1 /* 2 * Copyright 2014-2018 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include <linux/dma-buf.h> 23 #include <linux/list.h> 24 #include <linux/pagemap.h> 25 #include <linux/sched/mm.h> 26 #include <linux/sched/task.h> 27 28 #include "amdgpu_object.h" 29 #include "amdgpu_gem.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_amdkfd.h" 32 #include "amdgpu_dma_buf.h" 33 #include <uapi/linux/kfd_ioctl.h> 34 #include "amdgpu_xgmi.h" 35 #include "kfd_smi_events.h" 36 37 /* Userptr restore delay, just long enough to allow consecutive VM 38 * changes to accumulate 39 */ 40 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 41 42 /* 43 * Align VRAM allocations to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 44 * BO chunk 45 */ 46 #define VRAM_ALLOCATION_ALIGN (1 << 21) 47 48 /* Impose limit on how much memory KFD can use */ 49 static struct { 50 uint64_t max_system_mem_limit; 51 uint64_t max_ttm_mem_limit; 52 int64_t system_mem_used; 53 int64_t ttm_mem_used; 54 spinlock_t mem_limit_lock; 55 } kfd_mem_limit; 56 57 static const char * const domain_bit_to_string[] = { 58 "CPU", 59 "GTT", 60 "VRAM", 61 "GDS", 62 "GWS", 63 "OA" 64 }; 65 66 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 67 68 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 69 70 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 71 struct kgd_mem *mem) 72 { 73 struct kfd_mem_attachment *entry; 74 75 list_for_each_entry(entry, &mem->attachments, list) 76 if (entry->bo_va->base.vm == avm) 77 return true; 78 79 return false; 80 } 81 82 /* Set memory usage limits. Current, limits are 83 * System (TTM + userptr) memory - 15/16th System RAM 84 * TTM memory - 3/8th System RAM 85 */ 86 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 87 { 88 struct sysinfo si; 89 uint64_t mem; 90 91 si_meminfo(&si); 92 mem = si.freeram - si.freehigh; 93 mem *= si.mem_unit; 94 95 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 96 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4); 97 kfd_mem_limit.max_ttm_mem_limit = (mem >> 1) - (mem >> 3); 98 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 99 (kfd_mem_limit.max_system_mem_limit >> 20), 100 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 101 } 102 103 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 104 { 105 kfd_mem_limit.system_mem_used += size; 106 } 107 108 /* Estimate page table size needed to represent a given memory size 109 * 110 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 111 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 112 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 113 * for 2MB pages for TLB efficiency. However, small allocations and 114 * fragmented system memory still need some 4KB pages. We choose a 115 * compromise that should work in most cases without reserving too 116 * much memory for page tables unnecessarily (factor 16K, >> 14). 117 */ 118 119 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 120 121 /** 122 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 123 * of buffer. 124 * 125 * @adev: Device to which allocated BO belongs to 126 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 127 * equivalent to amdgpu_bo_size(BO) 128 * @alloc_flag: Flag used in allocating a BO as noted above 129 * 130 * Return: returns -ENOMEM in case of error, ZERO otherwise 131 */ 132 static int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 133 uint64_t size, u32 alloc_flag) 134 { 135 uint64_t reserved_for_pt = 136 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 137 size_t system_mem_needed, ttm_mem_needed, vram_needed; 138 int ret = 0; 139 140 system_mem_needed = 0; 141 ttm_mem_needed = 0; 142 vram_needed = 0; 143 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 144 system_mem_needed = size; 145 ttm_mem_needed = size; 146 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 147 /* 148 * Conservatively round up the allocation requirement to 2 MB 149 * to avoid fragmentation caused by 4K allocations in the tail 150 * 2M BO chunk. 151 */ 152 vram_needed = ALIGN(size, VRAM_ALLOCATION_ALIGN); 153 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 154 system_mem_needed = size; 155 } else if (!(alloc_flag & 156 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 157 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 158 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 159 return -ENOMEM; 160 } 161 162 spin_lock(&kfd_mem_limit.mem_limit_lock); 163 164 if (kfd_mem_limit.system_mem_used + system_mem_needed > 165 kfd_mem_limit.max_system_mem_limit) 166 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 167 168 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 169 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 170 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 171 kfd_mem_limit.max_ttm_mem_limit) || 172 (adev->kfd.vram_used + vram_needed > 173 adev->gmc.real_vram_size - 174 atomic64_read(&adev->vram_pin_size) - 175 reserved_for_pt)) { 176 ret = -ENOMEM; 177 goto release; 178 } 179 180 /* Update memory accounting by decreasing available system 181 * memory, TTM memory and GPU memory as computed above 182 */ 183 adev->kfd.vram_used += vram_needed; 184 kfd_mem_limit.system_mem_used += system_mem_needed; 185 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 186 187 release: 188 spin_unlock(&kfd_mem_limit.mem_limit_lock); 189 return ret; 190 } 191 192 static void unreserve_mem_limit(struct amdgpu_device *adev, 193 uint64_t size, u32 alloc_flag) 194 { 195 spin_lock(&kfd_mem_limit.mem_limit_lock); 196 197 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 198 kfd_mem_limit.system_mem_used -= size; 199 kfd_mem_limit.ttm_mem_used -= size; 200 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 201 adev->kfd.vram_used -= ALIGN(size, VRAM_ALLOCATION_ALIGN); 202 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 203 kfd_mem_limit.system_mem_used -= size; 204 } else if (!(alloc_flag & 205 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 206 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 207 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 208 goto release; 209 } 210 211 WARN_ONCE(adev->kfd.vram_used < 0, 212 "KFD VRAM memory accounting unbalanced"); 213 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 214 "KFD TTM memory accounting unbalanced"); 215 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 216 "KFD system memory accounting unbalanced"); 217 218 release: 219 spin_unlock(&kfd_mem_limit.mem_limit_lock); 220 } 221 222 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 223 { 224 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 225 u32 alloc_flags = bo->kfd_bo->alloc_flags; 226 u64 size = amdgpu_bo_size(bo); 227 228 unreserve_mem_limit(adev, size, alloc_flags); 229 230 kfree(bo->kfd_bo); 231 } 232 233 /** 234 * @create_dmamap_sg_bo: Creates a amdgpu_bo object to reflect information 235 * about USERPTR or DOOREBELL or MMIO BO. 236 * @adev: Device for which dmamap BO is being created 237 * @mem: BO of peer device that is being DMA mapped. Provides parameters 238 * in building the dmamap BO 239 * @bo_out: Output parameter updated with handle of dmamap BO 240 */ 241 static int 242 create_dmamap_sg_bo(struct amdgpu_device *adev, 243 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 244 { 245 struct drm_gem_object *gem_obj; 246 int ret, align; 247 248 ret = amdgpu_bo_reserve(mem->bo, false); 249 if (ret) 250 return ret; 251 252 align = 1; 253 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, align, 254 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE, 255 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj); 256 257 amdgpu_bo_unreserve(mem->bo); 258 259 if (ret) { 260 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 261 return -EINVAL; 262 } 263 264 *bo_out = gem_to_amdgpu_bo(gem_obj); 265 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 266 return ret; 267 } 268 269 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 270 * reservation object. 271 * 272 * @bo: [IN] Remove eviction fence(s) from this BO 273 * @ef: [IN] This eviction fence is removed if it 274 * is present in the shared list. 275 * 276 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 277 */ 278 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 279 struct amdgpu_amdkfd_fence *ef) 280 { 281 struct dma_fence *replacement; 282 283 if (!ef) 284 return -EINVAL; 285 286 /* TODO: Instead of block before we should use the fence of the page 287 * table update and TLB flush here directly. 288 */ 289 replacement = dma_fence_get_stub(); 290 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 291 replacement, DMA_RESV_USAGE_READ); 292 dma_fence_put(replacement); 293 return 0; 294 } 295 296 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 297 { 298 struct amdgpu_bo *root = bo; 299 struct amdgpu_vm_bo_base *vm_bo; 300 struct amdgpu_vm *vm; 301 struct amdkfd_process_info *info; 302 struct amdgpu_amdkfd_fence *ef; 303 int ret; 304 305 /* we can always get vm_bo from root PD bo.*/ 306 while (root->parent) 307 root = root->parent; 308 309 vm_bo = root->vm_bo; 310 if (!vm_bo) 311 return 0; 312 313 vm = vm_bo->vm; 314 if (!vm) 315 return 0; 316 317 info = vm->process_info; 318 if (!info || !info->eviction_fence) 319 return 0; 320 321 ef = container_of(dma_fence_get(&info->eviction_fence->base), 322 struct amdgpu_amdkfd_fence, base); 323 324 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 325 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 326 dma_resv_unlock(bo->tbo.base.resv); 327 328 dma_fence_put(&ef->base); 329 return ret; 330 } 331 332 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 333 bool wait) 334 { 335 struct ttm_operation_ctx ctx = { false, false }; 336 int ret; 337 338 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 339 "Called with userptr BO")) 340 return -EINVAL; 341 342 amdgpu_bo_placement_from_domain(bo, domain); 343 344 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 345 if (ret) 346 goto validate_fail; 347 if (wait) 348 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 349 350 validate_fail: 351 return ret; 352 } 353 354 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 355 { 356 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 357 } 358 359 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 360 * 361 * Page directories are not updated here because huge page handling 362 * during page table updates can invalidate page directory entries 363 * again. Page directories are only updated after updating page 364 * tables. 