = get_task_mm(usertask); 2649 if (!mm) { 2650 put_task_struct(usertask); 2651 return; 2652 } 2653 2654 mutex_lock(&process_info->lock); 2655 2656 if (update_invalid_user_pages(process_info, mm)) 2657 goto unlock_out; 2658 /* userptr_inval_list can be empty if all evicted userptr BOs 2659 * have been freed. In that case there is nothing to validate 2660 * and we can just restart the queues. 2661 */ 2662 if (!list_empty(&process_info->userptr_inval_list)) { 2663 if (validate_invalid_user_pages(process_info)) 2664 goto unlock_out; 2665 } 2666 /* Final check for concurrent evicton and atomic update. If 2667 * another eviction happens after successful update, it will 2668 * be a first eviction that calls quiesce_mm. The eviction 2669 * reference counting inside KFD will handle this case. 2670 */ 2671 mutex_lock(&process_info->notifier_lock); 2672 if (process_info->evicted_bos != evicted_bos) 2673 goto unlock_notifier_out; 2674 2675 if (confirm_valid_user_pages_locked(process_info)) { 2676 WARN(1, "User pages unexpectedly invalid"); 2677 goto unlock_notifier_out; 2678 } 2679 2680 process_info->evicted_bos = evicted_bos = 0; 2681 2682 if (kgd2kfd_resume_mm(mm)) { 2683 pr_err("%s: Failed to resume KFD\n", __func__); 2684 /* No recovery from this failure. Probably the CP is 2685 * hanging. No point trying again. 2686 */ 2687 } 2688 2689 unlock_notifier_out: 2690 mutex_unlock(&process_info->notifier_lock); 2691 unlock_out: 2692 mutex_unlock(&process_info->lock); 2693 2694 /* If validation failed, reschedule another attempt */ 2695 if (evicted_bos) { 2696 schedule_delayed_work(&process_info->restore_userptr_work, 2697 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2698 2699 kfd_smi_event_queue_restore_rescheduled(mm); 2700 } 2701 mmput(mm); 2702 put_task_struct(usertask); 2703 } 2704 2705 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2706 * KFD process identified by process_info 2707 * 2708 * @process_info: amdkfd_process_info of the KFD process 2709 * 2710 * After memory eviction, restore thread calls this function. The function 2711 * should be called when the Process is still valid. BO restore involves - 2712 * 2713 * 1. Release old eviction fence and create new one 2714 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2715 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2716 * BOs that need to be reserved. 2717 * 4. Reserve all the BOs 2718 * 5. Validate of PD and PT BOs. 2719 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2720 * 7. Add fence to all PD and PT BOs. 2721 * 8. Unreserve all BOs 2722 */ 2723 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 2724 { 2725 struct amdgpu_bo_list_entry *pd_bo_list; 2726 struct amdkfd_process_info *process_info = info; 2727 struct amdgpu_vm *peer_vm; 2728 struct kgd_mem *mem; 2729 struct bo_vm_reservation_context ctx; 2730 struct amdgpu_amdkfd_fence *new_fence; 2731 int ret = 0, i; 2732 struct list_head duplicate_save; 2733 struct amdgpu_sync sync_obj; 2734 unsigned long failed_size = 0; 2735 unsigned long total_size = 0; 2736 2737 INIT_LIST_HEAD(&duplicate_save); 2738 INIT_LIST_HEAD(&ctx.list); 2739 INIT_LIST_HEAD(&ctx.duplicates); 2740 2741 pd_bo_list = kcalloc(process_info->n_vms, 2742 sizeof(struct amdgpu_bo_list_entry), 2743 GFP_KERNEL); 2744 if (!pd_bo_list) 2745 return -ENOMEM; 2746 2747 i = 0; 2748 mutex_lock(&process_info->lock); 2749 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2750 vm_list_node) 2751 amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]); 2752 2753 /* Reserve all BOs and page tables/directory. Add all BOs from 2754 * kfd_bo_list to ctx.list 2755 */ 2756 list_for_each_entry(mem, &process_info->kfd_bo_list, 2757 validate_list.head) { 2758 2759 list_add_tail(&mem->resv_list.head, &ctx.list); 2760 mem->resv_list.bo = mem->validate_list.bo; 2761 mem->resv_list.num_shared = mem->validate_list.num_shared; 2762 } 2763 2764 ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list, 2765 false, &duplicate_save); 2766 if (ret) { 2767 pr_debug("Memory eviction: TTM Reserve