1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include <linux/dma-buf.h>
23 #include <linux/list.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/task.h>
27 
28 #include "amdgpu_object.h"
29 #include "amdgpu_gem.h"
30 #include "amdgpu_vm.h"
31 #include "amdgpu_amdkfd.h"
32 #include "amdgpu_dma_buf.h"
33 #include <uapi/linux/kfd_ioctl.h>
34 #include "amdgpu_xgmi.h"
35 #include "kfd_smi_events.h"
36 
37 /* Userptr restore delay, just long enough to allow consecutive VM
38  * changes to accumulate
39  */
40 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
41 
42 /*
43  * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
44  * BO chunk
45  */
46 #define VRAM_AVAILABLITY_ALIGN (1 << 21)
47 
48 /* Impose limit on how much memory KFD can use */
49 static struct {
50 	uint64_t max_system_mem_limit;
51 	uint64_t max_ttm_mem_limit;
52 	int64_t system_mem_used;
53 	int64_t ttm_mem_used;
54 	spinlock_t mem_limit_lock;
55 } kfd_mem_limit;
56 
57 static const char * const domain_bit_to_string[] = {
58 		"CPU",
59 		"GTT",
60 		"VRAM",
61 		"GDS",
62 		"GWS",
63 		"OA"
64 };
65 
66 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
67 
68 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
69 
70 static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
71 		struct kgd_mem *mem)
72 {
73 	struct kfd_mem_attachment *entry;
74 
75 	list_for_each_entry(entry, &mem->attachments, list)
76 		if (entry->bo_va->base.vm == avm)
77 			return true;
78 
79 	return false;
80 }
81 
82 /* Set memory usage limits. Current, limits are
83  *  System (TTM + userptr) memory - 15/16th System RAM
84  *  TTM memory - 3/8th System RAM
85  */
86 void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
87 {
88 	struct sysinfo si;
89 	uint64_t mem;
90 
91 	si_meminfo(&si);
92 	mem = si.freeram - si.freehigh;
93 	mem *= si.mem_unit;
94 
95 	spin_lock_init(&kfd_mem_limit.mem_limit_lock);
96 	kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4);
97 	kfd_mem_limit.max_ttm_mem_limit = (mem >> 1) - (mem >> 3);
98 	pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
99 		(kfd_mem_limit.max_system_mem_limit >> 20),
100 		(kfd_mem_limit.max_ttm_mem_limit >> 20));
101 }
102 
103 void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
104 {
105 	kfd_mem_limit.system_mem_used += size;
106 }
107 
108 /* Estimate page table size needed to represent a given memory size
109  *
110  * With 4KB pages, we need one 8 byte PTE for each 4KB of memory
111  * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
112  * of memory (factor 256K, >> 18). ROCm user mode tries to optimize
113  * for 2MB pages for TLB efficiency. However, small allocations and
114  * fragmented system memory still need some 4KB pages. We choose a
115  * compromise that should work in most cases without reserving too
116  * much memory for page tables unnecessarily (factor 16K, >> 14).
117  */
118 
119 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
120 
121 /**
122  * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
123  * of buffer.
124  *
125  * @adev: Device to which allocated BO belongs to
126  * @size: Size of buffer, in bytes, encapsulated by B0. This should be
127  * equivalent to amdgpu_bo_size(BO)
128  * @alloc_flag: Flag used in allocating a BO as noted above
129  *
130  * Return: returns -ENOMEM in case of error, ZERO otherwise
131  */
132 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
133 		uint64_t size, u32 alloc_flag)
134 {
135 	uint64_t reserved_for_pt =
136 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
137 	size_t system_mem_needed, ttm_mem_needed, vram_needed;
138 	int ret = 0;
139 
140 	system_mem_needed = 0;
141 	ttm_mem_needed = 0;
142 	vram_needed = 0;
143 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
144 		system_mem_needed = size;
145 		ttm_mem_needed = size;
146 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
147 		/*
148 		 * Conservatively round up the allocation requirement to 2 MB
149 		 * to avoid fragmentation caused by 4K allocations in the tail
150 		 * 2M BO chunk.
151 		 */
152 		vram_needed = size;
153 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
154 		system_mem_needed = size;
155 	} else if (!(alloc_flag &
156 				(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
157 				 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
158 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
159 		return -ENOMEM;
160 	}
161 
162 	spin_lock(&kfd_mem_limit.mem_limit_lock);
163 
164 	if (kfd_mem_limit.system_mem_used + system_mem_needed >
165 	    kfd_mem_limit.max_system_mem_limit)
166 		pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
167 
168 	if ((kfd_mem_limit.system_mem_used + system_mem_needed >
169 	     kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
170 	    (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
171 	     kfd_mem_limit.max_ttm_mem_limit) ||
172 	    (adev && adev->kfd.vram_used + vram_needed >
173 	     adev->gmc.real_vram_size -
174 	     atomic64_read(&adev->vram_pin_size) -
175 	     reserved_for_pt)) {
176 		ret = -ENOMEM;
177 		goto release;
178 	}
179 
180 	/* Update memory accounting by decreasing available system
181 	 * memory, TTM memory and GPU memory as computed above
182 	 */
183 	WARN_ONCE(vram_needed && !adev,
184 		  "adev reference can't be null when vram is used");
185 	if (adev) {
186 		adev->kfd.vram_used += vram_needed;
187 		adev->kfd.vram_used_aligned += ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN);
188 	}
189 	kfd_mem_limit.system_mem_used += system_mem_needed;
190 	kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
191 
192 release:
193 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
194 	return ret;
195 }
196 
197 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev,
198 		uint64_t size, u32 alloc_flag)
199 {
200 	spin_lock(&kfd_mem_limit.mem_limit_lock);
201 
202 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
203 		kfd_mem_limit.system_mem_used -= size;
204 		kfd_mem_limit.ttm_mem_used -= size;
205 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
206 		WARN_ONCE(!adev,
207 			  "adev reference can't be null when alloc mem flags vram is set");
208 		if (adev) {
209 			adev->kfd.vram_used -= size;
210 			adev->kfd.vram_used_aligned -= ALIGN(size, VRAM_AVAILABLITY_ALIGN);
211 		}
212 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
213 		kfd_mem_limit.system_mem_used -= size;
214 	} else if (!(alloc_flag &
215 				(KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
216 				 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
217 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
218 		goto release;
219 	}
220 	WARN_ONCE(adev && adev->kfd.vram_used < 0,
221 		  "KFD VRAM memory accounting unbalanced");
222 	WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
223 		  "KFD TTM memory accounting unbalanced");
224 	WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
225 		  "KFD system memory accounting unbalanced");
226 
227 release:
228 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
229 }
230 
231 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
232 {
233 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
234 	u32 alloc_flags = bo->kfd_bo->alloc_flags;
235 	u64 size = amdgpu_bo_size(bo);
236 
237 	amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags);
238 
239 	kfree(bo->kfd_bo);
240 }
241 
242 /**
243  * @create_dmamap_sg_bo: Creates a amdgpu_bo object to reflect information
244  * about USERPTR or DOOREBELL or MMIO BO.
245  * @adev: Device for which dmamap BO is being created
246  * @mem: BO of peer device that is being DMA mapped. Provides parameters
247  *	 in building the dmamap BO
248  * @bo_out: Output parameter updated with handle of dmamap BO
249  */
250 static int
251 create_dmamap_sg_bo(struct amdgpu_device *adev,
252 		 struct kgd_mem *mem, struct amdgpu_bo **bo_out)
253 {
254 	struct drm_gem_object *gem_obj;
255 	int ret, align;
256 
257 	ret = amdgpu_bo_reserve(mem->bo, false);
258 	if (ret)
259 		return ret;
260 
261 	align = 1;
262 	ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, align,
263 			AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE,
264 			ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj);
265 
266 	amdgpu_bo_unreserve(mem->bo);
267 
268 	if (ret) {
269 		pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
270 		return -EINVAL;
271 	}
272 
273 	*bo_out = gem_to_amdgpu_bo(gem_obj);
274 	(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
275 	return ret;
276 }
277 
278 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
279  *  reservation object.
280  *
281  * @bo: [IN] Remove eviction fence(s) from this BO
282  * @ef: [IN] This eviction fence is removed if it
283  *  is present in the shared list.
284  *
285  * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
286  */
287 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
288 					struct amdgpu_amdkfd_fence *ef)
289 {
290 	struct dma_fence *replacement;
291 
292 	if (!ef)
293 		return -EINVAL;
294 
295 	/* TODO: Instead of block before we should use the fence of the page
296 	 * table update and TLB flush here directly.
297 	 */
298 	replacement = dma_fence_get_stub();
299 	dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
300 				replacement, DMA_RESV_USAGE_READ);
301 	dma_fence_put(replacement);
302 	return 0;
303 }
304 
305 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo)
306 {
307 	struct amdgpu_bo *root = bo;
308 	struct amdgpu_vm_bo_base *vm_bo;
309 	struct amdgpu_vm *vm;
310 	struct amdkfd_process_info *info;
311 	struct amdgpu_amdkfd_fence *ef;
312 	int ret;
313 
314 	/* we can always get vm_bo from root PD bo.*/
315 	while (root->parent)
316 		root = root->parent;
317 
318 	vm_bo = root->vm_bo;
319 	if (!vm_bo)
320 		return 0;
321 
322 	vm = vm_bo->vm;
323 	if (!vm)
324 		return 0;
325 
326 	info = vm->process_info;
327 	if (!info || !info->eviction_fence)
328 		return 0;
329 
330 	ef = container_of(dma_fence_get(&info->eviction_fence->base),
331 			struct amdgpu_amdkfd_fence, base);
332 
333 	BUG_ON(!dma_resv_trylock(bo->tbo.base.resv));
334 	ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef);
335 	dma_resv_unlock(bo->tbo.base.resv);
336 
337 	dma_fence_put(&ef->base);
338 	return ret;
339 }
340 
341 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
342 				     bool wait)
343 {
344 	struct ttm_operation_ctx ctx = { false, false };
345 	int ret;
346 
347 	if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
348 		 "Called with userptr BO"))
349 		return -EINVAL;
350 
351 	amdgpu_bo_placement_from_domain(bo, domain);
352 
353 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
354 	if (ret)
355 		goto validate_fail;
356 	if (wait)
357 		amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
358 
359 validate_fail:
360 	return ret;
361 }
362 
363 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
364 {
365 	return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
366 }
367 
368 /* vm_validate_pt_pd_bos - Validate page table and directory BOs
369  *
370  * Page directories are not updated here because huge page handling
371  * during page table updates can invalidate page directory entries
372  * again. Page directories are only updated after updating page
373  * tables.