365 */ 366 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 367 { 368 struct amdgpu_bo *pd = vm->root.bo; 369 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 370 int ret; 371 372 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 373 if (ret) { 374 pr_err("failed to validate PT BOs\n"); 375 return ret; 376 } 377 378 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 379 380 return 0; 381 } 382 383 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 384 { 385 struct amdgpu_bo *pd = vm->root.bo; 386 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 387 int ret; 388 389 ret = amdgpu_vm_update_pdes(adev, vm, false); 390 if (ret) 391 return ret; 392 393 return amdgpu_sync_fence(sync, vm->last_update); 394 } 395 396 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 397 { 398 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 399 bool coherent = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT; 400 bool uncached = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED; 401 uint32_t mapping_flags; 402 uint64_t pte_flags; 403 bool snoop = false; 404 405 mapping_flags = AMDGPU_VM_PAGE_READABLE; 406 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 407 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 408 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 409 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 410 411 switch (adev->asic_type) { 412 case CHIP_ARCTURUS: 413 case CHIP_ALDEBARAN: 414 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 415 if (bo_adev == adev) { 416 if (uncached) 417 mapping_flags |= AMDGPU_VM_MTYPE_UC; 418 else if (coherent) 419 mapping_flags |= AMDGPU_VM_MTYPE_CC; 420 else 421 mapping_flags |= AMDGPU_VM_MTYPE_RW; 422 if (adev->asic_type == CHIP_ALDEBARAN && 423 adev->gmc.xgmi.connected_to_cpu) 424 snoop = true; 425 } else { 426 if (uncached || coherent) 427 mapping_flags |= AMDGPU_VM_MTYPE_UC; 428 else 429 mapping_flags |= AMDGPU_VM_MTYPE_NC; 430 if (amdgpu_xgmi_same_hive(adev, bo_adev)) 431 snoop = true; 432 } 433 } else { 434 if (uncached || coherent) 435 mapping_flags |= AMDGPU_VM_MTYPE_UC; 436 else 437 mapping_flags |= AMDGPU_VM_MTYPE_NC; 438 snoop = true; 439 } 440 break; 441 default: 442 if (uncached || coherent) 443 mapping_flags |= AMDGPU_VM_MTYPE_UC; 444 else 445 mapping_flags |= AMDGPU_VM_MTYPE_NC; 446 447 if (!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM)) 448 snoop = true; 449 } 450 451 pte_flags = amdgpu_gem_va_map_flags(adev, mapping_flags); 452 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; 453 454 return pte_flags; 455 } 456 457 /** 458 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 459 * @addr: The starting address to point to 460 * @size: Size of memory area in bytes being pointed to 461 * 462 * Allocates an instance of sg_table and initializes it to point to memory 463 * area specified by input parameters. The address used to build is assumed 464 * to be DMA mapped, if needed. 465 * 466 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 467 * because they are physically contiguous. 468 * 469 * Return: Initialized instance of SG Table or NULL 470 */ 471 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 472 { 473 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 474 475 if (!sg) 476 return NULL; 477 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 478 kfree(sg); 479 return NULL; 480 } 481 sg_dma_address(sg->sgl) = addr; 482 sg->sgl->length = size; 483 #ifdef CONFIG_NEED_SG_DMA_LENGTH 484 sg->sgl->dma_length = size; 485 #endif 486 return sg; 487 } 488 489 static int 490 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 491 struct kfd_mem_attachment *attachment) 492 { 493 enum dma_data_direction direction = 494 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 495 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 496 struct ttm_operation_ctx ctx = {.interruptible = true}; 497 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 498 struct amdgpu_device *adev = attachment->adev; 499 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 500 struct ttm_tt *ttm = bo->tbo.ttm; 501 int ret; 502 503 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 504 if (unlikely(!ttm->sg)) 505 return -ENOMEM; 506 507 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 508 return -EINVAL; 509 510 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 511 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 512 ttm->num_pages, 0, 513 (u64)ttm->num_pages << PAGE_SHIFT, 514 GFP_KERNEL); 515 if (unlikely(ret)) 516 goto free_sg; 517 518 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 519 if (unlikely(ret)) 520 goto release_sg; 521 522 drm_prime_sg_to_dma_addr_array(ttm->sg, ttm->dma_address, 523 ttm->num_pages); 524 525 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 526 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 527 if (ret) 528 goto unmap_sg; 529 530 return 0; 531 532 unmap_sg: 533 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 534 release_sg: 535 pr_err("DMA map userptr failed: %d\n", ret); 536 sg_free_table(ttm->sg); 537 free_sg: 538 kfree(ttm->sg); 539 ttm->sg = NULL; 540 return ret; 541 } 542 543 static int 544 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 545 { 546 struct ttm_operation_ctx ctx = {.interruptible = true}; 547 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 548 549 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 550 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 551 } 552 553 /** 554 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 555 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 556 * @attachment: Virtual address attachment of the BO on accessing device 557 * 558 * An access request from the device that owns DOORBELL does not require DMA mapping. 559 * This is because the request doesn't go through PCIe root complex i.e. it instead 560 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 561 * 562 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 563 * device ownership. This is because access requests for MMIO go through PCIe root 564 * complex. 565 * 566 * This is accomplished in two steps: 567 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 568 * in updating requesting device's page table 569 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 570 * accessible. This allows an update of requesting device's page table 571 * with entries associated with DOOREBELL or MMIO memory 572 * 573 * This method is invoked in the following contexts: 574 * - Mapping of DOORBELL or MMIO BO of same or peer device 575 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 576 * 577 * Return: ZERO if successful, NON-ZERO otherwise 578 */ 579 static int 580 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 581 struct kfd_mem_attachment *attachment) 582 { 583 struct ttm_operation_ctx ctx = {.interruptible = true}; 584 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 585 struct amdgpu_device *adev = attachment->adev; 586 struct ttm_tt *ttm = bo->tbo.ttm; 587 enum dma_data_direction dir; 588 dma_addr_t dma_addr; 589 bool mmio; 590 int ret; 591 592 /* Expect SG Table of dmapmap BO to be NULL */ 593 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 594 if (unlikely(ttm->sg)) { 595 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 596 return -EINVAL; 597 } 598 599 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 600 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 601 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 602 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 603 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 604 dma_addr = dma_map_resource(adev->dev, dma_addr, 605 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 606 ret = dma_mapping_error(adev->dev, dma_addr); 607 if (unlikely(ret)) 608 return ret; 609 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 610 611 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 612 if (unlikely(!ttm->sg)) { 613 ret = -ENOMEM; 614 goto unmap_sg; 615 } 616 617 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 618 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 619 if (unlikely(ret)) 620 goto free_sg; 621 622 return ret; 623 624 free_sg: 625 sg_free_table(ttm->sg); 626 kfree(ttm->sg); 627 ttm->sg = NULL; 628 unmap_sg: 629 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 630 dir, DMA_ATTR_SKIP_CPU_SYNC); 631 return ret; 632 } 633 634 static int 635 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 636 struct kfd_mem_attachment *attachment) 637 { 638 switch (attachment->type) { 639 case KFD_MEM_ATT_SHARED: 640 return 0; 641 case KFD_MEM_ATT_USERPTR: 642 return kfd_mem_dmamap_userptr(mem, attachment); 643 case KFD_MEM_ATT_DMABUF: 644 return kfd_mem_dmamap_dmabuf(attachment); 645 case KFD_MEM_ATT_SG: 646 return kfd_mem_dmamap_sg_bo(mem, attachment); 647 default: 648 WARN_ON_ONCE(1); 649 } 650 return -EINVAL; 651 } 652 653 static void 654 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 655 struct kfd_mem_attachment *attachment) 656 { 657 enum dma_data_direction direction = 658 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 659 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 660 struct ttm_operation_ctx ctx = {.interruptible = false}; 661 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 662 struct amdgpu_device *adev = attachment->adev; 663 struct ttm_tt *ttm = bo->tbo.ttm; 664 665 if (unlikely(!ttm->sg)) 666 return; 667 668 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 669 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 670 671 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 672 sg_free_table(ttm->sg); 673 kfree(ttm->sg); 674 ttm->sg = NULL; 675 } 676 677 static void 678 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 679 { 680 struct ttm_operation_ctx ctx = {.interruptible = true}; 681 