Failed. Try again\n"); 2768 goto ttm_reserve_fail; 2769 } 2770 2771 amdgpu_sync_create(&sync_obj); 2772 2773 /* Validate PDs and PTs */ 2774 ret = process_validate_vms(process_info); 2775 if (ret) 2776 goto validate_map_fail; 2777 2778 ret = process_sync_pds_resv(process_info, &sync_obj); 2779 if (ret) { 2780 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2781 goto validate_map_fail; 2782 } 2783 2784 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2785 list_for_each_entry(mem, &process_info->kfd_bo_list, 2786 validate_list.head) { 2787 2788 struct amdgpu_bo *bo = mem->bo; 2789 uint32_t domain = mem->domain; 2790 struct kfd_mem_attachment *attachment; 2791 struct dma_resv_iter cursor; 2792 struct dma_fence *fence; 2793 2794 total_size += amdgpu_bo_size(bo); 2795 2796 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2797 if (ret) { 2798 pr_debug("Memory eviction: Validate BOs failed\n"); 2799 failed_size += amdgpu_bo_size(bo); 2800 ret = amdgpu_amdkfd_bo_validate(bo, 2801 AMDGPU_GEM_DOMAIN_GTT, false); 2802 if (ret) { 2803 pr_debug("Memory eviction: Try again\n"); 2804 goto validate_map_fail; 2805 } 2806 } 2807 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2808 DMA_RESV_USAGE_KERNEL, fence) { 2809 ret = amdgpu_sync_fence(&sync_obj, fence); 2810 if (ret) { 2811 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2812 goto validate_map_fail; 2813 } 2814 } 2815 list_for_each_entry(attachment, &mem->attachments, list) { 2816 if (!attachment->is_mapped) 2817 continue; 2818 2819 kfd_mem_dmaunmap_attachment(mem, attachment); 2820 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2821 if (ret) { 2822 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2823 goto validate_map_fail; 2824 } 2825 } 2826 } 2827 2828 if (failed_size) 2829 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2830 2831 /* Update page directories */ 2832 ret = process_update_pds(process_info, &sync_obj); 2833 if (ret) { 2834 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2835 goto validate_map_fail; 2836 } 2837 2838 /* Wait for validate and PT updates to finish */ 2839 amdgpu_sync_wait(&sync_obj, false); 2840 2841 /* Release old eviction fence and create new one, because fence only 2842 * goes from unsignaled to signaled, fence cannot be reused. 2843 * Use context and mm from the old fence. 2844 */ 2845 new_fence = amdgpu_amdkfd_fence_create( 2846 process_info->eviction_fence->base.context, 2847 process_info->eviction_fence->mm, 2848 NULL); 2849 if (!new_fence) { 2850 pr_err("Failed to create eviction fence\n"); 2851 ret = -ENOMEM; 2852 goto validate_map_fail; 2853 } 2854 dma_fence_put(&process_info->eviction_fence->base); 2855 process_info->eviction_fence = new_fence; 2856 *ef = dma_fence_get(&new_fence->base); 2857 2858 /* Attach new eviction fence to all BOs except pinned ones */ 2859 list_for_each_entry(mem, &process_info->kfd_bo_list, 2860 validate_list.head) { 2861 if (mem->bo->tbo.pin_count) 2862 continue; 2863 2864 dma_resv_add_fence(mem->bo->tbo.base.resv, 2865 &process_info->eviction_fence->base, 2866 DMA_RESV_USAGE_BOOKKEEP); 2867 } 2868 /* Attach eviction fence to PD / PT BOs */ 2869 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2870 vm_list_node) { 2871 struct amdgpu_bo *bo = peer_vm->root.bo; 2872 2873 dma_resv_add_fence(bo->tbo.base.resv, 2874 &process_info->eviction_fence->base, 2875 DMA_RESV_USAGE_BOOKKEEP); 2876 } 2877 2878 validate_map_fail: 2879 ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list); 2880 amdgpu_sync_free(&sync_obj); 2881 ttm_reserve_fail: 2882 mutex_unlock(&process_info->lock); 2883 kfree(pd_bo_list); 2884 return ret; 2885 } 2886 2887 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 2888 { 2889 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2890 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 2891 int ret; 2892 2893 if (!info || !gws) 2894 return -EINVAL; 2895 2896 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2897 if (!