374  */
375 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm)
376 {
377 	struct amdgpu_bo *pd = vm->root.bo;
378 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
379 	int ret;
380 
381 	ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL);
382 	if (ret) {
383 		pr_err("failed to validate PT BOs\n");
384 		return ret;
385 	}
386 
387 	vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
388 
389 	return 0;
390 }
391 
392 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
393 {
394 	struct amdgpu_bo *pd = vm->root.bo;
395 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
396 	int ret;
397 
398 	ret = amdgpu_vm_update_pdes(adev, vm, false);
399 	if (ret)
400 		return ret;
401 
402 	return amdgpu_sync_fence(sync, vm->last_update);
403 }
404 
405 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
406 {
407 	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
408 	bool coherent = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT;
409 	bool uncached = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED;
410 	uint32_t mapping_flags;
411 	uint64_t pte_flags;
412 	bool snoop = false;
413 
414 	mapping_flags = AMDGPU_VM_PAGE_READABLE;
415 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
416 		mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
417 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
418 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
419 
420 	switch (adev->asic_type) {
421 	case CHIP_ARCTURUS:
422 	case CHIP_ALDEBARAN:
423 		if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
424 			if (bo_adev == adev) {
425 				if (uncached)
426 					mapping_flags |= AMDGPU_VM_MTYPE_UC;
427 				else if (coherent)
428 					mapping_flags |= AMDGPU_VM_MTYPE_CC;
429 				else
430 					mapping_flags |= AMDGPU_VM_MTYPE_RW;
431 				if (adev->asic_type == CHIP_ALDEBARAN &&
432 				    adev->gmc.xgmi.connected_to_cpu)
433 					snoop = true;
434 			} else {
435 				if (uncached || coherent)
436 					mapping_flags |= AMDGPU_VM_MTYPE_UC;
437 				else
438 					mapping_flags |= AMDGPU_VM_MTYPE_NC;
439 				if (amdgpu_xgmi_same_hive(adev, bo_adev))
440 					snoop = true;
441 			}
442 		} else {
443 			if (uncached || coherent)
444 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
445 			else
446 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
447 			snoop = true;
448 		}
449 		break;
450 	default:
451 		if (uncached || coherent)
452 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
453 		else
454 			mapping_flags |= AMDGPU_VM_MTYPE_NC;
455 
456 		if (!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM))
457 			snoop = true;
458 	}
459 
460 	pte_flags = amdgpu_gem_va_map_flags(adev, mapping_flags);
461 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
462 
463 	return pte_flags;
464 }
465 
466 /**
467  * create_sg_table() - Create an sg_table for a contiguous DMA addr range
468  * @addr: The starting address to point to
469  * @size: Size of memory area in bytes being pointed to
470  *
471  * Allocates an instance of sg_table and initializes it to point to memory
472  * area specified by input parameters. The address used to build is assumed
473  * to be DMA mapped, if needed.
474  *
475  * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
476  * because they are physically contiguous.
477  *
478  * Return: Initialized instance of SG Table or NULL
479  */
480 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
481 {
482 	struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
483 
484 	if (!sg)
485 		return NULL;
486 	if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
487 		kfree(sg);
488 		return NULL;
489 	}
490 	sg_dma_address(sg->sgl) = addr;
491 	sg->sgl->length = size;
492 #ifdef CONFIG_NEED_SG_DMA_LENGTH
493 	sg->sgl->dma_length = size;
494 #endif
495 	return sg;
496 }
497 
498 static int
499 kfd_mem_dmamap_userptr(struct kgd_mem *mem,
500 		       struct kfd_mem_attachment *attachment)
501 {
502 	enum dma_data_direction direction =
503 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
504 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
505 	struct ttm_operation_ctx ctx = {.interruptible = true};
506 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
507 	struct amdgpu_device *adev = attachment->adev;
508 	struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
509 	struct ttm_tt *ttm = bo->tbo.ttm;
510 	int ret;
511 
512 	ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
513 	if (unlikely(!ttm->sg))
514 		return -ENOMEM;
515 
516 	if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
517 		return -EINVAL;
518 
519 	/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
520 	ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
521 					ttm->num_pages, 0,
522 					(u64)ttm->num_pages << PAGE_SHIFT,
523 					GFP_KERNEL);
524 	if (unlikely(ret))
525 		goto free_sg;
526 
527 	ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
528 	if (unlikely(ret))
529 		goto release_sg;
530 
531 	drm_prime_sg_to_dma_addr_array(ttm->sg, ttm->dma_address,
532 				       ttm->num_pages);
533 
534 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
535 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
536 	if (ret)
537 		goto unmap_sg;
538 
539 	return 0;
540 
541 unmap_sg:
542 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
543 release_sg:
544 	pr_err("DMA map userptr failed: %d\n", ret);
545 	sg_free_table(ttm->sg);
546 free_sg:
547 	kfree(ttm->sg);
548 	ttm->sg = NULL;
549 	return ret;
550 }
551 
552 static int
553 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
554 {
555 	struct ttm_operation_ctx ctx = {.interruptible = true};
556 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
557 
558 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
559 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
560 }
561 
562 /**
563  * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
564  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
565  * @attachment: Virtual address attachment of the BO on accessing device
566  *
567  * An access request from the device that owns DOORBELL does not require DMA mapping.
568  * This is because the request doesn't go through PCIe root complex i.e. it instead
569  * loops back. The need to DMA map arises only when accessing peer device's DOORBELL
570  *
571  * In contrast, all access requests for MMIO need to be DMA mapped without regard to
572  * device ownership. This is because access requests for MMIO go through PCIe root
573  * complex.
574  *
575  * This is accomplished in two steps:
576  *   - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
577  *         in updating requesting device's page table
578  *   - Signal TTM to mark memory pointed to by requesting device's BO as GPU
579  *         accessible. This allows an update of requesting device's page table
580  *         with entries associated with DOOREBELL or MMIO memory
581  *
582  * This method is invoked in the following contexts:
583  *   - Mapping of DOORBELL or MMIO BO of same or peer device
584  *   - Validating an evicted DOOREBELL or MMIO BO on device seeking access
585  *
586  * Return: ZERO if successful, NON-ZERO otherwise
587  */
588 static int
589 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
590 		     struct kfd_mem_attachment *attachment)
591 {
592 	struct ttm_operation_ctx ctx = {.interruptible = true};
593 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
594 	struct amdgpu_device *adev = attachment->adev;
595 	struct ttm_tt *ttm = bo->tbo.ttm;
596 	enum dma_data_direction dir;
597 	dma_addr_t dma_addr;
598 	bool mmio;
599 	int ret;
600 
601 	/* Expect SG Table of dmapmap BO to be NULL */
602 	mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
603 	if (unlikely(ttm->sg)) {
604 		pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
605 		return -EINVAL;
606 	}
607 
608 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
609 			DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
610 	dma_addr = mem->bo->tbo.sg->sgl->dma_address;
611 	pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
612 	pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
613 	dma_addr = dma_map_resource(adev->dev, dma_addr,
614 			mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
615 	ret = dma_mapping_error(adev->dev, dma_addr);
616 	if (unlikely(ret))
617 		return ret;
618 	pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
619 
620 	ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
621 	if (unlikely(!ttm->sg)) {
622 		ret = -ENOMEM;
623 		goto unmap_sg;
624 	}
625 
626 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
627 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
628 	if (unlikely(ret))
629 		goto free_sg;
630 
631 	return ret;
632 
633 free_sg:
634 	sg_free_table(ttm->sg);
635 	kfree(ttm->sg);
636 	ttm->sg = NULL;
637 unmap_sg:
638 	dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
639 			   dir, DMA_ATTR_SKIP_CPU_SYNC);
640 	return ret;
641 }
642 
643 static int
644 kfd_mem_dmamap_attachment(struct kgd_mem *mem,
645 			  struct kfd_mem_attachment *attachment)
646 {
647 	switch (attachment->type) {
648 	case KFD_MEM_ATT_SHARED:
649 		return 0;
650 	case KFD_MEM_ATT_USERPTR:
651 		return kfd_mem_dmamap_userptr(mem, attachment);
652 	case KFD_MEM_ATT_DMABUF:
653 		return kfd_mem_dmamap_dmabuf(attachment);
654 	case KFD_MEM_ATT_SG:
655 		return kfd_mem_dmamap_sg_bo(mem, attachment);
656 	default:
657 		WARN_ON_ONCE(1);
658 	}
659 	return -EINVAL;
660 }
661 
662 static void
663 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
664 			 struct kfd_mem_attachment *attachment)
665 {
666 	enum dma_data_direction direction =
667 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
668 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
669 	struct ttm_operation_ctx ctx = {.interruptible = false};
670 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
671 	struct amdgpu_device *adev = attachment->adev;
672 	struct ttm_tt *ttm = bo->tbo.ttm;
673 
674 	if (unlikely(!ttm->sg))
675 		return;
676 
677 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
678 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
679 
680 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
681 	sg_free_table(ttm->sg);
682 	kfree(ttm->sg);
683 	ttm->sg = NULL;
684 }
685 
686 static void
687 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
688 {
689 	struct ttm_operation_ctx ctx = {.interruptible = true};
690 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
691 
692 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
693 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
694 }
695 
696 /**
697  * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
698  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
699  * @attachment: Virtual address attachment of the BO on accessing device
700  *
701  * The method performs following steps:
702  *   - Signal TTM to mark memory pointed to by BO as GPU inaccessible
703  *   - Free SG Table that is used to encapsulate DMA mapped memory of
704  *          peer device's DOORBELL or MMIO memory
705  *
706  * This method is invoked in the following contexts:
707  *     UNMapping of DOORBELL or MMIO BO on a device having access to its memory
708  *     Eviction of DOOREBELL or MMIO BO on device having access to its memory
709  *
710  * Return: void
711  */
712 static void
713 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
714 		       struct kfd_mem_attachment *attachment)
715 {
716 	struct ttm_operation_ctx ctx = {.interruptible = true};
717 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
718 	struct amdgpu_device *adev = attachment->adev;
719 	struct ttm_tt *ttm = bo->tbo.ttm;
720 	enum dma_data_direction dir;
721 
722 	if (unlikely(!ttm->sg)) {
723 		pr_err("SG Table of BO is UNEXPECTEDLY NULL");
724 		return;
725 	}
726 
727 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
728 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
729 
730 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
731 				DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
732 	dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
733 			ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
734 	sg_free_table(ttm->sg);
735 	kfree(ttm->sg);
736 	ttm->sg = NULL;
737 	bo->tbo.sg = NULL;
738 }
739 
740 static void
741 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
742 			    struct kfd_mem_attachment *attachment)
743 {
744 	switch (attachment->type) {
745 	case KFD_MEM_ATT_SHARED:
746 		break;
747 	case KFD_MEM_ATT_USERPTR:
748 		kfd_mem_dmaunmap_userptr(mem, attachment);
749 		break;
750 	case KFD_MEM_ATT_DMABUF:
751 		kfd_mem_dmaunmap_dmabuf(attachment);
752 		break;
753 	case KFD_MEM_ATT_SG:
754 		kfd_mem_dmaunmap_sg_bo(mem, attachment);
755 		break;
756 	default:
757 		WARN_ON_ONCE(1);
758 	}
759 }
760 
761 static int
762 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
763 		      struct amdgpu_bo **bo)
764 {
765 	struct drm_gem_object *gobj;
766 	int ret;
767 
768 	if (!mem->dmabuf) {
769 		mem->dmabuf = amdgpu_gem_prime_export(&mem->bo->tbo.base,
770 			mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
771 				DRM_RDWR : 0);
772 		if (IS_ERR(mem->dmabuf)) {
773 			ret = PTR_ERR(mem->dmabuf);
774 			mem->dmabuf = NULL;
775 			return ret;
776 		}
777 	}
778 
779 	gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
780 	if (IS_ERR(gobj))
781 		return PTR_ERR(gobj);
782 
783 	*bo = gem_to_amdgpu_bo(gobj);
784 	(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
785 
786 	return 0;
787 }
788 
789 /* kfd_mem_attach - Add a BO to a VM
790  *
791  * Everything that needs to bo done only once when a BO is first added
792  * to a VM. It can later be mapped and unmapped many times without
793  * repeating these steps.
794  *
795  * 0. Create BO for DMA mapping, if needed
796  * 1. Allocate and initialize BO VA entry data structure
797  * 2. Add BO to the VM
798  * 3. Determine ASIC-specific PTE flags
799  * 4. Alloc page tables and directories if needed
800  * 4a.  Validate new page tables and directories
801  */
802 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
803 		struct amdgpu_vm *vm, bool is_aql)
804 {
805 	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
806 	unsigned long bo_size = mem->bo->tbo.base.size;
807 	uint64_t va = mem->va;
808 	struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
809 	struct amdgpu_bo *bo[2] = {NULL, NULL};
810 	bool same_hive = false;
811 	int i, ret;
812 
813 	if (!va) {
814 		pr_err("Invalid VA when adding BO to VM\n");
815 		return -EINVAL;
816 	}
817 
818 	/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
819 	 *
820 	 * The access path of MMIO and DOORBELL BOs of is always over PCIe.