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 682 683 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 684 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 685 } 686 687 /** 688 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 689 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 690 * @attachment: Virtual address attachment of the BO on accessing device 691 * 692 * The method performs following steps: 693 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 694 * - Free SG Table that is used to encapsulate DMA mapped memory of 695 * peer device's DOORBELL or MMIO memory 696 * 697 * This method is invoked in the following contexts: 698 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 699 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 700 * 701 * Return: void 702 */ 703 static void 704 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 705 struct kfd_mem_attachment *attachment) 706 { 707 struct ttm_operation_ctx ctx = {.interruptible = true}; 708 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 709 struct amdgpu_device *adev = attachment->adev; 710 struct ttm_tt *ttm = bo->tbo.ttm; 711 enum dma_data_direction dir; 712 713 if (unlikely(!ttm->sg)) { 714 pr_err("SG Table of BO is UNEXPECTEDLY NULL"); 715 return; 716 } 717 718 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 719 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 720 721 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 722 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 723 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 724 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 725 sg_free_table(ttm->sg); 726 kfree(ttm->sg); 727 ttm->sg = NULL; 728 bo->tbo.sg = NULL; 729 } 730 731 static void 732 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 733 struct kfd_mem_attachment *attachment) 734 { 735 switch (attachment->type) { 736 case KFD_MEM_ATT_SHARED: 737 break; 738 case KFD_MEM_ATT_USERPTR: 739 kfd_mem_dmaunmap_userptr(mem, attachment); 740 break; 741 case KFD_MEM_ATT_DMABUF: 742 kfd_mem_dmaunmap_dmabuf(attachment); 743 break; 744 case KFD_MEM_ATT_SG: 745 kfd_mem_dmaunmap_sg_bo(mem, attachment); 746 break; 747 default: 748 WARN_ON_ONCE(1); 749 } 750 } 751 752 static int 753 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 754 struct amdgpu_bo **bo) 755 { 756 struct drm_gem_object *gobj; 757 int ret; 758 759 if (!mem->dmabuf) { 760 mem->dmabuf = amdgpu_gem_prime_export(&mem->bo->tbo.base, 761 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 762 DRM_RDWR : 0); 763 if (IS_ERR(mem->dmabuf)) { 764 ret = PTR_ERR(mem->dmabuf); 765 mem->dmabuf = NULL; 766 return ret; 767 } 768 } 769 770 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 771 if (IS_ERR(gobj)) 772 return PTR_ERR(gobj); 773 774 *bo = gem_to_amdgpu_bo(gobj); 775 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 776 (*bo)->parent = amdgpu_bo_ref(mem->bo); 777 778 return 0; 779 } 780 781 /* kfd_mem_attach - Add a BO to a VM 782 * 783 * Everything that needs to bo done only once when a BO is first added 784 * to a VM. It can later be mapped and unmapped many times without 785 * repeating these steps. 786 * 787 * 0. Create BO for DMA mapping, if needed 788 * 1. Allocate and initialize BO VA entry data structure 789 * 2. Add BO to the VM 790 * 3. Determine ASIC-specific PTE flags 791 * 4. Alloc page tables and directories if needed 792 * 4a. Validate new page tables and directories 793 */ 794 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 795 struct amdgpu_vm *vm, bool is_aql) 796 { 797 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 798 unsigned long bo_size = mem->bo->tbo.base.size; 799 uint64_t va = mem->va; 800 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 801 struct amdgpu_bo *bo[2] = {NULL, NULL}; 802 bool same_hive = false; 803 int i, ret; 804 805 if (!va) { 806 pr_err("Invalid VA when adding BO to VM\n"); 807 return -EINVAL; 808 } 809 810 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 811 * 812 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 813 * In contrast the access path of VRAM BOs depens upon the type of 814 * link that connects the peer device. Access over PCIe is allowed 815 * if peer device has large BAR. In contrast, access over xGMI is 816 * allowed for both small and large BAR configurations of peer device 817 */ 818 if ((adev != bo_adev) && 819 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 820 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 821 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 822 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 823 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 824 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 825 return -EINVAL; 826 } 827 828 for (i = 0; i <= is_aql; i++) { 829 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 830 if (unlikely(!attachment[i])) { 831 ret = -ENOMEM; 832 goto unwind; 833 } 834 835 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 836 va + bo_size, vm); 837 838 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 839 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && adev->ram_is_direct_mapped) || 840 same_hive) { 841 /* Mappings on the local GPU, or VRAM mappings in the 842 * local hive, or userptr mapping IOMMU direct map mode 843 * share the original BO 844 */ 845 attachment[i]->type = KFD_MEM_ATT_SHARED; 846 bo[i] = mem->bo; 847 drm_gem_object_get(&bo[i]->tbo.base); 848 } else if (i > 0) { 849 /* Multiple mappings on the same GPU share the BO */ 850 attachment[i]->type = KFD_MEM_ATT_SHARED; 851 bo[i] = bo[0]; 852 drm_gem_object_get(&bo[i]->tbo.base); 853 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 854 /* Create an SG BO to DMA-map userptrs on other GPUs */ 855 attachment[i]->type = KFD_MEM_ATT_USERPTR; 856 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 857 if (ret) 858 goto unwind; 859 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 860 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 861 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 862 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 863 "Handing invalid SG BO in ATTACH request"); 864 attachment[i]->type = KFD_MEM_ATT_SG; 865 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 866 if (ret) 867 goto unwind; 868 /* Enable acces to GTT and VRAM BOs of peer devices */ 869 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 870 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 871 attachment[i]->type = KFD_MEM_ATT_DMABUF; 872 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 873 if (ret) 874 goto unwind; 875 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 876 } else { 877 WARN_ONCE(true, "Handling invalid ATTACH request"); 878 ret = -EINVAL; 879 goto unwind; 880 } 881 882 /* Add BO to VM internal data structures */ 883 ret = amdgpu_bo_reserve(bo[i], false); 884 if (ret) { 885 pr_debug("Unable to reserve BO during memory attach"); 886 goto unwind; 887 } 888 attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 889 amdgpu_bo_unreserve(bo[i]); 890 if (unlikely(!attachment[i]->bo_va)) { 891 ret = -ENOMEM; 892 pr_err("Failed to add BO object to VM. ret == %d\n", 893 ret); 894 goto unwind; 895 } 896 attachment[i]->va = va; 897 attachment[i]->pte_flags = get_pte_flags(adev, mem); 898 attachment[i]->adev = adev; 899 list_add(&attachment[i]->list, &mem->attachments); 900 901 va += bo_size; 902 } 903 904 return 0; 905 906 unwind: 907 for (; i >= 0; i--) { 908 if (!attachment[i]) 909 continue; 910 if (attachment[i]->bo_va) { 911 amdgpu_bo_reserve(bo[i], true); 912 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 913 amdgpu_bo_unreserve(bo[i]); 914 list_del(&attachment[i]->list); 915 } 916 if (bo[i]) 917 drm_gem_object_put(&bo[i]->tbo.base); 918 kfree(attachment[i]); 919 } 920 return ret; 921 } 922 923 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 924 { 925 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 926 927 pr_debug("\t remove VA 0x%llx in entry %p\n", 928 attachment->va, attachment); 929 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 930 drm_gem_object_put(&bo->tbo.base); 931 list_del(&attachment->list); 932 kfree(attachment); 933 } 934 935 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 936 struct amdkfd_process_info *process_info, 937 bool userptr) 938 { 939 struct ttm_validate_buffer *entry = &mem->validate_list; 940 struct amdgpu_bo *bo = mem->bo; 941 942 INIT_LIST_HEAD(&entry->head); 943 entry->num_shared = 1; 944 entry->bo = &bo->tbo; 945 mutex_lock(&process_info->lock); 946 if (userptr) 947 list_add_tail(&entry->head, &process_info->userptr_valid_list); 948 else 949 list_add_tail(&entry->head, &process_info->kfd_bo_list); 950 mutex_unlock(&process_info->lock); 951 } 952 953 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 954 struct amdkfd_process_info *process_info) 955 { 956 struct ttm_validate_buffer *bo_list_entry; 957 958 bo_list_entry = &mem->validate_list; 959 mutex_lock(&process_info->lock); 960 list_del(&bo_list_entry->head); 961 mutex_unlock(&process_info->lock); 962 } 963 964 /* Initializes user pages. It registers the MMU notifier and validates 965 * the userptr BO in the GTT domain. 966 * 967 * The BO must already be on the userptr_valid_list. Otherwise an 968 * eviction and restore may happen that leaves the new BO unmapped 969 * with the user mode queues running. 970 * 971 * Takes the process_info->lock to protect against concurrent restore 972 * workers. 973 * 974 * Returns 0 for success, negative errno for errors. 975 */ 976 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 977 bool criu_resume) 978 { 979 struct amdkfd_process_info *process_info = mem->process_info; 980 struct amdgpu_bo *bo = mem->bo; 981 struct ttm_operation_ctx ctx = { true, false }; 982 int ret = 0; 983 984 mutex_lock(&process_info->lock); 985 986 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 987 if (ret) { 988 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 989 goto out; 990 } 991 992 ret = amdgpu_mn_register(bo, user_addr); 993 if (ret) { 994 pr_err("%s: Failed to register MMU notifier: %d\n", 995 __func__, ret); 996 goto out; 997 } 998 999 if (criu_resume) { 1000 /* 1001 * During a CRIU restore operation, the userptr buffer objects 1002 * will be validated in the restore_userptr_work worker at a 1003 * later stage when it is scheduled by another ioctl called by 1004 * CRIU master process for the target pid for restore. 