*mem) 2898 return -ENOMEM; 2899 2900 mutex_init(&(*mem)->lock); 2901 INIT_LIST_HEAD(&(*mem)->attachments); 2902 (*mem)->bo = amdgpu_bo_ref(gws_bo); 2903 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 2904 (*mem)->process_info = process_info; 2905 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 2906 amdgpu_sync_create(&(*mem)->sync); 2907 2908 2909 /* Validate gws bo the first time it is added to process */ 2910 mutex_lock(&(*mem)->process_info->lock); 2911 ret = amdgpu_bo_reserve(gws_bo, false); 2912 if (unlikely(ret)) { 2913 pr_err("Reserve gws bo failed %d\n", ret); 2914 goto bo_reservation_failure; 2915 } 2916 2917 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 2918 if (ret) { 2919 pr_err("GWS BO validate failed %d\n", ret); 2920 goto bo_validation_failure; 2921 } 2922 /* GWS resource is shared b/t amdgpu and amdkfd 2923 * Add process eviction fence to bo so they can 2924 * evict each other. 2925 */ 2926 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 2927 if (ret) 2928 goto reserve_shared_fail; 2929 dma_resv_add_fence(gws_bo->tbo.base.resv, 2930 &process_info->eviction_fence->base, 2931 DMA_RESV_USAGE_BOOKKEEP); 2932 amdgpu_bo_unreserve(gws_bo); 2933 mutex_unlock(&(*mem)->process_info->lock); 2934 2935 return ret; 2936 2937 reserve_shared_fail: 2938 bo_validation_failure: 2939 amdgpu_bo_unreserve(gws_bo); 2940 bo_reservation_failure: 2941 mutex_unlock(&(*mem)->process_info->lock); 2942 amdgpu_sync_free(&(*mem)->sync); 2943 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 2944 amdgpu_bo_unref(&gws_bo); 2945 mutex_destroy(&(*mem)->lock); 2946 kfree(*mem); 2947 *mem = NULL; 2948 return ret; 2949 } 2950 2951 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 2952 { 2953 int ret; 2954 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2955 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 2956 struct amdgpu_bo *gws_bo = kgd_mem->bo; 2957 2958 /* Remove BO from process's validate list so restore worker won't touch 2959 * it anymore 2960 */ 2961 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 2962 2963 ret = amdgpu_bo_reserve(gws_bo, false); 2964 if (unlikely(ret)) { 2965 pr_err("Reserve gws bo failed %d\n", ret); 2966 //TODO add BO back to validate_list? 2967 return ret; 2968 } 2969 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 2970 process_info->eviction_fence); 2971 amdgpu_bo_unreserve(gws_bo); 2972 amdgpu_sync_free(&kgd_mem->sync); 2973 amdgpu_bo_unref(&gws_bo); 2974 mutex_destroy(&kgd_mem->lock); 2975 kfree(mem); 2976 return 0; 2977 } 2978 2979 /* Returns GPU-specific tiling mode information */ 2980 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 2981 struct tile_config *config) 2982 { 2983 config->gb_addr_config = adev->gfx.config.gb_addr_config; 2984 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 2985 config->num_tile_configs = 2986 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 2987 config->macro_tile_config_ptr = 2988 adev->gfx.config.macrotile_mode_array; 2989 config->num_macro_tile_configs = 2990 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 2991 2992 /* Those values are not set from GFX9 onwards */ 2993 config->num_banks = adev->gfx.config.num_banks; 2994 config->num_ranks = adev->gfx.config.num_ranks; 2995 2996 return 0; 2997 } 2998 2999 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3000 { 3001 struct kfd_mem_attachment *entry; 3002 3003 list_for_each_entry(entry, &mem->attachments, list) { 3004 if (entry->is_mapped && entry->adev == adev) 3005 return true; 3006 } 3007 return false; 3008 } 3009 3010 #if defined(CONFIG_DEBUG_FS) 3011 3012 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3013 { 3014 3015 spin_lock(&kfd_mem_limit.mem_limit_lock); 3016 seq_printf(m, "System mem used %lldM out of %lluM\n", 3017 (kfd_mem_limit.system_mem_used >> 20), 3018 (kfd_mem_limit.max_system_mem_limit >> 20)); 3019 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3020 (kfd_mem_limit.ttm_mem_used >> 20), 3021 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3022 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3023 3024 return 0; 3025 } 3026 3027 #endif 3028