821 	 * In contrast the access path of VRAM BOs depens upon the type of
822 	 * link that connects the peer device. Access over PCIe is allowed
823 	 * if peer device has large BAR. In contrast, access over xGMI is
824 	 * allowed for both small and large BAR configurations of peer device
825 	 */
826 	if ((adev != bo_adev) &&
827 	    ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
828 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
829 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
830 		if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
831 			same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
832 		if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
833 			return -EINVAL;
834 	}
835 
836 	for (i = 0; i <= is_aql; i++) {
837 		attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
838 		if (unlikely(!attachment[i])) {
839 			ret = -ENOMEM;
840 			goto unwind;
841 		}
842 
843 		pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
844 			 va + bo_size, vm);
845 
846 		if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
847 		    (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && adev->ram_is_direct_mapped) ||
848 		    same_hive) {
849 			/* Mappings on the local GPU, or VRAM mappings in the
850 			 * local hive, or userptr mapping IOMMU direct map mode
851 			 * share the original BO
852 			 */
853 			attachment[i]->type = KFD_MEM_ATT_SHARED;
854 			bo[i] = mem->bo;
855 			drm_gem_object_get(&bo[i]->tbo.base);
856 		} else if (i > 0) {
857 			/* Multiple mappings on the same GPU share the BO */
858 			attachment[i]->type = KFD_MEM_ATT_SHARED;
859 			bo[i] = bo[0];
860 			drm_gem_object_get(&bo[i]->tbo.base);
861 		} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
862 			/* Create an SG BO to DMA-map userptrs on other GPUs */
863 			attachment[i]->type = KFD_MEM_ATT_USERPTR;
864 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
865 			if (ret)
866 				goto unwind;
867 		/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
868 		} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
869 			WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
870 				    mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
871 				  "Handing invalid SG BO in ATTACH request");
872 			attachment[i]->type = KFD_MEM_ATT_SG;
873 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
874 			if (ret)
875 				goto unwind;
876 		/* Enable acces to GTT and VRAM BOs of peer devices */
877 		} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
878 			   mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
879 			attachment[i]->type = KFD_MEM_ATT_DMABUF;
880 			ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
881 			if (ret)
882 				goto unwind;
883 			pr_debug("Employ DMABUF mechanism to enable peer GPU access\n");
884 		} else {
885 			WARN_ONCE(true, "Handling invalid ATTACH request");
886 			ret = -EINVAL;
887 			goto unwind;
888 		}
889 
890 		/* Add BO to VM internal data structures */
891 		ret = amdgpu_bo_reserve(bo[i], false);
892 		if (ret) {
893 			pr_debug("Unable to reserve BO during memory attach");
894 			goto unwind;
895 		}
896 		attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
897 		amdgpu_bo_unreserve(bo[i]);
898 		if (unlikely(!attachment[i]->bo_va)) {
899 			ret = -ENOMEM;
900 			pr_err("Failed to add BO object to VM. ret == %d\n",
901 			       ret);
902 			goto unwind;
903 		}
904 		attachment[i]->va = va;
905 		attachment[i]->pte_flags = get_pte_flags(adev, mem);
906 		attachment[i]->adev = adev;
907 		list_add(&attachment[i]->list, &mem->attachments);
908 
909 		va += bo_size;
910 	}
911 
912 	return 0;
913 
914 unwind:
915 	for (; i >= 0; i--) {
916 		if (!attachment[i])
917 			continue;
918 		if (attachment[i]->bo_va) {
919 			amdgpu_bo_reserve(bo[i], true);
920 			amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
921 			amdgpu_bo_unreserve(bo[i]);
922 			list_del(&attachment[i]->list);
923 		}
924 		if (bo[i])
925 			drm_gem_object_put(&bo[i]->tbo.base);
926 		kfree(attachment[i]);
927 	}
928 	return ret;
929 }
930 
931 static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
932 {
933 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
934 
935 	pr_debug("\t remove VA 0x%llx in entry %p\n",
936 			attachment->va, attachment);
937 	amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
938 	drm_gem_object_put(&bo->tbo.base);
939 	list_del(&attachment->list);
940 	kfree(attachment);
941 }
942 
943 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
944 				struct amdkfd_process_info *process_info,
945 				bool userptr)
946 {
947 	struct ttm_validate_buffer *entry = &mem->validate_list;
948 	struct amdgpu_bo *bo = mem->bo;
949 
950 	INIT_LIST_HEAD(&entry->head);
951 	entry->num_shared = 1;
952 	entry->bo = &bo->tbo;
953 	mutex_lock(&process_info->lock);
954 	if (userptr)
955 		list_add_tail(&entry->head, &process_info->userptr_valid_list);
956 	else
957 		list_add_tail(&entry->head, &process_info->kfd_bo_list);
958 	mutex_unlock(&process_info->lock);
959 }
960 
961 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
962 		struct amdkfd_process_info *process_info)
963 {
964 	struct ttm_validate_buffer *bo_list_entry;
965 
966 	bo_list_entry = &mem->validate_list;
967 	mutex_lock(&process_info->lock);
968 	list_del(&bo_list_entry->head);
969 	mutex_unlock(&process_info->lock);
970 }
971 
972 /* Initializes user pages. It registers the MMU notifier and validates
973  * the userptr BO in the GTT domain.
974  *
975  * The BO must already be on the userptr_valid_list. Otherwise an
976  * eviction and restore may happen that leaves the new BO unmapped
977  * with the user mode queues running.
978  *
979  * Takes the process_info->lock to protect against concurrent restore
980  * workers.
981  *
982  * Returns 0 for success, negative errno for errors.
983  */
984 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
985 			   bool criu_resume)
986 {
987 	struct amdkfd_process_info *process_info = mem->process_info;
988 	struct amdgpu_bo *bo = mem->bo;
989 	struct ttm_operation_ctx ctx = { true, false };
990 	int ret = 0;
991 
992 	mutex_lock(&process_info->lock);
993 
994 	ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
995 	if (ret) {
996 		pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
997 		goto out;
998 	}
999 
1000 	ret = amdgpu_mn_register(bo, user_addr);
1001 	if (ret) {
1002 		pr_err("%s: Failed to register MMU notifier: %d\n",
1003 		       __func__, ret);
1004 		goto out;
1005 	}
1006 
1007 	if (criu_resume) {
1008 		/*
1009 		 * During a CRIU restore operation, the userptr buffer objects
1010 		 * will be validated in the restore_userptr_work worker at a
1011 		 * later stage when it is scheduled by another ioctl called by
1012 		 * CRIU master process for the target pid for restore.
1013 		 */
1014 		atomic_inc(&mem->invalid);
1015 		mutex_unlock(&process_info->lock);
1016 		return 0;
1017 	}
1018 
1019 	ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
1020 	if (ret) {
1021 		pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1022 		goto unregister_out;
1023 	}
1024 
1025 	ret = amdgpu_bo_reserve(bo, true);
1026 	if (ret) {
1027 		pr_err("%s: Failed to reserve BO\n", __func__);
1028 		goto release_out;
1029 	}
1030 	amdgpu_bo_placement_from_domain(bo, mem->domain);
1031 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1032 	if (ret)
1033 		pr_err("%s: failed to validate BO\n", __func__);
1034 	amdgpu_bo_unreserve(bo);
1035 
1036 release_out:
1037 	amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
1038 unregister_out:
1039 	if (ret)
1040 		amdgpu_mn_unregister(bo);
1041 out:
1042 	mutex_unlock(&process_info->lock);
1043 	return ret;
1044 }
1045 
1046 /* Reserving a BO and its page table BOs must happen atomically to
1047  * avoid deadlocks. Some operations update multiple VMs at once. Track
1048  * all the reservation info in a context structure. Optionally a sync
1049  * object can track VM updates.
1050  */
1051 struct bo_vm_reservation_context {
1052 	struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */
1053 	unsigned int n_vms;		    /* Number of VMs reserved	    */
1054 	struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries  */
1055 	struct ww_acquire_ctx ticket;	    /* Reservation ticket	    */
1056 	struct list_head list, duplicates;  /* BO lists			    */
1057 	struct amdgpu_sync *sync;	    /* Pointer to sync object	    */
1058 	bool reserved;			    /* Whether BOs are reserved	    */
1059 };
1060 
1061 enum bo_vm_match {
1062 	BO_VM_NOT_MAPPED = 0,	/* Match VMs where a BO is not mapped */
1063 	BO_VM_MAPPED,		/* Match VMs where a BO is mapped     */
1064 	BO_VM_ALL,		/* Match all VMs a BO was added to    */
1065 };
1066 
1067 /**
1068  * reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1069  * @mem: KFD BO structure.
1070  * @vm: the VM to reserve.
1071  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1072  */
1073 static int reserve_bo_and_vm(struct kgd_mem *mem,
1074 			      struct amdgpu_vm *vm,
1075 			      struct bo_vm_reservation_context *ctx)
1076 {
1077 	struct amdgpu_bo *bo = mem->bo;
1078 	int ret;
1079 
1080 	WARN_ON(!vm);
1081 
1082 	ctx->reserved = false;
1083 	ctx->n_vms = 1;
1084 	ctx->sync = &mem->sync;
1085 
1086 	INIT_LIST_HEAD(&ctx->list);
1087 	INIT_LIST_HEAD(&ctx->duplicates);
1088 
1089 	ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL);
1090 	if (!ctx->vm_pd)
1091 		return -ENOMEM;
1092 
1093 	ctx->kfd_bo.priority = 0;
1094 	ctx->kfd_bo.tv.bo = &bo->tbo;
1095 	ctx->kfd_bo.tv.num_shared = 1;
1096 	list_add(&ctx->kfd_bo.tv.head, &ctx->list);
1097 
1098 	amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]);
1099 
1100 	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
1101 				     false, &ctx->duplicates);
1102 	if (ret) {
1103 		pr_err("Failed to reserve buffers in ttm.\n");
1104 		kfree(ctx->vm_pd);
1105 		ctx->vm_pd = NULL;
1106 		return ret;
1107 	}
1108 
1109 	ctx->reserved = true;
1110 	return 0;
1111 }
1112 
1113 /**
1114  * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1115  * @mem: KFD BO structure.
1116  * @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1117  * is used. Otherwise, a single VM associated with the BO.
1118  * @map_type: the mapping status that will be used to filter the VMs.
1119  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1120  *
1121  * Returns 0 for success, negative for failure.
1122  */
1123 static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1124 				struct amdgpu_vm *vm, enum bo_vm_match map_type,
1125 				struct bo_vm_reservation_context *ctx)
1126 {
1127 	struct amdgpu_bo *bo = mem->bo;
1128 	struct kfd_mem_attachment *entry;
1129 	unsigned int i;
1130 	int ret;
1131 
1132 	ctx->reserved = false;
1133 	ctx->n_vms = 0;
1134 	ctx->vm_pd = NULL;
1135 	ctx->sync = &mem->sync;
1136 
1137 	INIT_LIST_HEAD(&ctx->list);
1138 	INIT_LIST_HEAD(&ctx->duplicates);
1139 
1140 	list_for_each_entry(entry, &mem->attachments, list) {
1141 		if ((vm && vm != entry->bo_va->base.vm) ||
1142 			(entry->is_mapped != map_type
1143 			&& map_type != BO_VM_ALL))
1144 			continue;
1145 
1146 		ctx->n_vms++;
1147 	}
1148 
1149 	if (ctx->n_vms != 0) {
1150 		ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd),
1151 				     GFP_KERNEL);
1152 		if (!ctx->vm_pd)
1153 			return -ENOMEM;
1154 	}
1155 
1156 	ctx->kfd_bo.priority = 0;
1157 	ctx->kfd_bo.tv.bo = &bo->tbo;
1158 	ctx->kfd_bo.tv.num_shared = 1;
1159 	list_add(&ctx->kfd_bo.tv.head, &ctx->list);
1160 
1161 	i = 0;
1162 	list_for_each_entry(entry, &mem->attachments, list) {
1163 		if ((vm && vm != entry->bo_va->base.vm) ||
1164 			(entry->is_mapped != map_type
1165 			&& map_type != BO_VM_ALL))
1166 			continue;
1167 
1168 		amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list,
1169 				&ctx->vm_pd[i]);
1170 		i++;
1171 	}
1172 
1173 	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
1174 				     false, &ctx->duplicates);
1175 	if (ret) {
1176 		pr_err("Failed to reserve buffers in ttm.\n");
1177 		kfree(ctx->vm_pd);
1178 		ctx->vm_pd = NULL;
1179 		return ret;
1180 	}
1181 
1182 	ctx->reserved = true;
1183 	return 0;
1184 }
1185 
1186 /**
1187  * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1188  * @ctx: Reservation context to unreserve
1189  * @wait: Optionally wait for a sync object representing pending VM updates
1190  * @intr: Whether the wait is interruptible
1191  *
1192  * Also frees any resources allocated in
1193  * reserve_bo_and_(cond_)vm(s). Returns the status from
1194  * amdgpu_sync_wait.