1005 */ 1006 atomic_inc(&mem->invalid); 1007 mutex_unlock(&process_info->lock); 1008 return 0; 1009 } 1010 1011 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages); 1012 if (ret) { 1013 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1014 goto unregister_out; 1015 } 1016 1017 ret = amdgpu_bo_reserve(bo, true); 1018 if (ret) { 1019 pr_err("%s: Failed to reserve BO\n", __func__); 1020 goto release_out; 1021 } 1022 amdgpu_bo_placement_from_domain(bo, mem->domain); 1023 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1024 if (ret) 1025 pr_err("%s: failed to validate BO\n", __func__); 1026 amdgpu_bo_unreserve(bo); 1027 1028 release_out: 1029 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm); 1030 unregister_out: 1031 if (ret) 1032 amdgpu_mn_unregister(bo); 1033 out: 1034 mutex_unlock(&process_info->lock); 1035 return ret; 1036 } 1037 1038 /* Reserving a BO and its page table BOs must happen atomically to 1039 * avoid deadlocks. Some operations update multiple VMs at once. Track 1040 * all the reservation info in a context structure. Optionally a sync 1041 * object can track VM updates. 1042 */ 1043 struct bo_vm_reservation_context { 1044 struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */ 1045 unsigned int n_vms; /* Number of VMs reserved */ 1046 struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries */ 1047 struct ww_acquire_ctx ticket; /* Reservation ticket */ 1048 struct list_head list, duplicates; /* BO lists */ 1049 struct amdgpu_sync *sync; /* Pointer to sync object */ 1050 bool reserved; /* Whether BOs are reserved */ 1051 }; 1052 1053 enum bo_vm_match { 1054 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1055 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1056 BO_VM_ALL, /* Match all VMs a BO was added to */ 1057 }; 1058 1059 /** 1060 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1061 * @mem: KFD BO structure. 1062 * @vm: the VM to reserve. 1063 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1064 */ 1065 static int reserve_bo_and_vm(struct kgd_mem *mem, 1066 struct amdgpu_vm *vm, 1067 struct bo_vm_reservation_context *ctx) 1068 { 1069 struct amdgpu_bo *bo = mem->bo; 1070 int ret; 1071 1072 WARN_ON(!vm); 1073 1074 ctx->reserved = false; 1075 ctx->n_vms = 1; 1076 ctx->sync = &mem->sync; 1077 1078 INIT_LIST_HEAD(&ctx->list); 1079 INIT_LIST_HEAD(&ctx->duplicates); 1080 1081 ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL); 1082 if (!ctx->vm_pd) 1083 return -ENOMEM; 1084 1085 ctx->kfd_bo.priority = 0; 1086 ctx->kfd_bo.tv.bo = &bo->tbo; 1087 ctx->kfd_bo.tv.num_shared = 1; 1088 list_add(&ctx->kfd_bo.tv.head, &ctx->list); 1089 1090 amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]); 1091 1092 ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, 1093 false, &ctx->duplicates); 1094 if (ret) { 1095 pr_err("Failed to reserve buffers in ttm.\n"); 1096 kfree(ctx->vm_pd); 1097 ctx->vm_pd = NULL; 1098 return ret; 1099 } 1100 1101 ctx->reserved = true; 1102 return 0; 1103 } 1104 1105 /** 1106 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1107 * @mem: KFD BO structure. 1108 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1109 * is used. Otherwise, a single VM associated with the BO. 1110 * @map_type: the mapping status that will be used to filter the VMs. 1111 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1112 * 1113 * Returns 0 for success, negative for failure. 1114 */ 1115 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1116 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1117 struct bo_vm_reservation_context *ctx) 1118 { 1119 struct amdgpu_bo *bo = mem->bo; 1120 struct kfd_mem_attachment *entry; 1121 unsigned int i; 1122 int ret; 1123 1124 ctx->reserved = false; 1125 ctx->n_vms = 0; 1126 ctx->vm_pd = NULL; 1127 ctx->sync = &mem->sync; 1128 1129 INIT_LIST_HEAD(&ctx->list); 1130 INIT_LIST_HEAD(&ctx->duplicates); 1131 1132 list_for_each_entry(entry, &mem->attachments, list) { 1133 if ((vm && vm != entry->bo_va->base.vm) || 1134 (entry->is_mapped != map_type 1135 && map_type != BO_VM_ALL)) 1136 continue; 1137 1138 ctx->n_vms++; 1139 } 1140 1141 if (ctx->n_vms != 0) { 1142 ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), 1143 GFP_KERNEL); 1144 if (!ctx->vm_pd) 1145 return -ENOMEM; 1146 } 1147 1148 ctx->kfd_bo.priority = 0; 1149 ctx->kfd_bo.tv.bo = &bo->tbo; 1150 ctx->kfd_bo.tv.num_shared = 1; 1151 list_add(&ctx->kfd_bo.tv.head, &ctx->list); 1152 1153 i = 0; 1154 list_for_each_entry(entry, &mem->attachments, list) { 1155 if ((vm && vm != entry->bo_va->base.vm) || 1156 (entry->is_mapped != map_type 1157 && map_type != BO_VM_ALL)) 1158 continue; 1159 1160 amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list, 1161 &ctx->vm_pd[i]); 1162 i++; 1163 } 1164 1165 ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, 1166 false, &ctx->duplicates); 1167 if (ret) { 1168 pr_err("Failed to reserve buffers in ttm.\n"); 1169 kfree(ctx->vm_pd); 1170 ctx->vm_pd = NULL; 1171 return ret; 1172 } 1173 1174 ctx->reserved = true; 1175 return 0; 1176 } 1177 1178 /** 1179 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1180 * @ctx: Reservation context to unreserve 1181 * @wait: Optionally wait for a sync object representing pending VM updates 1182 * @intr: Whether the wait is interruptible 1183 * 1184 * Also frees any resources allocated in 1185 * reserve_bo_and_(cond_)vm(s). Returns the status from 1186 * amdgpu_sync_wait. 1187 */ 1188 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1189 bool wait, bool intr) 1190 { 1191 int ret = 0; 1192 1193 if (wait) 1194 ret = amdgpu_sync_wait(ctx->sync, intr); 1195 1196 if (ctx->reserved) 1197 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list); 1198 kfree(ctx->vm_pd); 1199 1200 ctx->sync = NULL; 1201 1202 ctx->reserved = false; 1203 ctx->vm_pd = NULL; 1204 1205 return ret; 1206 } 1207 1208 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1209 struct kfd_mem_attachment *entry, 1210 struct amdgpu_sync *sync) 1211 { 1212 struct amdgpu_bo_va *bo_va = entry->bo_va; 1213 struct amdgpu_device *adev = entry->adev; 1214 struct amdgpu_vm *vm = bo_va->base.vm; 1215 1216 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1217 1218 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1219 1220 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1221 1222 kfd_mem_dmaunmap_attachment(mem, entry); 1223 } 1224 1225 static int update_gpuvm_pte(struct kgd_mem *mem, 1226 struct kfd_mem_attachment *entry, 1227 struct amdgpu_sync *sync) 1228 { 1229 struct amdgpu_bo_va *bo_va = entry->bo_va; 1230 struct amdgpu_device *adev = entry->adev; 1231 int ret; 1232 1233 ret = kfd_mem_dmamap_attachment(mem, entry); 1234 if (ret) 1235 return ret; 1236 1237 /* Update the page tables */ 1238 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1239 if (ret) { 1240 pr_err("amdgpu_vm_bo_update failed\n"); 1241 return ret; 1242 } 1243 1244 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1245 } 1246 1247 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1248 struct kfd_mem_attachment *entry, 1249 struct amdgpu_sync *sync, 1250 bool no_update_pte) 1251 { 1252 int ret; 1253 1254 /* Set virtual address for the allocation */ 1255 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1256 amdgpu_bo_size(entry->bo_va->base.bo), 1257 entry->pte_flags); 1258 if (ret) { 1259 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1260 entry->va, ret); 1261 return ret; 1262 } 1263 1264 if (no_update_pte) 1265 return 0; 1266 1267 ret = update_gpuvm_pte(mem, entry, sync); 1268 if (ret) { 1269 pr_err("update_gpuvm_pte() failed\n"); 1270 goto update_gpuvm_pte_failed; 1271 } 1272 1273 return 0; 1274 1275 update_gpuvm_pte_failed: 1276 unmap_bo_from_gpuvm(mem, entry, sync); 1277 return ret; 1278 } 1279 1280 static int process_validate_vms(struct amdkfd_process_info *process_info) 1281 { 1282 struct amdgpu_vm *peer_vm; 1283 int ret; 1284 1285 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1286 vm_list_node) { 1287 ret = vm_validate_pt_pd_bos(peer_vm); 1288 if (ret) 1289 return ret; 1290 } 1291 1292 return 0; 1293 } 1294 1295 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1296 struct amdgpu_sync *sync) 1297 { 1298 struct amdgpu_vm *peer_vm; 1299 int ret; 1300 1301 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1302 vm_list_node) { 1303 struct amdgpu_bo *pd = peer_vm->root.bo; 1304 1305 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1306 AMDGPU_SYNC_NE_OWNER, 1307 AMDGPU_FENCE_OWNER_KFD); 1308 if (ret) 1309 return ret; 1310 } 1311 1312 return 0; 1313 } 1314 1315 static int process_update_pds(struct amdkfd_process_info *process_info, 1316 struct amdgpu_sync *sync) 1317 { 1318 struct amdgpu_vm *peer_vm; 1319 int ret; 1320 1321 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1322 vm_list_node) { 1323 ret = vm_update_pds(peer_vm, sync); 1324 if (ret) 1325 return ret; 1326 } 1327 1328 return 0; 1329 } 1330 1331 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1332 struct dma_fence **ef) 1333 { 1334 struct amdkfd_process_info *info = NULL; 1335 int ret; 1336 1337 if (!*process_info) { 1338 info = kzalloc(sizeof(*info), GFP_KERNEL); 1339 if (!info) 1340 return -ENOMEM; 1341 1342 mutex_init(&info->lock); 1343 INIT_LIST_HEAD(&info->vm_list_head); 1344 INIT_LIST_HEAD(&info->kfd_bo_list); 1345 INIT_LIST_HEAD(&info->userptr_valid_list); 1346 INIT_LIST_HEAD(&info->userptr_inval_list); 1347 1348 info->eviction_fence = 1349 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1350 current->mm, 1351 NULL); 1352 if (!info->eviction_fence) { 1353 pr_err("Failed to create eviction fence\n"); 1354 ret = -ENOMEM; 1355 goto create_evict_fence_fail; 1356 } 1357 1358 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1359 atomic_set(&info->evicted_bos, 0); 1360 INIT_DELAYED_WORK(&info->restore_userptr_work, 1361 amdgpu_amdkfd_restore_userptr_worker); 1362 1363 *process_info = info; 1364 *ef = dma_fence_get(&info->eviction_fence->base); 1365 } 1366 1367 vm->process_info = *process_info; 1368 1369 /* Validate page directory and attach eviction fence */ 1370 ret = amdgpu_bo_reserve(vm->root.bo, true); 1371 if (ret) 1372 goto reserve_pd_fail; 1373 ret = vm_validate_pt_pd_bos(vm); 1374 if (ret) { 1375 pr_err("validate_pt_pd_bos() failed\n"); 1376 goto validate_pd_fail; 1377 } 1378 ret = amdgpu_bo_sync_wait(vm->root.bo, 1379 AMDGPU_FENCE_OWNER_KFD, false); 1380 if (ret) 1381 goto wait_pd_fail; 1382 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1383 if (ret) 1384 goto reserve_shared_fail; 1385 amdgpu_bo_fence(vm->root.bo, 1386 &vm->process_info->eviction_fence->base, true); 1387 amdgpu_bo_unreserve(vm->root.bo); 1388 1389 /* Update process info */ 1390 mutex_lock(&vm->process_info->lock); 1391 list_add_tail(&vm->vm_list_node, 1392 &(vm->process_info->vm_list_head)); 1393 vm->process_info->n_vms++; 1394 mutex_unlock(&vm->process_info->lock); 1395 1396 return 0; 1397 1398 reserve_shared_fail: 1399 wait_pd_fail: 1400 validate_pd_fail: 1401 amdgpu_bo_unreserve(vm->root.bo); 1402 reserve_pd_fail: 1403 vm->process_info = NULL; 1404 if (info) { 1405 /* Two fence references: one in info and one in *ef */ 1406 dma_fence_put(&info->eviction_fence->base); 1407 dma_fence_put(*ef); 1408 *ef = NULL; 1409 *process_info = NULL; 1410 put_pid(info->pid); 1411 create_evict_fence_fail: 1412 mutex_destroy(&info->lock); 1413 kfree(info); 1414 } 1415 return ret; 1416 } 1417 1418 /** 1419 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1420 * @bo: Handle of buffer object being pinned 1421 * @domain: Domain into which BO should be pinned 1422 * 1423 * - USERPTR BOs are UNPINNABLE and will return error 1424 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1425 * PIN count incremented. It is valid to PIN a BO multiple times 1426 * 1427 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1428 */ 1429 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1430 { 1431 int ret = 0; 1432 1433 ret = amdgpu_bo_reserve(bo, false); 1434 if (unlikely(ret)) 1435 return ret; 1436 1437 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1438 if (ret) 1439 pr_err("Error in Pinning BO to domain: %d\n", domain); 1440 1441 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1442 amdgpu_bo_unreserve(bo); 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1449 * @bo: Handle of buffer object being unpinned 1450 * 1451 * - Is a illegal request for USERPTR BOs and is ignored 1452 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1453 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1454 */ 1455 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1456 { 1457 int ret = 0; 1458 1459 ret = amdgpu_bo_reserve(bo, false); 1460 if (unlikely(ret)) 1461 return; 1462 1463 amdgpu_bo_unpin(bo); 1464 amdgpu_bo_unreserve(bo); 1465 } 1466 1467 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1468 struct file *filp, u32 pasid, 1469 void **process_info, 1470 struct dma_fence **ef) 1471 { 1472 struct amdgpu_fpriv *drv_priv; 1473 struct amdgpu_vm *avm; 1474 int ret; 1475 1476 ret = amdgpu_file_to_fpriv(filp, &drv_priv); 1477 if (ret) 1478 return ret; 1479 avm = &drv_priv->vm; 1480 1481 /* Already a compute VM? */ 1482 if (avm->process_info) 1483 return -EINVAL; 1484 1485 /* Free the original amdgpu allocated pasid, 1486 * will be replaced with kfd allocated pasid. 1487 */ 1488 if (avm->pasid) { 1489 amdgpu_pasid_free(avm->pasid); 1490 amdgpu_vm_set_pasid(adev, avm, 0); 1491 } 1492 1493 /* Convert VM into a compute VM */ 1494 ret = amdgpu_vm_make_compute(adev, avm); 1495 if (ret) 1496 return ret; 1497 1498 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1499 if (ret) 1500 return ret; 1501 /* Initialize KFD part of the VM and process info */ 1502 ret = init_kfd_vm(avm, process_info, ef); 1503 if (ret) 1504 return ret; 1505 1506 amdgpu_vm_set_task_info(avm); 1507 1508 return 0; 1509 } 1510 1511 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1512 struct amdgpu_vm *vm) 1513 { 1514 struct amdkfd_process_info *process_info = vm->process_info; 1515 1516 if (!process_info) 1517 return; 1518 1519 /* Update process info */ 1520 mutex_lock(&process_info->lock); 1521 process_info->n_vms--; 1522 list_del(&vm->vm_list_node); 1523 mutex_unlock(&process_info->lock); 1524 1525 vm->process_info = NULL; 1526 1527 /* Release per-process resources when last compute VM is destroyed */ 1528 if (!process_info->n_vms) { 1529 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1530 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1531 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1532 1533 dma_fence_put(&process_info->eviction_fence->base); 1534 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1535 put_pid(process_info->pid); 1536 mutex_destroy(&process_info->lock); 1537 kfree(process_info); 1538 } 1539 } 1540 1541 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1542 void *drm_priv) 1543 { 1544 struct amdgpu_vm *avm; 1545 1546 if (WARN_ON(!adev || !drm_priv)) 1547 return; 1548 1549 avm = drm_priv_to_vm(drm_priv); 1550 1551 pr_debug("Releasing process vm %p\n", avm); 1552 1553 /* The original pasid of amdgpu vm has already been 1554 * released during making a amdgpu vm to a compute vm 1555 * The current pasid is managed by kfd and will be 1556 * released on kfd process destroy. Set amdgpu pasid 1557 * to 0 to avoid duplicate release. 1558 */ 1559 amdgpu_vm_release_compute(adev, avm); 1560 } 1561 1562 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1563 { 1564 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1565 struct amdgpu_bo *pd = avm->root.bo; 1566 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1567 1568 if (adev->asic_type < CHIP_VEGA10) 1569 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1570 return avm->pd_phys_addr; 1571 } 1572 1573 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1574 { 1575 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1576 1577 mutex_lock(&pinfo->lock); 1578 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1579 mutex_unlock(&pinfo->lock); 1580 } 1581 1582 int amdgpu_amdkfd_criu_resume(void *p) 1583 { 1584 int ret = 0; 1585 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1586 1587 mutex_lock(&pinfo->lock); 1588 pr_debug("scheduling work\n"); 1589 atomic_inc(&pinfo->evicted_bos); 1590 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1591 ret = -EINVAL; 1592 goto out_unlock; 1593 } 1594 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1595 schedule_delayed_work(&pinfo->restore_userptr_work, 0); 1596 1597 out_unlock: 1598 mutex_unlock(&pinfo->lock); 1599 return ret; 1600 } 1601 1602 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev) 1603 { 1604 uint64_t reserved_for_pt = 1605 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1606 size_t available; 1607 1608 spin_lock(&kfd_mem_limit.mem_limit_lock); 1609 available = adev->gmc.real_vram_size 1610 - adev->kfd.vram_used 1611 - atomic64_read(&adev->vram_pin_size) 1612 - reserved_for_pt; 1613 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1614 1615 return ALIGN_DOWN(available, VRAM_ALLOCATION_ALIGN); 1616 } 1617 1618 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1619 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1620 void *drm_priv, struct kgd_mem **mem, 1621 uint64_t *offset, uint32_t flags, bool criu_resume) 1622 { 1623 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1624 enum ttm_bo_type bo_type = ttm_bo_type_device; 1625 struct sg_table *sg = NULL; 1626 uint64_t user_addr = 0; 1627 struct amdgpu_bo *bo; 1628 struct drm_gem_object *gobj = NULL; 1629 u32 domain, alloc_domain; 1630 u64 alloc_flags; 1631 int ret; 1632 1633 /* 1634 * Check on which domain to allocate BO 1635 */ 1636 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1637 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1638 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1639 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1640 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1641 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1642 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1643 alloc_flags = 0; 1644 } else { 1645 domain = AMDGPU_GEM_DOMAIN_GTT; 1646 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1647 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1648 1649 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1650 if (!offset || !*offset) 1651 return -EINVAL; 1652 user_addr = untagged_addr(*offset); 1653 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1654 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1655 bo_type = ttm_bo_type_sg; 1656 if (size > UINT_MAX) 1657 return -EINVAL; 1658 sg = create_sg_table(*offset, size); 1659 if (!sg) 1660 return -ENOMEM; 1661 } else { 1662 return -EINVAL; 1663 } 1664 } 1665 1666 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1667 if (!*mem) { 1668 ret = -ENOMEM; 1669 goto err; 1670 } 1671 INIT_LIST_HEAD(&(*mem)->attachments); 1672 mutex_init(&(*mem)->lock); 1673 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1674 1675 /* Workaround for AQL queue wraparound bug. Map the same 1676 * memory twice. That means we only actually allocate half 1677 * the memory. 