1195  */
1196 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1197 				 bool wait, bool intr)
1198 {
1199 	int ret = 0;
1200 
1201 	if (wait)
1202 		ret = amdgpu_sync_wait(ctx->sync, intr);
1203 
1204 	if (ctx->reserved)
1205 		ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list);
1206 	kfree(ctx->vm_pd);
1207 
1208 	ctx->sync = NULL;
1209 
1210 	ctx->reserved = false;
1211 	ctx->vm_pd = NULL;
1212 
1213 	return ret;
1214 }
1215 
1216 static void unmap_bo_from_gpuvm(struct kgd_mem *mem,
1217 				struct kfd_mem_attachment *entry,
1218 				struct amdgpu_sync *sync)
1219 {
1220 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1221 	struct amdgpu_device *adev = entry->adev;
1222 	struct amdgpu_vm *vm = bo_va->base.vm;
1223 
1224 	amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1225 
1226 	amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1227 
1228 	amdgpu_sync_fence(sync, bo_va->last_pt_update);
1229 
1230 	kfd_mem_dmaunmap_attachment(mem, entry);
1231 }
1232 
1233 static int update_gpuvm_pte(struct kgd_mem *mem,
1234 			    struct kfd_mem_attachment *entry,
1235 			    struct amdgpu_sync *sync)
1236 {
1237 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1238 	struct amdgpu_device *adev = entry->adev;
1239 	int ret;
1240 
1241 	ret = kfd_mem_dmamap_attachment(mem, entry);
1242 	if (ret)
1243 		return ret;
1244 
1245 	/* Update the page tables  */
1246 	ret = amdgpu_vm_bo_update(adev, bo_va, false);
1247 	if (ret) {
1248 		pr_err("amdgpu_vm_bo_update failed\n");
1249 		return ret;
1250 	}
1251 
1252 	return amdgpu_sync_fence(sync, bo_va->last_pt_update);
1253 }
1254 
1255 static int map_bo_to_gpuvm(struct kgd_mem *mem,
1256 			   struct kfd_mem_attachment *entry,
1257 			   struct amdgpu_sync *sync,
1258 			   bool no_update_pte)
1259 {
1260 	int ret;
1261 
1262 	/* Set virtual address for the allocation */
1263 	ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1264 			       amdgpu_bo_size(entry->bo_va->base.bo),
1265 			       entry->pte_flags);
1266 	if (ret) {
1267 		pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1268 				entry->va, ret);
1269 		return ret;
1270 	}
1271 
1272 	if (no_update_pte)
1273 		return 0;
1274 
1275 	ret = update_gpuvm_pte(mem, entry, sync);
1276 	if (ret) {
1277 		pr_err("update_gpuvm_pte() failed\n");
1278 		goto update_gpuvm_pte_failed;
1279 	}
1280 
1281 	return 0;
1282 
1283 update_gpuvm_pte_failed:
1284 	unmap_bo_from_gpuvm(mem, entry, sync);
1285 	return ret;
1286 }
1287 
1288 static int process_validate_vms(struct amdkfd_process_info *process_info)
1289 {
1290 	struct amdgpu_vm *peer_vm;
1291 	int ret;
1292 
1293 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1294 			    vm_list_node) {
1295 		ret = vm_validate_pt_pd_bos(peer_vm);
1296 		if (ret)
1297 			return ret;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1304 				 struct amdgpu_sync *sync)
1305 {
1306 	struct amdgpu_vm *peer_vm;
1307 	int ret;
1308 
1309 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1310 			    vm_list_node) {
1311 		struct amdgpu_bo *pd = peer_vm->root.bo;
1312 
1313 		ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1314 				       AMDGPU_SYNC_NE_OWNER,
1315 				       AMDGPU_FENCE_OWNER_KFD);
1316 		if (ret)
1317 			return ret;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 static int process_update_pds(struct amdkfd_process_info *process_info,
1324 			      struct amdgpu_sync *sync)
1325 {
1326 	struct amdgpu_vm *peer_vm;
1327 	int ret;
1328 
1329 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1330 			    vm_list_node) {
1331 		ret = vm_update_pds(peer_vm, sync);
1332 		if (ret)
1333 			return ret;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1340 		       struct dma_fence **ef)
1341 {
1342 	struct amdkfd_process_info *info = NULL;
1343 	int ret;
1344 
1345 	if (!*process_info) {
1346 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1347 		if (!info)
1348 			return -ENOMEM;
1349 
1350 		mutex_init(&info->lock);
1351 		INIT_LIST_HEAD(&info->vm_list_head);
1352 		INIT_LIST_HEAD(&info->kfd_bo_list);
1353 		INIT_LIST_HEAD(&info->userptr_valid_list);
1354 		INIT_LIST_HEAD(&info->userptr_inval_list);
1355 
1356 		info->eviction_fence =
1357 			amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1358 						   current->mm,
1359 						   NULL);
1360 		if (!info->eviction_fence) {
1361 			pr_err("Failed to create eviction fence\n");
1362 			ret = -ENOMEM;
1363 			goto create_evict_fence_fail;
1364 		}
1365 
1366 		info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1367 		atomic_set(&info->evicted_bos, 0);
1368 		INIT_DELAYED_WORK(&info->restore_userptr_work,
1369 				  amdgpu_amdkfd_restore_userptr_worker);
1370 
1371 		*process_info = info;
1372 		*ef = dma_fence_get(&info->eviction_fence->base);
1373 	}
1374 
1375 	vm->process_info = *process_info;
1376 
1377 	/* Validate page directory and attach eviction fence */
1378 	ret = amdgpu_bo_reserve(vm->root.bo, true);
1379 	if (ret)
1380 		goto reserve_pd_fail;
1381 	ret = vm_validate_pt_pd_bos(vm);
1382 	if (ret) {
1383 		pr_err("validate_pt_pd_bos() failed\n");
1384 		goto validate_pd_fail;
1385 	}
1386 	ret = amdgpu_bo_sync_wait(vm->root.bo,
1387 				  AMDGPU_FENCE_OWNER_KFD, false);
1388 	if (ret)
1389 		goto wait_pd_fail;
1390 	ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1391 	if (ret)
1392 		goto reserve_shared_fail;
1393 	amdgpu_bo_fence(vm->root.bo,
1394 			&vm->process_info->eviction_fence->base, true);
1395 	amdgpu_bo_unreserve(vm->root.bo);
1396 
1397 	/* Update process info */
1398 	mutex_lock(&vm->process_info->lock);
1399 	list_add_tail(&vm->vm_list_node,
1400 			&(vm->process_info->vm_list_head));
1401 	vm->process_info->n_vms++;
1402 	mutex_unlock(&vm->process_info->lock);
1403 
1404 	return 0;
1405 
1406 reserve_shared_fail:
1407 wait_pd_fail:
1408 validate_pd_fail:
1409 	amdgpu_bo_unreserve(vm->root.bo);
1410 reserve_pd_fail:
1411 	vm->process_info = NULL;
1412 	if (info) {
1413 		/* Two fence references: one in info and one in *ef */
1414 		dma_fence_put(&info->eviction_fence->base);
1415 		dma_fence_put(*ef);
1416 		*ef = NULL;
1417 		*process_info = NULL;
1418 		put_pid(info->pid);
1419 create_evict_fence_fail:
1420 		mutex_destroy(&info->lock);
1421 		kfree(info);
1422 	}
1423 	return ret;
1424 }
1425 
1426 /**
1427  * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1428  * @bo: Handle of buffer object being pinned
1429  * @domain: Domain into which BO should be pinned
1430  *
1431  *   - USERPTR BOs are UNPINNABLE and will return error
1432  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1433  *     PIN count incremented. It is valid to PIN a BO multiple times
1434  *
1435  * Return: ZERO if successful in pinning, Non-Zero in case of error.
1436  */
1437 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1438 {
1439 	int ret = 0;
1440 
1441 	ret = amdgpu_bo_reserve(bo, false);
1442 	if (unlikely(ret))
1443 		return ret;
1444 
1445 	ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0);
1446 	if (ret)
1447 		pr_err("Error in Pinning BO to domain: %d\n", domain);
1448 
1449 	amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1450 	amdgpu_bo_unreserve(bo);
1451 
1452 	return ret;
1453 }
1454 
1455 /**
1456  * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1457  * @bo: Handle of buffer object being unpinned
1458  *
1459  *   - Is a illegal request for USERPTR BOs and is ignored
1460  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1461  *     PIN count decremented. Calls to UNPIN must balance calls to PIN
1462  */
1463 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1464 {
1465 	int ret = 0;
1466 
1467 	ret = amdgpu_bo_reserve(bo, false);
1468 	if (unlikely(ret))
1469 		return;
1470 
1471 	amdgpu_bo_unpin(bo);
1472 	amdgpu_bo_unreserve(bo);
1473 }
1474 
1475 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1476 					   struct file *filp, u32 pasid,
1477 					   void **process_info,
1478 					   struct dma_fence **ef)
1479 {
1480 	struct amdgpu_fpriv *drv_priv;
1481 	struct amdgpu_vm *avm;
1482 	int ret;
1483 
1484 	ret = amdgpu_file_to_fpriv(filp, &drv_priv);
1485 	if (ret)
1486 		return ret;
1487 	avm = &drv_priv->vm;
1488 
1489 	/* Already a compute VM? */
1490 	if (avm->process_info)
1491 		return -EINVAL;
1492 
1493 	/* Free the original amdgpu allocated pasid,
1494 	 * will be replaced with kfd allocated pasid.
1495 	 */
1496 	if (avm->pasid) {
1497 		amdgpu_pasid_free(avm->pasid);
1498 		amdgpu_vm_set_pasid(adev, avm, 0);
1499 	}
1500 
1501 	/* Convert VM into a compute VM */
1502 	ret = amdgpu_vm_make_compute(adev, avm);
1503 	if (ret)
1504 		return ret;
1505 
1506 	ret = amdgpu_vm_set_pasid(adev, avm, pasid);
1507 	if (ret)
1508 		return ret;
1509 	/* Initialize KFD part of the VM and process info */
1510 	ret = init_kfd_vm(avm, process_info, ef);
1511 	if (ret)
1512 		return ret;
1513 
1514 	amdgpu_vm_set_task_info(avm);
1515 
1516 	return 0;
1517 }
1518 
1519 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1520 				    struct amdgpu_vm *vm)
1521 {
1522 	struct amdkfd_process_info *process_info = vm->process_info;
1523 
1524 	if (!process_info)
1525 		return;
1526 
1527 	/* Update process info */
1528 	mutex_lock(&process_info->lock);
1529 	process_info->n_vms--;
1530 	list_del(&vm->vm_list_node);
1531 	mutex_unlock(&process_info->lock);
1532 
1533 	vm->process_info = NULL;
1534 
1535 	/* Release per-process resources when last compute VM is destroyed */
1536 	if (!process_info->n_vms) {
1537 		WARN_ON(!list_empty(&process_info->kfd_bo_list));
1538 		WARN_ON(!list_empty(&process_info->userptr_valid_list));
1539 		WARN_ON(!list_empty(&process_info->userptr_inval_list));
1540 
1541 		dma_fence_put(&process_info->eviction_fence->base);
1542 		cancel_delayed_work_sync(&process_info->restore_userptr_work);
1543 		put_pid(process_info->pid);
1544 		mutex_destroy(&process_info->lock);
1545 		kfree(process_info);
1546 	}
1547 }
1548 
1549 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev,
1550 					    void *drm_priv)
1551 {
1552 	struct amdgpu_vm *avm;
1553 
1554 	if (WARN_ON(!adev || !drm_priv))
1555 		return;
1556 
1557 	avm = drm_priv_to_vm(drm_priv);
1558 
1559 	pr_debug("Releasing process vm %p\n", avm);
1560 
1561 	/* The original pasid of amdgpu vm has already been
1562 	 * released during making a amdgpu vm to a compute vm
1563 	 * The current pasid is managed by kfd and will be
1564 	 * released on kfd process destroy. Set amdgpu pasid
1565 	 * to 0 to avoid duplicate release.