1678 */ 1679 if ((*mem)->aql_queue) 1680 size = size >> 1; 1681 1682 (*mem)->alloc_flags = flags; 1683 1684 amdgpu_sync_create(&(*mem)->sync); 1685 1686 ret = amdgpu_amdkfd_reserve_mem_limit(adev, size, flags); 1687 if (ret) { 1688 pr_debug("Insufficient memory\n"); 1689 goto err_reserve_limit; 1690 } 1691 1692 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n", 1693 va, size, domain_string(alloc_domain)); 1694 1695 ret = amdgpu_gem_object_create(adev, size, 1, alloc_domain, alloc_flags, 1696 bo_type, NULL, &gobj); 1697 if (ret) { 1698 pr_debug("Failed to create BO on domain %s. ret %d\n", 1699 domain_string(alloc_domain), ret); 1700 goto err_bo_create; 1701 } 1702 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1703 if (ret) { 1704 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1705 goto err_node_allow; 1706 } 1707 bo = gem_to_amdgpu_bo(gobj); 1708 if (bo_type == ttm_bo_type_sg) { 1709 bo->tbo.sg = sg; 1710 bo->tbo.ttm->sg = sg; 1711 } 1712 bo->kfd_bo = *mem; 1713 (*mem)->bo = bo; 1714 if (user_addr) 1715 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1716 1717 (*mem)->va = va; 1718 (*mem)->domain = domain; 1719 (*mem)->mapped_to_gpu_memory = 0; 1720 (*mem)->process_info = avm->process_info; 1721 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1722 1723 if (user_addr) { 1724 pr_debug("creating userptr BO for user_addr = %llu\n", user_addr); 1725 ret = init_user_pages(*mem, user_addr, criu_resume); 1726 if (ret) 1727 goto allocate_init_user_pages_failed; 1728 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1729 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1730 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1731 if (ret) { 1732 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1733 goto err_pin_bo; 1734 } 1735 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1736 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1737 } 1738 1739 if (offset) 1740 *offset = amdgpu_bo_mmap_offset(bo); 1741 1742 return 0; 1743 1744 allocate_init_user_pages_failed: 1745 err_pin_bo: 1746 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1747 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1748 err_node_allow: 1749 /* Don't unreserve system mem limit twice */ 1750 goto err_reserve_limit; 1751 err_bo_create: 1752 unreserve_mem_limit(adev, size, flags); 1753 err_reserve_limit: 1754 mutex_destroy(&(*mem)->lock); 1755 if (gobj) 1756 drm_gem_object_put(gobj); 1757 else 1758 kfree(*mem); 1759 err: 1760 if (sg) { 1761 sg_free_table(sg); 1762 kfree(sg); 1763 } 1764 return ret; 1765 } 1766 1767 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1768 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1769 uint64_t *size) 1770 { 1771 struct amdkfd_process_info *process_info = mem->process_info; 1772 unsigned long bo_size = mem->bo->tbo.base.size; 1773 struct kfd_mem_attachment *entry, *tmp; 1774 struct bo_vm_reservation_context ctx; 1775 struct ttm_validate_buffer *bo_list_entry; 1776 unsigned int mapped_to_gpu_memory; 1777 int ret; 1778 bool is_imported = false; 1779 1780 mutex_lock(&mem->lock); 1781 1782 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1783 if (mem->alloc_flags & 1784 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1785 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1786 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1787 } 1788 1789 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1790 is_imported = mem->is_imported; 1791 mutex_unlock(&mem->lock); 1792 /* lock is not needed after this, since mem is unused and will 1793 * be freed anyway 1794 */ 1795 1796 if (mapped_to_gpu_memory > 0) { 1797 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1798 mem->va, bo_size); 1799 return -EBUSY; 1800 } 1801 1802 /* Make sure restore workers don't access the BO any more */ 1803 bo_list_entry = &mem->validate_list; 1804 mutex_lock(&process_info->lock); 1805 list_del(&bo_list_entry->head); 1806 mutex_unlock(&process_info->lock); 1807 1808 /* No more MMU notifiers */ 1809 amdgpu_mn_unregister(mem->bo); 1810 1811 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1812 if (unlikely(ret)) 1813 return ret; 1814 1815 /* The eviction fence should be removed by the last unmap. 1816 * TODO: Log an error condition if the bo still has the eviction fence 1817 * attached 1818 */ 1819 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1820 process_info->eviction_fence); 1821 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1822 mem->va + bo_size * (1 + mem->aql_queue)); 1823 1824 /* Remove from VM internal data structures */ 1825 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) 1826 kfd_mem_detach(entry); 1827 1828 ret = unreserve_bo_and_vms(&ctx, false, false); 1829 1830 /* Free the sync object */ 1831 amdgpu_sync_free(&mem->sync); 1832 1833 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1834 * remap BO. We need to free it. 1835 */ 1836 if (mem->bo->tbo.sg) { 1837 sg_free_table(mem->bo->tbo.sg); 1838 kfree(mem->bo->tbo.sg); 1839 } 1840 1841 /* Update the size of the BO being freed if it was allocated from 1842 * VRAM and is not imported. 1843 */ 1844 if (size) { 1845 if ((mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM) && 1846 (!is_imported)) 1847 *size = bo_size; 1848 else 1849 *size = 0; 1850 } 1851 1852 /* Free the BO*/ 1853 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1854 if (mem->dmabuf) 1855 dma_buf_put(mem->dmabuf); 1856 mutex_destroy(&mem->lock); 1857 1858 /* If this releases the last reference, it will end up calling 1859 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1860 * this needs to be the last call here. 1861 */ 1862 drm_gem_object_put(&mem->bo->tbo.base); 1863 1864 return ret; 1865 } 1866 1867 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1868 struct amdgpu_device *adev, struct kgd_mem *mem, 1869 void *drm_priv) 1870 { 1871 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1872 int ret; 1873 struct amdgpu_bo *bo; 1874 uint32_t domain; 1875 struct kfd_mem_attachment *entry; 1876 struct bo_vm_reservation_context ctx; 1877 unsigned long bo_size; 1878 bool is_invalid_userptr = false; 1879 1880 bo = mem->bo; 1881 if (!bo) { 1882 pr_err("Invalid BO when mapping memory to GPU\n"); 1883 return -EINVAL; 1884 } 1885 1886 /* Make sure restore is not running concurrently. Since we 1887 * don't map invalid userptr BOs, we rely on the next restore 1888 * worker to do the mapping 1889 */ 1890 mutex_lock(&mem->process_info->lock); 1891 1892 /* Lock mmap-sem. If we find an invalid userptr BO, we can be 1893 * sure that the MMU notifier is no longer running 1894 * concurrently and the queues are actually stopped 1895 */ 1896 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1897 mmap_write_lock(current->mm); 1898 is_invalid_userptr = atomic_read(&mem->invalid); 1899 mmap_write_unlock(current->mm); 1900 } 1901 1902 mutex_lock(&mem->lock); 1903 1904 domain = mem->domain; 1905 bo_size = bo->tbo.base.size; 1906 1907 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 1908 mem->va, 1909 mem->va + bo_size * (1 + mem->aql_queue), 1910 avm, domain_string(domain)); 1911 1912 if (!kfd_mem_is_attached(avm, mem)) { 1913 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 1914 if (ret) 1915 goto out; 1916 } 1917 1918 ret = reserve_bo_and_vm(mem, avm, &ctx); 1919 if (unlikely(ret)) 1920 goto out; 1921 1922 /* Userptr can be marked as "not invalid", but not actually be 1923 * validated yet (still in the system domain). In that case 1924 * the queues are still stopped and we can leave mapping for 1925 * the next restore worker 1926 */ 1927 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 1928 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 1929 is_invalid_userptr = true; 1930 1931 ret = vm_validate_pt_pd_bos(avm); 1932 if (unlikely(ret)) 1933 goto out_unreserve; 1934 1935 if (mem->mapped_to_gpu_memory == 0 && 1936 !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1937 /* Validate BO only once. The eviction fence gets added to BO 1938 * the first time it is mapped. Validate will wait for all 1939 * background evictions to complete. 1940 */ 1941 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 1942 if (ret) { 1943 pr_debug("Validate failed\n"); 1944 goto out_unreserve; 1945 } 1946 } 1947 1948 list_for_each_entry(entry, &mem->attachments, list) { 1949 if (entry->bo_va->base.vm != avm || entry->is_mapped) 1950 continue; 1951 1952 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 1953 entry->va, entry->va + bo_size, entry); 1954 1955 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 1956 is_invalid_userptr); 1957 if (ret) { 1958 pr_err("Failed to map bo to gpuvm\n"); 1959 goto out_unreserve; 1960 } 1961 1962 ret = vm_update_pds(avm, ctx.sync); 1963 if (ret) { 1964 pr_err("Failed to update page directories\n"); 1965 goto out_unreserve; 1966 } 1967 1968 entry->is_mapped = true; 1969 mem->mapped_to_gpu_memory++; 1970 pr_debug("\t INC mapping count %d\n", 1971 mem->mapped_to_gpu_memory); 1972 } 1973 1974 if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count) 1975 amdgpu_bo_fence(bo, 1976 &avm->process_info->eviction_fence->base, 1977 true); 1978 ret = unreserve_bo_and_vms(&ctx, false, false); 1979 1980 goto out; 1981 1982 out_unreserve: 1983 unreserve_bo_and_vms(&ctx, false, false); 1984 out: 1985 mutex_unlock(&mem->process_info->lock); 1986 mutex_unlock(&mem->lock); 1987 return ret; 1988 } 1989 1990 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 1991 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 1992 { 1993 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1994 struct amdkfd_process_info *process_info = avm->process_info; 1995 unsigned long bo_size = mem->bo->tbo.base.size; 1996 struct kfd_mem_attachment *entry; 1997 struct bo_vm_reservation_context ctx; 1998 int ret; 1999 2000 mutex_lock(&mem->lock); 2001 2002 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2003 if (unlikely(ret)) 2004 goto out; 2005 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2006 if (ctx.n_vms == 0) { 2007 ret = -EINVAL; 2008 goto unreserve_out; 2009 } 2010 2011 ret = vm_validate_pt_pd_bos(avm); 2012 if (unlikely(ret)) 2013 goto unreserve_out; 2014 2015 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2016 mem->va, 2017 mem->va + bo_size * (1 + mem->aql_queue), 2018 avm); 2019 2020 list_for_each_entry(entry, &mem->attachments, list) { 2021 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2022 continue; 2023 2024 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2025 entry->va, entry->va + bo_size, entry); 2026 2027 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2028 entry->is_mapped = false; 2029 2030 mem->mapped_to_gpu_memory--; 2031 pr_debug("\t DEC mapping count %d\n", 2032 mem->mapped_to_gpu_memory); 2033 } 2034 2035 /* If BO is unmapped from all VMs, unfence it. It can be evicted if 2036 * required. 2037 */ 2038 if (mem->mapped_to_gpu_memory == 0 && 2039 !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && 2040 !mem->bo->tbo.pin_count) 2041 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 2042 process_info->eviction_fence); 2043 2044 unreserve_out: 2045 unreserve_bo_and_vms(&ctx, false, false); 2046 out: 2047 mutex_unlock(&mem->lock); 2048 return ret; 2049 } 2050 2051 int amdgpu_amdkfd_gpuvm_sync_memory( 2052 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2053 { 2054 struct amdgpu_sync sync; 2055 int ret; 2056 2057 amdgpu_sync_create(&sync); 2058 2059 mutex_lock(&mem->lock); 2060 amdgpu_sync_clone(&mem->sync, &sync); 2061 mutex_unlock(&mem->lock); 2062 2063 ret = amdgpu_sync_wait(&sync, intr); 2064 amdgpu_sync_free(&sync); 2065 return ret; 2066 } 2067 2068 /** 2069 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2070 * @adev: Device to which allocated BO belongs 2071 * @bo: Buffer object to be mapped 2072 * 2073 * Before return, bo reference count is incremented. To release the reference and unpin/ 2074 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2075 */ 2076 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2077 { 2078 int ret; 2079 2080 ret = amdgpu_bo_reserve(bo, true); 2081 if (ret) { 2082 pr_err("Failed to reserve bo. ret %d\n", ret); 2083 goto err_reserve_bo_failed; 2084 } 2085 2086 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2087 if (ret) { 2088 pr_err("Failed to pin bo. ret %d\n", ret); 2089 goto err_pin_bo_failed; 2090 } 2091 2092 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2093 if (ret) { 2094 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2095 goto err_map_bo_gart_failed; 2096 } 2097 2098 amdgpu_amdkfd_remove_eviction_fence( 2099 bo, bo->kfd_bo->process_info->eviction_fence); 2100 2101 amdgpu_bo_unreserve(bo); 2102 2103 bo = amdgpu_bo_ref(bo); 2104 2105 return 0; 2106 2107 err_map_bo_gart_failed: 2108 amdgpu_bo_unpin(bo); 2109 err_pin_bo_failed: 2110 amdgpu_bo_unreserve(bo); 2111 err_reserve_bo_failed: 2112 2113 return ret; 2114 } 2115 2116 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2117 * 2118 * @mem: Buffer object to be mapped for CPU access 2119 * @kptr[out]: pointer in kernel CPU address space 2120 * @size[out]: size of the buffer 2121 * 2122 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2123 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2124 * validate_list, so the GPU mapping can be restored after a page table was 2125 * evicted. 2126 * 2127 * Return: 0 on success, error code on failure 2128 */ 2129 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2130 void **kptr, uint64_t *size) 2131 { 2132 int ret; 2133 struct amdgpu_bo *bo = mem->bo; 2134 2135 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2136 pr_err("userptr can't be mapped to kernel\n"); 2137 return -EINVAL; 2138 } 2139 2140 mutex_lock(&mem->process_info->lock); 2141 2142 ret = amdgpu_bo_reserve(bo, true); 2143 if (ret) { 2144 pr_err("Failed to reserve bo. ret %d\n", ret); 2145 goto bo_reserve_failed; 2146 } 2147 2148 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2149 if (ret) { 2150 pr_err("Failed to pin bo. ret %d\n", ret); 2151 goto pin_failed; 2152 } 2153 2154 ret = amdgpu_bo_kmap(bo, kptr); 2155 if (ret) { 2156 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2157 goto kmap_failed; 2158 } 2159 2160 amdgpu_amdkfd_remove_eviction_fence( 2161 bo, mem->process_info->eviction_fence); 2162 2163 if (size) 2164 *size = amdgpu_bo_size(bo); 2165 2166 amdgpu_bo_unreserve(bo); 2167 2168 mutex_unlock(&mem->process_info->lock); 2169 return 0; 2170 2171 kmap_failed: 2172 amdgpu_bo_unpin(bo); 2173 pin_failed: 2174 amdgpu_bo_unreserve(bo); 2175 bo_reserve_failed: 2176 mutex_unlock(&mem->process_info->lock); 2177 2178 return ret; 2179 } 2180 2181 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2182 * 2183 * @mem: Buffer object to be unmapped for CPU access 2184 * 2185 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2186 * eviction fence, so this function should only be used for cleanup before the 2187 * BO is destroyed. 2188 */ 2189 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2190 { 2191 struct amdgpu_bo *bo = mem->bo; 2192 2193 amdgpu_bo_reserve(bo, true); 2194 amdgpu_bo_kunmap(bo); 2195 amdgpu_bo_unpin(bo); 2196 amdgpu_bo_unreserve(bo); 2197 } 2198 2199 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2200 struct kfd_vm_fault_info *mem) 2201 { 2202 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2203 *mem = *adev->gmc.vm_fault_info; 2204 mb(); 2205 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2206 } 2207 return 0; 2208 } 2209 2210 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev, 2211 struct dma_buf *dma_buf, 2212 uint64_t va, void *drm_priv, 2213 struct kgd_mem **mem, uint64_t *size, 2214 uint64_t *mmap_offset) 2215 { 2216 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2217 struct drm_gem_object *obj; 2218 struct amdgpu_bo *bo; 2219 int ret; 2220 2221 if (dma_buf->ops != &amdgpu_dmabuf_ops) 2222 /* Can't handle non-graphics buffers */ 2223 return -EINVAL; 2224 2225 obj = dma_buf->priv; 2226 if (drm_to_adev(obj->dev) != adev) 2227 /* Can't handle buffers from other devices */ 2228 return -EINVAL; 2229 2230 bo = gem_to_amdgpu_bo(obj); 2231 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2232 AMDGPU_GEM_DOMAIN_GTT))) 2233 /* Only VRAM and GTT BOs are supported */ 2234 return -EINVAL; 2235 2236 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2237 if (!*mem) 2238 return -ENOMEM; 2239 2240 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2241 if (ret) { 2242 kfree(mem); 2243 return ret; 2244 } 2245 2246 if (size) 2247 *size = amdgpu_bo_size(bo); 2248 2249 if (mmap_offset) 2250 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2251 2252 INIT_LIST_HEAD(&(*mem)->attachments); 2253 mutex_init(&(*mem)->lock); 2254 2255 (*mem)->alloc_flags = 2256 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2257 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2258 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2259 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2260 2261 drm_gem_object_get(&bo->tbo.base); 2262 (*mem)->bo = bo; 2263 (*mem)->va = va; 2264 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2265 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2266 (*mem)->mapped_to_gpu_memory = 0; 2267 (*mem)->process_info = avm->process_info; 2268 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2269 amdgpu_sync_create(&(*mem)->sync); 2270 (*mem)->is_imported = true; 2271 2272 return 0; 2273 } 2274 2275 /* Evict a userptr BO by stopping the queues if necessary 2276 * 2277 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2278 * cannot do any memory allocations, and cannot take any locks that 2279 * are held elsewhere while allocating memory. Therefore this is as 2280 * simple as possible, using atomic counters. 2281 * 2282 * It doesn't do anything to the BO itself. The real work happens in 2283 * restore, where we get updated page addresses. This function only 2284 * ensures that GPU access to the BO is stopped. 2285 */ 2286 int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem, 2287 struct mm_struct *mm) 2288 { 2289 struct amdkfd_process_info *process_info = mem->process_info; 2290 int evicted_bos; 2291 int r = 0; 2292 2293 /* Do not process MMU notifications until stage-4 IOCTL is received */ 2294 if (READ_ONCE(process_info->block_mmu_notifications)) 2295 return 0; 2296 2297 atomic_inc(&mem->invalid); 2298 evicted_bos = atomic_inc_return(&process_info->evicted_bos); 2299 if (evicted_bos == 1) { 2300 /* First eviction, stop the queues */ 2301 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2302 if (r) 2303 pr_err("Failed to quiesce KFD\n"); 2304 schedule_delayed_work(&process_info->restore_userptr_work, 2305 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2306 } 2307 2308 return r; 2309 } 2310 2311 /* Update invalid userptr BOs 2312 * 2313 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2314 * userptr_inval_list and updates user pages for all BOs that have 2315 * been invalidated since their last update. 2316 */ 2317 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2318 struct mm_struct *mm) 2319 { 2320 struct kgd_mem *mem, *tmp_mem; 2321 struct amdgpu_bo *bo; 2322 struct ttm_operation_ctx ctx = { false, false }; 2323 int invalid, ret; 2324 2325 /* Move all invalidated BOs to the userptr_inval_list and 2326 * release their user pages by migration to the CPU domain 2327 */ 2328 list_for_each_entry_safe(mem, tmp_mem, 2329 &process_info->userptr_valid_list, 2330 validate_list.head) { 2331 if (!atomic_read(&mem->invalid)) 2332 continue; /* BO is still valid */ 2333 2334 bo = mem->bo; 2335 2336 if (amdgpu_bo_reserve(bo, true)) 2337 return -EAGAIN; 2338 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2339 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2340 amdgpu_bo_unreserve(bo); 2341 if (ret) { 2342 pr_err("%s: Failed to invalidate userptr BO\n", 2343 __func__); 2344 return -EAGAIN; 2345 } 2346 2347 list_move_tail(&mem->validate_list.head, 2348 &process_info->userptr_inval_list); 2349 } 2350 2351 if (list_empty(&process_info->userptr_inval_list)) 2352 return 0; /* All evicted userptr BOs were freed */ 2353 2354 /* Go through userptr_inval_list and update any invalid user_pages */ 2355 list_for_each_entry(mem, &process_info->userptr_inval_list, 2356 validate_list.head) { 2357 invalid = atomic_read(&mem->invalid); 2358 if (!invalid) 2359 /* BO hasn't been invalidated since the last 2360 * revalidation attempt. Keep its BO list. 2361 */ 2362 continue; 2363 2364 bo = mem->bo; 2365 2366 /* Get updated user pages */ 2367 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages); 2368 if (ret) { 2369 pr_debug("Failed %d to get user pages\n", ret); 2370 2371 /* Return -EFAULT bad address error as success. It will 2372 * fail later with a VM fault if the GPU tries to access 2373 * it. Better than hanging indefinitely with stalled 2374 * user mode queues. 2375 * 2376 * Return other error -EBUSY or -ENOMEM to retry restore 2377 */ 2378 if (ret != -EFAULT) 2379 return ret; 2380 } else { 2381 2382 /* 2383 * FIXME: Cannot ignore the return code, must hold 2384 * notifier_lock 2385 */ 2386 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm); 2387 } 2388 2389 /* Mark the BO as valid unless it was invalidated 2390 * again concurrently. 