1566 	 */
1567 	amdgpu_vm_release_compute(adev, avm);
1568 }
1569 
1570 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1571 {
1572 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1573 	struct amdgpu_bo *pd = avm->root.bo;
1574 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1575 
1576 	if (adev->asic_type < CHIP_VEGA10)
1577 		return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1578 	return avm->pd_phys_addr;
1579 }
1580 
1581 void amdgpu_amdkfd_block_mmu_notifications(void *p)
1582 {
1583 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1584 
1585 	mutex_lock(&pinfo->lock);
1586 	WRITE_ONCE(pinfo->block_mmu_notifications, true);
1587 	mutex_unlock(&pinfo->lock);
1588 }
1589 
1590 int amdgpu_amdkfd_criu_resume(void *p)
1591 {
1592 	int ret = 0;
1593 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1594 
1595 	mutex_lock(&pinfo->lock);
1596 	pr_debug("scheduling work\n");
1597 	atomic_inc(&pinfo->evicted_bos);
1598 	if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1599 		ret = -EINVAL;
1600 		goto out_unlock;
1601 	}
1602 	WRITE_ONCE(pinfo->block_mmu_notifications, false);
1603 	schedule_delayed_work(&pinfo->restore_userptr_work, 0);
1604 
1605 out_unlock:
1606 	mutex_unlock(&pinfo->lock);
1607 	return ret;
1608 }
1609 
1610 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev)
1611 {
1612 	uint64_t reserved_for_pt =
1613 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1614 	size_t available;
1615 	spin_lock(&kfd_mem_limit.mem_limit_lock);
1616 	available = adev->gmc.real_vram_size
1617 		- adev->kfd.vram_used_aligned
1618 		- atomic64_read(&adev->vram_pin_size)
1619 		- reserved_for_pt;
1620 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
1621 
1622 	return ALIGN_DOWN(available, VRAM_AVAILABLITY_ALIGN);
1623 }
1624 
1625 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1626 		struct amdgpu_device *adev, uint64_t va, uint64_t size,
1627 		void *drm_priv, struct kgd_mem **mem,
1628 		uint64_t *offset, uint32_t flags, bool criu_resume)
1629 {
1630 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1631 	enum ttm_bo_type bo_type = ttm_bo_type_device;
1632 	struct sg_table *sg = NULL;
1633 	uint64_t user_addr = 0;
1634 	struct amdgpu_bo *bo;
1635 	struct drm_gem_object *gobj = NULL;
1636 	u32 domain, alloc_domain;
1637 	u64 alloc_flags;
1638 	int ret;
1639 
1640 	/*
1641 	 * Check on which domain to allocate BO
1642 	 */
1643 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1644 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1645 		alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1646 		alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1647 			AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1648 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1649 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1650 		alloc_flags = 0;
1651 	} else {
1652 		domain = AMDGPU_GEM_DOMAIN_GTT;
1653 		alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1654 		alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1655 
1656 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1657 			if (!offset || !*offset)
1658 				return -EINVAL;
1659 			user_addr = untagged_addr(*offset);
1660 		} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1661 				    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1662 			bo_type = ttm_bo_type_sg;
1663 			if (size > UINT_MAX)
1664 				return -EINVAL;
1665 			sg = create_sg_table(*offset, size);
1666 			if (!sg)
1667 				return -ENOMEM;
1668 		} else {
1669 			return -EINVAL;
1670 		}
1671 	}
1672 
1673 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1674 	if (!*mem) {
1675 		ret = -ENOMEM;
1676 		goto err;
1677 	}
1678 	INIT_LIST_HEAD(&(*mem)->attachments);
1679 	mutex_init(&(*mem)->lock);
1680 	(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1681 
1682 	/* Workaround for AQL queue wraparound bug. Map the same
1683 	 * memory twice. That means we only actually allocate half
1684 	 * the memory.
1685 	 */
1686 	if ((*mem)->aql_queue)
1687 		size = size >> 1;
1688 
1689 	(*mem)->alloc_flags = flags;
1690 
1691 	amdgpu_sync_create(&(*mem)->sync);
1692 
1693 	ret = amdgpu_amdkfd_reserve_mem_limit(adev, size, flags);
1694 	if (ret) {
1695 		pr_debug("Insufficient memory\n");
1696 		goto err_reserve_limit;
1697 	}
1698 
1699 	pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n",
1700 			va, size, domain_string(alloc_domain));
1701 
1702 	ret = amdgpu_gem_object_create(adev, size, 1, alloc_domain, alloc_flags,
1703 				       bo_type, NULL, &gobj);
1704 	if (ret) {
1705 		pr_debug("Failed to create BO on domain %s. ret %d\n",
1706 			 domain_string(alloc_domain), ret);
1707 		goto err_bo_create;
1708 	}
1709 	ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1710 	if (ret) {
1711 		pr_debug("Failed to allow vma node access. ret %d\n", ret);
1712 		goto err_node_allow;
1713 	}
1714 	bo = gem_to_amdgpu_bo(gobj);
1715 	if (bo_type == ttm_bo_type_sg) {
1716 		bo->tbo.sg = sg;
1717 		bo->tbo.ttm->sg = sg;
1718 	}
1719 	bo->kfd_bo = *mem;
1720 	(*mem)->bo = bo;
1721 	if (user_addr)
1722 		bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1723 
1724 	(*mem)->va = va;
1725 	(*mem)->domain = domain;
1726 	(*mem)->mapped_to_gpu_memory = 0;
1727 	(*mem)->process_info = avm->process_info;
1728 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1729 
1730 	if (user_addr) {
1731 		pr_debug("creating userptr BO for user_addr = %llu\n", user_addr);
1732 		ret = init_user_pages(*mem, user_addr, criu_resume);
1733 		if (ret)
1734 			goto allocate_init_user_pages_failed;
1735 	} else  if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1736 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1737 		ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1738 		if (ret) {
1739 			pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1740 			goto err_pin_bo;
1741 		}
1742 		bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1743 		bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1744 	}
1745 
1746 	if (offset)
1747 		*offset = amdgpu_bo_mmap_offset(bo);
1748 
1749 	return 0;
1750 
1751 allocate_init_user_pages_failed:
1752 err_pin_bo:
1753 	remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1754 	drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1755 err_node_allow:
1756 	/* Don't unreserve system mem limit twice */
1757 	goto err_reserve_limit;
1758 err_bo_create:
1759 	amdgpu_amdkfd_unreserve_mem_limit(adev, size, flags);
1760 err_reserve_limit:
1761 	mutex_destroy(&(*mem)->lock);
1762 	if (gobj)
1763 		drm_gem_object_put(gobj);
1764 	else
1765 		kfree(*mem);
1766 err:
1767 	if (sg) {
1768 		sg_free_table(sg);
1769 		kfree(sg);
1770 	}
1771 	return ret;
1772 }
1773 
1774 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1775 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1776 		uint64_t *size)
1777 {
1778 	struct amdkfd_process_info *process_info = mem->process_info;
1779 	unsigned long bo_size = mem->bo->tbo.base.size;
1780 	bool use_release_notifier = (mem->bo->kfd_bo == mem);
1781 	struct kfd_mem_attachment *entry, *tmp;
1782 	struct bo_vm_reservation_context ctx;
1783 	struct ttm_validate_buffer *bo_list_entry;
1784 	unsigned int mapped_to_gpu_memory;
1785 	int ret;
1786 	bool is_imported = false;
1787 
1788 	mutex_lock(&mem->lock);
1789 
1790 	/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1791 	if (mem->alloc_flags &
1792 	    (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1793 	     KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1794 		amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1795 	}
1796 
1797 	mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1798 	is_imported = mem->is_imported;
1799 	mutex_unlock(&mem->lock);
1800 	/* lock is not needed after this, since mem is unused and will
1801 	 * be freed anyway
1802 	 */
1803 
1804 	if (mapped_to_gpu_memory > 0) {
1805 		pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1806 				mem->va, bo_size);
1807 		return -EBUSY;
1808 	}
1809 
1810 	/* Make sure restore workers don't access the BO any more */
1811 	bo_list_entry = &mem->validate_list;
1812 	mutex_lock(&process_info->lock);
1813 	list_del(&bo_list_entry->head);
1814 	mutex_unlock(&process_info->lock);
1815 
1816 	/* No more MMU notifiers */
1817 	amdgpu_mn_unregister(mem->bo);
1818 
1819 	ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1820 	if (unlikely(ret))
1821 		return ret;
1822 
1823 	/* The eviction fence should be removed by the last unmap.
1824 	 * TODO: Log an error condition if the bo still has the eviction fence
1825 	 * attached
1826 	 */
1827 	amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1828 					process_info->eviction_fence);
1829 	pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1830 		mem->va + bo_size * (1 + mem->aql_queue));
1831 
1832 	/* Remove from VM internal data structures */
1833 	list_for_each_entry_safe(entry, tmp, &mem->attachments, list)
1834 		kfd_mem_detach(entry);
1835 
1836 	ret = unreserve_bo_and_vms(&ctx, false, false);
1837 
1838 	/* Free the sync object */
1839 	amdgpu_sync_free(&mem->sync);
1840 
1841 	/* If the SG is not NULL, it's one we created for a doorbell or mmio
1842 	 * remap BO. We need to free it.
1843 	 */
1844 	if (mem->bo->tbo.sg) {
1845 		sg_free_table(mem->bo->tbo.sg);
1846 		kfree(mem->bo->tbo.sg);
1847 	}
1848 
1849 	/* Update the size of the BO being freed if it was allocated from
1850 	 * VRAM and is not imported.
1851 	 */
1852 	if (size) {
1853 		if ((mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM) &&
1854 		    (!is_imported))
1855 			*size = bo_size;
1856 		else
1857 			*size = 0;
1858 	}
1859 
1860 	/* Free the BO*/
1861 	drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1862 	if (mem->dmabuf)
1863 		dma_buf_put(mem->dmabuf);
1864 	mutex_destroy(&mem->lock);
1865 
1866 	/* If this releases the last reference, it will end up calling
1867 	 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
1868 	 * this needs to be the last call here.
1869 	 */
1870 	drm_gem_object_put(&mem->bo->tbo.base);
1871 
1872 	/*
1873 	 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(),
1874 	 * explicitly free it here.
1875 	 */
1876 	if (!use_release_notifier)
1877 		kfree(mem);
1878 
1879 	return ret;
1880 }
1881 
1882 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1883 		struct amdgpu_device *adev, struct kgd_mem *mem,
1884 		void *drm_priv)
1885 {
1886 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1887 	int ret;
1888 	struct amdgpu_bo *bo;
1889 	uint32_t domain;
1890 	struct kfd_mem_attachment *entry;
1891 	struct bo_vm_reservation_context ctx;
1892 	unsigned long bo_size;
1893 	bool is_invalid_userptr = false;
1894 
1895 	bo = mem->bo;
1896 	if (!bo) {
1897 		pr_err("Invalid BO when mapping memory to GPU\n");
1898 		return -EINVAL;
1899 	}
1900 
1901 	/* Make sure restore is not running concurrently. Since we
1902 	 * don't map invalid userptr BOs, we rely on the next restore
1903 	 * worker to do the mapping
1904 	 */
1905 	mutex_lock(&mem->process_info->lock);
1906 
1907 	/* Lock mmap-sem. If we find an invalid userptr BO, we can be
1908 	 * sure that the MMU notifier is no longer running
1909 	 * concurrently and the queues are actually stopped
1910 	 */
1911 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1912 		mmap_write_lock(current->mm);
1913 		is_invalid_userptr = atomic_read(&mem->invalid);
1914 		mmap_write_unlock(current->mm);
1915 	}
1916 
1917 	mutex_lock(&mem->lock);
1918 
1919 	domain = mem->domain;
1920 	bo_size = bo->tbo.base.size;
1921 
1922 	pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
1923 			mem->va,
1924 			mem->va + bo_size * (1 + mem->aql_queue),
1925 			avm, domain_string(domain));
1926 
1927 	if (!kfd_mem_is_attached(avm, mem)) {
1928 		ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
1929 		if (ret)
1930 			goto out;
1931 	}
1932 
1933 	ret = reserve_bo_and_vm(mem, avm, &ctx);
1934 	if (unlikely(ret))
1935 		goto out;
1936 
1937 	/* Userptr can be marked as "not invalid", but not actually be
1938 	 * validated yet (still in the system domain). In that case
1939 	 * the queues are still stopped and we can leave mapping for
1940 	 * the next restore worker
1941 	 */
1942 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
1943 	    bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
1944 		is_invalid_userptr = true;
1945 
1946 	ret = vm_validate_pt_pd_bos(avm);
1947 	if (unlikely(ret))
1948 		goto out_unreserve;
1949 
1950 	if (mem->mapped_to_gpu_memory == 0 &&
1951 	    !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1952 		/* Validate BO only once. The eviction fence gets added to BO
1953 		 * the first time it is mapped. Validate will wait for all
1954 		 * background evictions to complete.
1955 		 */
1956 		ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
1957 		if (ret) {
1958 			pr_debug("Validate failed\n");
1959 			goto out_unreserve;
1960 		}
1961 	}
1962 
1963 	list_for_each_entry(entry, &mem->attachments, list) {
1964 		if (entry->bo_va->base.vm != avm || entry->is_mapped)
1965 			continue;
1966 
1967 		pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
1968 			 entry->va, entry->va + bo_size, entry);
1969 
1970 		ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
1971 				      is_invalid_userptr);
1972 		if (ret) {
1973 			pr_err("Failed to map bo to gpuvm\n");
1974 			goto out_unreserve;
1975 		}
1976 
1977 		ret = vm_update_pds(avm, ctx.sync);
1978 		if (ret) {
1979 			pr_err("Failed to update page directories\n");
1980 			goto out_unreserve;
1981 		}
1982 
1983 		entry->is_mapped = true;
1984 		mem->mapped_to_gpu_memory++;
1985 		pr_debug("\t INC mapping count %d\n",
1986 			 mem->mapped_to_gpu_memory);
1987 	}
1988 
1989 	if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count)
1990 		amdgpu_bo_fence(bo,
1991 				&avm->process_info->eviction_fence->base,
1992 				true);
1993 	ret = unreserve_bo_and_vms(&ctx, false, false);
1994 
1995 	goto out;
1996 
1997 out_unreserve:
1998 	unreserve_bo_and_vms(&ctx, false, false);
1999 out:
2000 	mutex_unlock(&mem->process_info->lock);
2001 	mutex_unlock(&mem->lock);
2002 	return ret;
2003 }
2004 
2005 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2006 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2007 {
2008 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2009 	struct amdkfd_process_info *process_info = avm->process_info;
2010 	unsigned long bo_size = mem->bo->tbo.base.size;
2011 	struct kfd_mem_attachment *entry;
2012 	struct bo_vm_reservation_context ctx;
2013 	int ret;
2014 
2015 	mutex_lock(&mem->lock);
2016 
2017 	ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2018 	if (unlikely(ret))
2019 		goto out;
2020 	/* If no VMs were reserved, it means the BO wasn't actually mapped */
2021 	if (ctx.n_vms == 0) {
2022 		ret = -EINVAL;
2023 		goto unreserve_out;
2024 	}
2025 
2026 	ret = vm_validate_pt_pd_bos(avm);
2027 	if (unlikely(ret))
2028 		goto unreserve_out;
2029 
2030 	pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2031 		mem->va,
2032 		mem->va + bo_size * (1 + mem->aql_queue),
2033 		avm);
2034 
2035 	list_for_each_entry(entry, &mem->attachments, list) {
2036 		if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2037 			continue;
2038 
2039 		pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2040 			 entry->va, entry->va + bo_size, entry);
2041 
2042 		unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2043 		entry->is_mapped = false;
2044 
2045 		mem->mapped_to_gpu_memory--;
2046 		pr_debug("\t DEC mapping count %d\n",
2047 			 mem->mapped_to_gpu_memory);
2048 	}
2049 
2050 	/* If BO is unmapped from all VMs, unfence it. It can be evicted if
2051 	 * required.
2052 	 */
2053 	if (mem->mapped_to_gpu_memory == 0 &&
2054 	    !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) &&
2055 	    !mem->bo->tbo.pin_count)
2056 		amdgpu_amdkfd_remove_eviction_fence(mem->bo,
2057 						process_info->eviction_fence);
2058 
2059 unreserve_out:
2060 	unreserve_bo_and_vms(&ctx, false, false);
2061 out:
2062 	mutex_unlock(&mem->lock);
2063 	return ret;
2064 }
2065 
2066 int amdgpu_amdkfd_gpuvm_sync_memory(
2067 		struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2068 {
2069 	struct amdgpu_sync sync;
2070 	int ret;
2071 
2072 	amdgpu_sync_create(&sync);
2073 
2074 	mutex_lock(&mem->lock);
2075 	amdgpu_sync_clone(&mem->sync, &sync);
2076 	mutex_unlock(&mem->lock);
2077 
2078 	ret = amdgpu_sync_wait(&sync, intr);
2079 	amdgpu_sync_free(&sync);
2080 	return ret;
2081 }
2082 
2083 /**
2084  * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count
2085  * @adev: Device to which allocated BO belongs
2086  * @bo: Buffer object to be mapped
2087  *
2088  * Before return, bo reference count is incremented. To release the reference and unpin/
2089  * unmap the BO, call amdgpu_amdkfd_free_gtt_mem.
2090  */
2091 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo)
2092 {
2093 	int ret;
2094 
2095 	ret = amdgpu_bo_reserve(bo, true);
2096 	if (ret) {
2097 		pr_err("Failed to reserve bo. ret %d\n", ret);
2098 		goto err_reserve_bo_failed;
2099 	}
2100 
2101 	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2102 	if (ret) {
2103 		pr_err("Failed to pin bo. ret %d\n", ret);
2104 		goto err_pin_bo_failed;
2105 	}
2106 
2107 	ret = amdgpu_ttm_alloc_gart(&bo->tbo);
2108 	if (ret) {
2109 		pr_err("Failed to bind bo to GART. ret %d\n", ret);
2110 		goto err_map_bo_gart_failed;
2111 	}
2112 
2113 	amdgpu_amdkfd_remove_eviction_fence(
2114 		bo, bo->kfd_bo->process_info->eviction_fence);
2115 
2116 	amdgpu_bo_unreserve(bo);
2117 
2118 	bo = amdgpu_bo_ref(bo);
2119 
2120 	return 0;
2121 
2122 err_map_bo_gart_failed:
2123 	amdgpu_bo_unpin(bo);
2124 err_pin_bo_failed:
2125 	amdgpu_bo_unreserve(bo);
2126 err_reserve_bo_failed:
2127 
2128 	return ret;
2129 }
2130 
2131 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2132  *
2133  * @mem: Buffer object to be mapped for CPU access
2134  * @kptr[out]: pointer in kernel CPU address space
2135  * @size[out]: size of the buffer
2136  *
2137  * Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2138  * from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2139  * validate_list, so the GPU mapping can be restored after a page table was
2140  * evicted.
2141  *
2142  * Return: 0 on success, error code on failure
2143  */
2144 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2145 					     void **kptr, uint64_t *size)
2146 {
2147 	int ret;
2148 	struct amdgpu_bo *bo = mem->bo;
2149 
2150 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2151 		pr_err("userptr can't be mapped to kernel\n");
2152 		return -EINVAL;
2153 	}
2154 
2155 	mutex_lock(&mem->process_info->lock);
2156 
2157 	ret = amdgpu_bo_reserve(bo, true);
2158 	if (ret) {
2159 		pr_err("Failed to reserve bo. ret %d\n", ret);
2160 		goto bo_reserve_failed;
2161 	}
2162 
2163 	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2164 	if (ret) {
2165 		pr_err("Failed to pin bo. ret %d\n", ret);
2166 		goto pin_failed;
2167 	}
2168 
2169 	ret = amdgpu_bo_kmap(bo, kptr);
2170 	if (ret) {
2171 		pr_err("Failed to map bo to kernel. ret %d\n", ret);
2172 		goto kmap_failed;
2173 	}
2174 
2175 	amdgpu_amdkfd_remove_eviction_fence(
2176 		bo, mem->process_info->eviction_fence);
2177 
2178 	if (size)
2179 		*size = amdgpu_bo_size(bo);
2180 
2181 	amdgpu_bo_unreserve(bo);
2182 
2183 	mutex_unlock(&mem->process_info->lock);
2184 	return 0;
2185 
2186 kmap_failed:
2187 	amdgpu_bo_unpin(bo);
2188 pin_failed:
2189 	amdgpu_bo_unreserve(bo);
2190 bo_reserve_failed:
2191 	mutex_unlock(&mem->process_info->lock);
2192 
2193 	return ret;
2194 }
2195 
2196 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2197  *
2198  * @mem: Buffer object to be unmapped for CPU access
2199  *
2200  * Removes the kernel CPU mapping and unpins the BO. It does not restore the
2201  * eviction fence, so this function should only be used for cleanup before the
2202  * BO is destroyed.
2203  */
2204 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2205 {
2206 	struct amdgpu_bo *bo = mem->bo;
2207 
2208 	amdgpu_bo_reserve(bo, true);
2209 	amdgpu_bo_kunmap(bo);
2210 	amdgpu_bo_unpin(bo);
2211 	amdgpu_bo_unreserve(bo);
2212 }
2213 
2214 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2215 					  struct kfd_vm_fault_info *mem)
2216 {
2217 	if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
2218 		*mem = *adev->gmc.vm_fault_info;
2219 		mb();
2220 		atomic_set(&adev->gmc.vm_fault_info_updated, 0);
2221 	}
2222 	return 0;
2223 }
2224 
2225 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev,
2226 				      struct dma_buf *dma_buf,
2227 				      uint64_t va, void *drm_priv,
2228 				      struct kgd_mem **mem, uint64_t *size,
2229 				      uint64_t *mmap_offset)
2230 {
2231 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2232 	struct drm_gem_object *obj;
2233 	struct amdgpu_bo *bo;
2234 	int ret;
2235 
2236 	if (dma_buf->ops != &amdgpu_dmabuf_ops)
2237 		/* Can't handle non-graphics buffers */
2238 		return -EINVAL;
2239 
2240 	obj = dma_buf->priv;
2241 	if (drm_to_adev(obj->dev) != adev)
2242 		/* Can't handle buffers from other devices */
2243 		return -EINVAL;
2244 
2245 	bo = gem_to_amdgpu_bo(obj);
2246 	if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2247 				    AMDGPU_GEM_DOMAIN_GTT)))
2248 		/* Only VRAM and GTT BOs are supported */
2249 		return -EINVAL;
2250 
2251 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2252 	if (!*mem)
2253 		return -ENOMEM;
2254 
2255 	ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2256 	if (ret) {
2257 		kfree(mem);
2258 		return ret;
2259 	}
2260 
2261 	if (size)
2262 		*size = amdgpu_bo_size(bo);
2263 
2264 	if (mmap_offset)
2265 		*mmap_offset = amdgpu_bo_mmap_offset(bo);
2266 
2267 	INIT_LIST_HEAD(&(*mem)->attachments);
2268 	mutex_init(&(*mem)->lock);
2269 
2270 	(*mem)->alloc_flags =
2271 		((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2272 		KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2273 		| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2274 		| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2275 
2276 	drm_gem_object_get(&bo->tbo.base);
2277 	(*mem)->bo = bo;
2278 	(*mem)->va = va;
2279 	(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2280 		AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2281 	(*mem)->mapped_to_gpu_memory = 0;
2282 	(*mem)->process_info = avm->process_info;
2283 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2284 	amdgpu_sync_create(&(*mem)->sync);
2285 	(*mem)->is_imported = true;
2286 
2287 	return 0;
2288 }
2289 
2290 /* Evict a userptr BO by stopping the queues if necessary
2291  *
2292  * Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2293  * cannot do any memory allocations, and cannot take any locks that
2294  * are held elsewhere while allocating memory. Therefore this is as
2295  * simple as possible, using atomic counters.
2296  *
2297  * It doesn't do anything to the BO itself. The real work happens in
2298  * restore, where we get updated page addresses. This function only
2299  * ensures that GPU access to the BO is stopped.
2300  */
2301 int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem,
2302 				struct mm_struct *mm)
2303 {
2304 	struct amdkfd_process_info *process_info = mem->process_info;
2305 	int evicted_bos;
2306 	int r = 0;
2307 
2308 	/* Do not process MMU notifications until stage-4 IOCTL is received */
2309 	if (READ_ONCE(process_info->block_mmu_notifications))
2310 		return 0;
2311 
2312 	atomic_inc(&mem->invalid);
2313 	evicted_bos = atomic_inc_return(&process_info->evicted_bos);
2314 	if (evicted_bos == 1) {
2315 		/* First eviction, stop the queues */
2316 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_USERPTR);
2317 		if (r)
2318 			pr_err("Failed to quiesce KFD\n");
2319 		schedule_delayed_work(&process_info->restore_userptr_work,
2320 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2321 	}
2322 
2323 	return r;
2324 }
2325 
2326 /* Update invalid userptr BOs
2327  *
2328  * Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2329  * userptr_inval_list and updates user pages for all BOs that have
2330  * been invalidated since their last update.
2331  */
2332 static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2333 				     struct mm_struct *mm)
2334 {
2335 	struct kgd_mem *mem, *tmp_mem;
2336 	struct amdgpu_bo *bo;
2337 	struct ttm_operation_ctx ctx = { false, false };
2338 	int invalid, ret;
2339 
2340 	/* Move all invalidated BOs to the userptr_inval_list and
2341 	 * release their user pages by migration to the CPU domain
2342 	 */
2343 	list_for_each_entry_safe(mem, tmp_mem,
2344 				 &process_info->userptr_valid_list,
2345 				 validate_list.head) {
2346 		if (!atomic_read(&mem->invalid))
2347 			continue; /* BO is still valid */
2348 
2349 		bo = mem->bo;
2350 
2351 		if (amdgpu_bo_reserve(bo, true))
2352 			return -EAGAIN;
2353 		amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2354 		ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2355 		amdgpu_bo_unreserve(bo);
2356 		if (ret) {
2357 			pr_err("%s: Failed to invalidate userptr BO\n",
2358 			       __func__);
2359 			return -EAGAIN;
2360 		}
2361 
2362 		list_move_tail(&mem->validate_list.head,
2363 			       &process_info->userptr_inval_list);
2364 	}
2365 
2366 	if (list_empty(&process_info->userptr_inval_list))
2367 		return 0; /* All evicted userptr BOs were freed */
2368 
2369 	/* Go through userptr_inval_list and update any invalid user_pages */
2370 	list_for_each_entry(mem, &process_info->userptr_inval_list,
2371 			    validate_list.head) {
2372 		invalid = atomic_read(&mem->invalid);
2373 		if (!invalid)
2374 			/* BO hasn't been invalidated since the last
2375 			 * revalidation attempt. Keep its BO list.
2376 			 */
2377 			continue;
2378 
2379 		bo = mem->bo;
2380 
2381 		/* Get updated user pages */
2382 		ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
2383 		if (ret) {
2384 			pr_debug("Failed %d to get user pages\n", ret);
2385 
2386 			/* Return -EFAULT bad address error as success. It will
2387 			 * fail later with a VM fault if the GPU tries to access
2388 			 * it. Better than hanging indefinitely with stalled
2389 			 * user mode queues.
2390 			 *
2391 			 * Return other error -EBUSY or -ENOMEM to retry restore
2392 			 */
2393 			if (ret != -EFAULT)
2394 				return ret;
2395 		} else {
2396 
2397 			/*
2398 			 * FIXME: Cannot ignore the return code, must hold
2399 			 * notifier_lock
2400 			 */
2401 			amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
2402 		}
2403 
2404 		/* Mark the BO as valid unless it was invalidated
2405 		 * again concurrently.
2406 		 */
2407 		if (atomic_cmpxchg(&mem->invalid, invalid, 0) != invalid)
2408 			return -EAGAIN;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 /* Validate invalid userptr BOs
2415  *
2416  * Validates BOs on the userptr_inval_list, and moves them back to the
2417  * userptr_valid_list. Also updates GPUVM page tables with new page
2418  * addresses and waits for the page table updates to complete.
2419  */
2420 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2421 {
2422 	struct amdgpu_bo_list_entry *pd_bo_list_entries;
2423 	struct list_head resv_list, duplicates;
2424 	struct ww_acquire_ctx ticket;
2425 	struct amdgpu_sync sync;
2426 
2427 	struct amdgpu_vm *peer_vm;
2428 	struct kgd_mem *mem, *tmp_mem;
2429 	struct amdgpu_bo *bo;
2430 	struct ttm_operation_ctx ctx = { false, false };
2431 	int i, ret;
2432 
2433 	pd_bo_list_entries = kcalloc(process_info->n_vms,
2434 				     sizeof(struct amdgpu_bo_list_entry),
2435 				     GFP_KERNEL);
2436 	if (!pd_bo_list_entries) {
2437 		pr_err("%s: Failed to allocate PD BO list entries\n", __func__);
2438 		ret = -ENOMEM;
2439 		goto out_no_mem;
2440 	}
2441 
2442 	INIT_LIST_HEAD(&resv_list);
2443 	INIT_LIST_HEAD(&duplicates);
2444 
2445 	/* Get all the page directory BOs that need to be reserved */
2446 	i = 0;
2447 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2448 			    vm_list_node)
2449 		amdgpu_vm_get_pd_bo(peer_vm, &resv_list,
2450 				    &pd_bo_list_entries[i++]);
2451 	/* Add the userptr_inval_list entries to resv_list */
2452 	list_for_each_entry(mem, &process_info->userptr_inval_list,
2453 			    validate_list.head) {
2454 		list_add_tail(&mem->resv_list.head, &resv_list);
2455 		mem->resv_list.bo = mem->validate_list.bo;
2456 		mem->resv_list.num_shared = mem->validate_list.num_shared;
2457 	}
2458 
2459 	/* Reserve all BOs and page tables for validation */
2460 	ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates);
2461 	WARN(!list_empty(&duplicates), "Duplicates should be empty");
2462 	if (ret)
2463 		goto out_free;
2464 
2465 	amdgpu_sync_create(&sync);
2466 
2467 	ret = process_validate_vms(process_info);
2468 	if (ret)
2469 		goto unreserve_out;
2470 
2471 	/* Validate BOs and update GPUVM page tables */
2472 	list_for_each_entry_safe(mem, tmp_mem,
2473 				 &process_info->userptr_inval_list,
2474 				 validate_list.head) {
2475 		struct kfd_mem_attachment *attachment;
2476 
2477 		bo = mem->bo;
2478 
2479 		/* Validate the BO if we got user pages */
2480 		if (bo->tbo.ttm->pages[0]) {
2481 			amdgpu_bo_placement_from_domain(bo, mem->domain);
2482 			ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2483 			if (ret) {
2484 				pr_err("%s: failed to validate BO\n", __func__);
2485 				goto unreserve_out;
2486 			}
2487 		}
2488 
2489 		list_move_tail(&mem->validate_list.head,
2490 			       &process_info->userptr_valid_list);
2491 
2492 		/* Update mapping. If the BO was not validated
2493 		 * (because we couldn't get user pages), this will
2494 		 * clear the page table entries, which will result in
2495 		 * VM faults if the GPU tries to access the invalid
2496 		 * memory.
2497 		 */
2498 		list_for_each_entry(attachment, &mem->attachments, list) {
2499 			if (!attachment->is_mapped)
2500 				continue;
2501 
2502 			kfd_mem_dmaunmap_attachment(mem, attachment);
2503 			ret = update_gpuvm_pte(mem, attachment, &sync);
2504 			if (ret) {
2505 				pr_err("%s: update PTE failed\n", __func__);
2506 				/* make sure this gets validated again */
2507 				atomic_inc(&mem->invalid);
2508 				goto unreserve_out;
2509 			}
2510 		}
2511 	}
2512 
2513 	/* Update page directories */
2514 	ret = process_update_pds(process_info, &sync);
2515 
2516 unreserve_out:
2517 	ttm_eu_backoff_reservation(&ticket, &resv_list);
2518 	amdgpu_sync_wait(&sync, false);
2519 	amdgpu_sync_free(&sync);
2520 out_free:
2521 	kfree(pd_bo_list_entries);
2522 out_no_mem:
2523 
2524 	return ret;
2525 }
2526 
2527 /* Worker callback to restore evicted userptr BOs
2528  *
2529  * Tries to update and validate all userptr BOs. If successful and no
2530  * concurrent evictions happened, the queues are restarted. Otherwise,
2531  * reschedule for another attempt later.
2532  */
2533 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2534 {
2535 	struct delayed_work *dwork = to_delayed_work(work);
2536 	struct amdkfd_process_info *process_info =
2537 		container_of(dwork, struct amdkfd_process_info,
2538 			     restore_userptr_work);
2539 	struct task_struct *usertask;
2540 	struct mm_struct *mm;
2541 	int evicted_bos;
2542 
2543 	evicted_bos = atomic_read(&process_info->evicted_bos);
2544 	if (!evicted_bos)
2545 		return;
2546 
2547 	/* Reference task and mm in case of concurrent process termination */
2548 	usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2549 	if (!usertask)
2550 		return;
2551 	mm = get_task_mm(usertask);
2552 	if (!mm) {
2553 		put_task_struct(usertask);
2554 		return;
2555 	}
2556 
2557 	mutex_lock(&process_info->lock);
2558 
2559 	if (update_invalid_user_pages(process_info, mm))
2560 		goto unlock_out;
2561 	/* userptr_inval_list can be empty if all evicted userptr BOs
2562 	 * have been freed. In that case there is nothing to validate
2563 	 * and we can just restart the queues.
2564 	 */
2565 	if (!list_empty(&process_info->userptr_inval_list)) {
2566 		if (atomic_read(&process_info->evicted_bos) != evicted_bos)
2567 			goto unlock_out; /* Concurrent eviction, try again */
2568 
2569 		if (validate_invalid_user_pages(process_info))
2570 			goto unlock_out;
2571 	}
2572 	/* Final check for concurrent evicton and atomic update. If
2573 	 * another eviction happens after successful update, it will
2574 	 * be a first eviction that calls quiesce_mm. The eviction
2575 	 * reference counting inside KFD will handle this case.
2576 	 */
2577 	if (atomic_cmpxchg(&process_info->evicted_bos, evicted_bos, 0) !=
2578 	    evicted_bos)
2579 		goto unlock_out;
2580 	evicted_bos = 0;
2581 	if (kgd2kfd_resume_mm(mm)) {
2582 		pr_err("%s: Failed to resume KFD\n", __func__);
2583 		/* No recovery from this failure. Probably the CP is
2584 		 * hanging. No point trying again.
2585 		 */
2586 	}
2587 
2588 unlock_out:
2589 	mutex_unlock(&process_info->lock);
2590 
2591 	/* If validation failed, reschedule another attempt */
2592 	if (evicted_bos) {
2593 		schedule_delayed_work(&process_info->restore_userptr_work,
2594 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2595 
2596 		kfd_smi_event_queue_restore_rescheduled(mm);
2597 	}
2598 	mmput(mm);
2599 	put_task_struct(usertask);
2600 }
2601 
2602 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2603  *   KFD process identified by process_info
2604  *
2605  * @process_info: amdkfd_process_info of the KFD process
2606  *
2607  * After memory eviction, restore thread calls this function. The function
2608  * should be called when the Process is still valid. BO restore involves -
2609  *
2610  * 1.  Release old eviction fence and create new one
2611  * 2.  Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2612  * 3   Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2613  *     BOs that need to be reserved.
2614  * 4.  Reserve all the BOs
2615  * 5.  Validate of PD and PT BOs.
2616  * 6.  Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2617  * 7.  Add fence to all PD and PT BOs.
2618  * 8.  Unreserve all BOs
2619  */
2620 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
2621 {
2622 	struct amdgpu_bo_list_entry *pd_bo_list;
2623 	struct amdkfd_process_info *process_info = info;
2624 	struct amdgpu_vm *peer_vm;
2625 	struct kgd_mem *mem;
2626 	struct bo_vm_reservation_context ctx;
2627 	struct amdgpu_amdkfd_fence *new_fence;
2628 	int ret = 0, i;
2629 	struct list_head duplicate_save;
2630 	struct amdgpu_sync sync_obj;
2631 	unsigned long failed_size = 0;
2632 	unsigned long total_size = 0;
2633 
2634 	INIT_LIST_HEAD(&duplicate_save);
2635 	INIT_LIST_HEAD(&ctx.list);
2636 	INIT_LIST_HEAD(&ctx.duplicates);
2637 
2638 	pd_bo_list = kcalloc(process_info->n_vms,
2639 			     sizeof(struct amdgpu_bo_list_entry),
2640 			     GFP_KERNEL);
2641 	if (!pd_bo_list)
2642 		return -ENOMEM;
2643 
2644 	i = 0;
2645 	mutex_lock(&process_info->lock);
2646 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2647 			vm_list_node)
2648 		amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]);
2649 
2650 	/* Reserve all BOs and page tables/directory. Add all BOs from
2651 	 * kfd_bo_list to ctx.list
2652 	 */
2653 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2654 			    validate_list.head) {
2655 
2656 		list_add_tail(&mem->resv_list.head, &ctx.list);
2657 		mem->resv_list.bo = mem->validate_list.bo;
2658 		mem->resv_list.num_shared = mem->validate_list.num_shared;
2659 	}
2660 
2661 	ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list,
2662 				     false, &duplicate_save);
2663 	if (ret) {
2664 		pr_debug("Memory eviction: TTM Reserve Failed. Try again\n");
2665 		goto ttm_reserve_fail;
2666 	}
2667 
2668 	amdgpu_sync_create(&sync_obj);
2669 
2670 	/* Validate PDs and PTs */
2671 	ret = process_validate_vms(process_info);
2672 	if (ret)
2673 		goto validate_map_fail;
2674 
2675 	ret = process_sync_pds_resv(process_info, &sync_obj);
2676 	if (ret) {
2677 		pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
2678 		goto validate_map_fail;
2679 	}
2680 
2681 	/* Validate BOs and map them to GPUVM (update VM page tables). */
2682 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2683 			    validate_list.head) {
2684 
2685 		struct amdgpu_bo *bo = mem->bo;
2686 		uint32_t domain = mem->domain;
2687 		struct kfd_mem_attachment *attachment;
2688 		struct dma_resv_iter cursor;
2689 		struct dma_fence *fence;
2690 
2691 		total_size += amdgpu_bo_size(bo);
2692 
2693 		ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2694 		if (ret) {
2695 			pr_debug("Memory eviction: Validate BOs failed\n");
2696 			failed_size += amdgpu_bo_size(bo);
2697 			ret = amdgpu_amdkfd_bo_validate(bo,
2698 						AMDGPU_GEM_DOMAIN_GTT, false);
2699 			if (ret) {
2700 				pr_debug("Memory eviction: Try again\n");
2701 				goto validate_map_fail;
2702 			}
2703 		}
2704 		dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2705 					DMA_RESV_USAGE_KERNEL, fence) {
2706 			ret = amdgpu_sync_fence(&sync_obj, fence);
2707 			if (ret) {
2708 				pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2709 				goto validate_map_fail;
2710 			}
2711 		}
2712 		list_for_each_entry(attachment, &mem->attachments, list) {
2713 			if (!attachment->is_mapped)
2714 				continue;
2715 
2716 			kfd_mem_dmaunmap_attachment(mem, attachment);
2717 			ret = update_gpuvm_pte(mem, attachment, &sync_obj);
2718 			if (ret) {
2719 				pr_debug("Memory eviction: update PTE failed. Try again\n");
2720 				goto validate_map_fail;
2721 			}
2722 		}
2723 	}
2724 
2725 	if (failed_size)
2726 		pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2727 
2728 	/* Update page directories */
2729 	ret = process_update_pds(process_info, &sync_obj);
2730 	if (ret) {
2731 		pr_debug("Memory eviction: update PDs failed. Try again\n");
2732 		goto validate_map_fail;
2733 	}
2734 
2735 	/* Wait for validate and PT updates to finish */
2736 	amdgpu_sync_wait(&sync_obj, false);
2737 
2738 	/* Release old eviction fence and create new one, because fence only
2739 	 * goes from unsignaled to signaled, fence cannot be reused.
2740 	 * Use context and mm from the old fence.
2741 	 */
2742 	new_fence = amdgpu_amdkfd_fence_create(
2743 				process_info->eviction_fence->base.context,
2744 				process_info->eviction_fence->mm,
2745 				NULL);
2746 	if (!new_fence) {
2747 		pr_err("Failed to create eviction fence\n");
2748 		ret = -ENOMEM;
2749 		goto validate_map_fail;
2750 	}
2751 	dma_fence_put(&process_info->eviction_fence->base);
2752 	process_info->eviction_fence = new_fence;
2753 	*ef = dma_fence_get(&new_fence->base);
2754 
2755 	/* Attach new eviction fence to all BOs except pinned ones */
2756 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2757 		validate_list.head) {
2758 		if (mem->bo->tbo.pin_count)
2759 			continue;
2760 
2761 		amdgpu_bo_fence(mem->bo,
2762 			&process_info->eviction_fence->base, true);
2763 	}
2764 	/* Attach eviction fence to PD / PT BOs */
2765 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2766 			    vm_list_node) {
2767 		struct amdgpu_bo *bo = peer_vm->root.bo;
2768 
2769 		amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true);
2770 	}
2771 
2772 validate_map_fail:
2773 	ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list);
2774 	amdgpu_sync_free(&sync_obj);
2775 ttm_reserve_fail:
2776 	mutex_unlock(&process_info->lock);
2777 	kfree(pd_bo_list);
2778 	return ret;
2779 }
2780 
2781 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
2782 {
2783 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
2784 	struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
2785 	int ret;
2786 
2787 	if (!info || !gws)
2788 		return -EINVAL;
2789 
2790 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2791 	if (!*mem)
2792 		return -ENOMEM;
2793 
2794 	mutex_init(&(*mem)->lock);
2795 	INIT_LIST_HEAD(&(*mem)->attachments);
2796 	(*mem)->bo = amdgpu_bo_ref(gws_bo);
2797 	(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
2798 	(*mem)->process_info = process_info;
2799 	add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
2800 	amdgpu_sync_create(&(*mem)->sync);
2801 
2802 
2803 	/* Validate gws bo the first time it is added to process */
2804 	mutex_lock(&(*mem)->process_info->lock);
2805 	ret = amdgpu_bo_reserve(gws_bo, false);
2806 	if (unlikely(ret)) {
2807 		pr_err("Reserve gws bo failed %d\n", ret);
2808 		goto bo_reservation_failure;
2809 	}
2810 
2811 	ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
2812 	if (ret) {
2813 		pr_err("GWS BO validate failed %d\n", ret);
2814 		goto bo_validation_failure;
2815 	}
2816 	/* GWS resource is shared b/t amdgpu and amdkfd
2817 	 * Add process eviction fence to bo so they can
2818 	 * evict each other.
2819 	 */
2820 	ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
2821 	if (ret)
2822 		goto reserve_shared_fail;
2823 	amdgpu_bo_fence(gws_bo, &process_info->eviction_fence->base, true);
2824 	amdgpu_bo_unreserve(gws_bo);
2825 	mutex_unlock(&(*mem)->process_info->lock);
2826 
2827 	return ret;
2828 
2829 reserve_shared_fail:
2830 bo_validation_failure:
2831 	amdgpu_bo_unreserve(gws_bo);
2832 bo_reservation_failure:
2833 	mutex_unlock(&(*mem)->process_info->lock);
2834 	amdgpu_sync_free(&(*mem)->sync);
2835 	remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
2836 	amdgpu_bo_unref(&gws_bo);
2837 	mutex_destroy(&(*mem)->lock);
2838 	kfree(*mem);
2839 	*mem = NULL;
2840 	return ret;
2841 }
2842 
2843 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
2844 {
2845 	int ret;
2846 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
2847 	struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
2848 	struct amdgpu_bo *gws_bo = kgd_mem->bo;
2849 
2850 	/* Remove BO from process's validate list so restore worker won't touch
2851 	 * it anymore
2852 	 */
2853 	remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
2854 
2855 	ret = amdgpu_bo_reserve(gws_bo, false);
2856 	if (unlikely(ret)) {
2857 		pr_err("Reserve gws bo failed %d\n", ret);
2858 		//TODO add BO back to validate_list?
2859 		return ret;
2860 	}
2861 	amdgpu_amdkfd_remove_eviction_fence(gws_bo,
2862 			process_info->eviction_fence);
2863 	amdgpu_bo_unreserve(gws_bo);
2864 	amdgpu_sync_free(&kgd_mem->sync);
2865 	amdgpu_bo_unref(&gws_bo);
2866 	mutex_destroy(&kgd_mem->lock);
2867 	kfree(mem);
2868 	return 0;
2869 }
2870 
2871 /* Returns GPU-specific tiling mode information */
2872 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
2873 				struct tile_config *config)
2874 {
2875 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
2876 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
2877 	config->num_tile_configs =
2878 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
2879 	config->macro_tile_config_ptr =
2880 			adev->gfx.config.macrotile_mode_array;
2881 	config->num_macro_tile_configs =
2882 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
2883 
2884 	/* Those values are not set from GFX9 onwards */
2885 	config->num_banks = adev->gfx.config.num_banks;
2886 	config->num_ranks = adev->gfx.config.num_ranks;
2887 
2888 	return 0;
2889 }
2890 
2891 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem)
2892 {
2893 	struct kfd_mem_attachment *entry;
2894 
2895 	list_for_each_entry(entry, &mem->attachments, list) {
2896 		if (entry->is_mapped && entry->adev == adev)
2897 			return true;
2898 	}
2899 	return false;
2900 }
2901 
2902 #if defined(CONFIG_DEBUG_FS)
2903 
2904 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data)
2905 {
2906 
2907 	spin_lock(&kfd_mem_limit.mem_limit_lock);
2908 	seq_printf(m, "System mem used %lldM out of %lluM\n",
2909 		  (kfd_mem_limit.system_mem_used >> 20),
2910 		  (kfd_mem_limit.max_system_mem_limit >> 20));
2911 	seq_printf(m, "TTM mem used %lldM out of %lluM\n",
2912 		  (kfd_mem_limit.ttm_mem_used >> 20),
2913 		  (kfd_mem_limit.max_ttm_mem_limit >> 20));
2914 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
2915 
2916 	return 0;
2917 }
2918 
2919 #endif
2920