2391 */ 2392 if (atomic_cmpxchg(&mem->invalid, invalid, 0) != invalid) 2393 return -EAGAIN; 2394 } 2395 2396 return 0; 2397 } 2398 2399 /* Validate invalid userptr BOs 2400 * 2401 * Validates BOs on the userptr_inval_list, and moves them back to the 2402 * userptr_valid_list. Also updates GPUVM page tables with new page 2403 * addresses and waits for the page table updates to complete. 2404 */ 2405 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2406 { 2407 struct amdgpu_bo_list_entry *pd_bo_list_entries; 2408 struct list_head resv_list, duplicates; 2409 struct ww_acquire_ctx ticket; 2410 struct amdgpu_sync sync; 2411 2412 struct amdgpu_vm *peer_vm; 2413 struct kgd_mem *mem, *tmp_mem; 2414 struct amdgpu_bo *bo; 2415 struct ttm_operation_ctx ctx = { false, false }; 2416 int i, ret; 2417 2418 pd_bo_list_entries = kcalloc(process_info->n_vms, 2419 sizeof(struct amdgpu_bo_list_entry), 2420 GFP_KERNEL); 2421 if (!pd_bo_list_entries) { 2422 pr_err("%s: Failed to allocate PD BO list entries\n", __func__); 2423 ret = -ENOMEM; 2424 goto out_no_mem; 2425 } 2426 2427 INIT_LIST_HEAD(&resv_list); 2428 INIT_LIST_HEAD(&duplicates); 2429 2430 /* Get all the page directory BOs that need to be reserved */ 2431 i = 0; 2432 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2433 vm_list_node) 2434 amdgpu_vm_get_pd_bo(peer_vm, &resv_list, 2435 &pd_bo_list_entries[i++]); 2436 /* Add the userptr_inval_list entries to resv_list */ 2437 list_for_each_entry(mem, &process_info->userptr_inval_list, 2438 validate_list.head) { 2439 list_add_tail(&mem->resv_list.head, &resv_list); 2440 mem->resv_list.bo = mem->validate_list.bo; 2441 mem->resv_list.num_shared = mem->validate_list.num_shared; 2442 } 2443 2444 /* Reserve all BOs and page tables for validation */ 2445 ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates); 2446 WARN(!list_empty(&duplicates), "Duplicates should be empty"); 2447 if (ret) 2448 goto out_free; 2449 2450 amdgpu_sync_create(&sync); 2451 2452 ret = process_validate_vms(process_info); 2453 if (ret) 2454 goto unreserve_out; 2455 2456 /* Validate BOs and update GPUVM page tables */ 2457 list_for_each_entry_safe(mem, tmp_mem, 2458 &process_info->userptr_inval_list, 2459 validate_list.head) { 2460 struct kfd_mem_attachment *attachment; 2461 2462 bo = mem->bo; 2463 2464 /* Validate the BO if we got user pages */ 2465 if (bo->tbo.ttm->pages[0]) { 2466 amdgpu_bo_placement_from_domain(bo, mem->domain); 2467 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2468 if (ret) { 2469 pr_err("%s: failed to validate BO\n", __func__); 2470 goto unreserve_out; 2471 } 2472 } 2473 2474 list_move_tail(&mem->validate_list.head, 2475 &process_info->userptr_valid_list); 2476 2477 /* Update mapping. If the BO was not validated 2478 * (because we couldn't get user pages), this will 2479 * clear the page table entries, which will result in 2480 * VM faults if the GPU tries to access the invalid 2481 * memory. 2482 */ 2483 list_for_each_entry(attachment, &mem->attachments, list) { 2484 if (!attachment->is_mapped) 2485 continue; 2486 2487 kfd_mem_dmaunmap_attachment(mem, attachment); 2488 ret = update_gpuvm_pte(mem, attachment, &sync); 2489 if (ret) { 2490 pr_err("%s: update PTE failed\n", __func__); 2491 /* make sure this gets validated again */ 2492 atomic_inc(&mem->invalid); 2493 goto unreserve_out; 2494 } 2495 } 2496 } 2497 2498 /* Update page directories */ 2499 ret = process_update_pds(process_info, &sync); 2500 2501 unreserve_out: 2502 ttm_eu_backoff_reservation(&ticket, &resv_list); 2503 amdgpu_sync_wait(&sync, false); 2504 amdgpu_sync_free(&sync); 2505 out_free: 2506 kfree(pd_bo_list_entries); 2507 out_no_mem: 2508 2509 return ret; 2510 } 2511 2512 /* Worker callback to restore evicted userptr BOs 2513 * 2514 * Tries to update and validate all userptr BOs. If successful and no 2515 * concurrent evictions happened, the queues are restarted. Otherwise, 2516 * reschedule for another attempt later. 2517 */ 2518 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2519 { 2520 struct delayed_work *dwork = to_delayed_work(work); 2521 struct amdkfd_process_info *process_info = 2522 container_of(dwork, struct amdkfd_process_info, 2523 restore_userptr_work); 2524 struct task_struct *usertask; 2525 struct mm_struct *mm; 2526 int evicted_bos; 2527 2528 evicted_bos = atomic_read(&process_info->evicted_bos); 2529 if (!evicted_bos) 2530 return; 2531 2532 /* Reference task and mm in case of concurrent process termination */ 2533 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2534 if (!usertask) 2535 return; 2536 mm = get_task_mm(usertask); 2537 if (!mm) { 2538 put_task_struct(usertask); 2539 return; 2540 } 2541 2542 mutex_lock(&process_info->lock); 2543 2544 if (update_invalid_user_pages(process_info, mm)) 2545 goto unlock_out; 2546 /* userptr_inval_list can be empty if all evicted userptr BOs 2547 * have been freed. In that case there is nothing to validate 2548 * and we can just restart the queues. 2549 */ 2550 if (!list_empty(&process_info->userptr_inval_list)) { 2551 if (atomic_read(&process_info->evicted_bos) != evicted_bos) 2552 goto unlock_out; /* Concurrent eviction, try again */ 2553 2554 if (validate_invalid_user_pages(process_info)) 2555 goto unlock_out; 2556 } 2557 /* Final check for concurrent evicton and atomic update. If 2558 * another eviction happens after successful update, it will 2559 * be a first eviction that calls quiesce_mm. The eviction 2560 * reference counting inside KFD will handle this case. 2561 */ 2562 if (atomic_cmpxchg(&process_info->evicted_bos, evicted_bos, 0) != 2563 evicted_bos) 2564 goto unlock_out; 2565 evicted_bos = 0; 2566 if (kgd2kfd_resume_mm(mm)) { 2567 pr_err("%s: Failed to resume KFD\n", __func__); 2568 /* No recovery from this failure. Probably the CP is 2569 * hanging. No point trying again. 2570 */ 2571 } 2572 2573 unlock_out: 2574 mutex_unlock(&process_info->lock); 2575 2576 /* If validation failed, reschedule another attempt */ 2577 if (evicted_bos) { 2578 schedule_delayed_work(&process_info->restore_userptr_work, 2579 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2580 2581 kfd_smi_event_queue_restore_rescheduled(mm); 2582 } 2583 mmput(mm); 2584 put_task_struct(usertask); 2585 } 2586 2587 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2588 * KFD process identified by process_info 2589 * 2590 * @process_info: amdkfd_process_info of the KFD process 2591 * 2592 * After memory eviction, restore thread calls this function. The function 2593 * should be called when the Process is still valid. BO restore involves - 2594 * 2595 * 1. Release old eviction fence and create new one 2596 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2597 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2598 * BOs that need to be reserved. 2599 * 4. Reserve all the BOs 2600 * 5. Validate of PD and PT BOs. 2601 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2602 * 7. Add fence to all PD and PT BOs. 2603 * 8. Unreserve all BOs 2604 */ 2605 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 2606 { 2607 struct amdgpu_bo_list_entry *pd_bo_list; 2608 struct amdkfd_process_info *process_info = info; 2609 struct amdgpu_vm *peer_vm; 2610 struct kgd_mem *mem; 2611 struct bo_vm_reservation_context ctx; 2612 struct amdgpu_amdkfd_fence *new_fence; 2613 int ret = 0, i; 2614 struct list_head duplicate_save; 2615 struct amdgpu_sync sync_obj; 2616 unsigned long failed_size = 0; 2617 unsigned long total_size = 0; 2618 2619 INIT_LIST_HEAD(&duplicate_save); 2620 INIT_LIST_HEAD(&ctx.list); 2621 INIT_LIST_HEAD(&ctx.duplicates); 2622 2623 pd_bo_list = kcalloc(process_info->n_vms, 2624 sizeof(struct amdgpu_bo_list_entry), 2625 GFP_KERNEL); 2626 if (!pd_bo_list) 2627 return -ENOMEM; 2628 2629 i = 0; 2630 mutex_lock(&process_info->lock); 2631 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2632 vm_list_node) 2633 amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]); 2634 2635 /* Reserve all BOs and page tables/directory. Add all BOs from 2636 * kfd_bo_list to ctx.list 2637 */ 2638 list_for_each_entry(mem, &process_info->kfd_bo_list, 2639 validate_list.head) { 2640 2641 list_add_tail(&mem->resv_list.head, &ctx.list); 2642 mem->resv_list.bo = mem->validate_list.bo; 2643 mem->resv_list.num_shared = mem->validate_list.num_shared; 2644 } 2645 2646 ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list, 2647 false, &duplicate_save); 2648 if (ret) { 2649 pr_debug("Memory eviction: TTM Reserve Failed. Try again\n"); 2650 goto ttm_reserve_fail; 2651 } 2652 2653 amdgpu_sync_create(&sync_obj); 2654 2655 /* Validate PDs and PTs */ 2656 ret = process_validate_vms(process_info); 2657 if (ret) 2658 goto validate_map_fail; 2659 2660 ret = process_sync_pds_resv(process_info, &sync_obj); 2661 if (ret) { 2662 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2663 goto validate_map_fail; 2664 } 2665 2666 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2667 list_for_each_entry(mem, &process_info->kfd_bo_list, 2668 validate_list.head) { 2669 2670 struct amdgpu_bo *bo = mem->bo; 2671 uint32_t domain = mem->domain; 2672 struct kfd_mem_attachment *attachment; 2673 struct dma_resv_iter cursor; 2674 struct dma_fence *fence; 2675 2676 total_size += amdgpu_bo_size(bo); 2677 2678 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2679 if (ret) { 2680 pr_debug("Memory eviction: Validate BOs failed\n"); 2681 failed_size += amdgpu_bo_size(bo); 2682 ret = amdgpu_amdkfd_bo_validate(bo, 2683 AMDGPU_GEM_DOMAIN_GTT, false); 2684 if (ret) { 2685 pr_debug("Memory eviction: Try again\n"); 2686 goto validate_map_fail; 2687 } 2688 } 2689 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2690 DMA_RESV_USAGE_KERNEL, fence) { 2691 ret = amdgpu_sync_fence(&sync_obj, fence); 2692 if (ret) { 2693 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2694 goto validate_map_fail; 2695 } 2696 } 2697 list_for_each_entry(attachment, &mem->attachments, list) { 2698 if (!attachment->is_mapped) 2699 continue; 2700 2701 kfd_mem_dmaunmap_attachment(mem, attachment); 2702 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2703 if (ret) { 2704 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2705 goto validate_map_fail; 2706 } 2707 } 2708 } 2709 2710 if (failed_size) 2711 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2712 2713 /* Update page directories */ 2714 ret = process_update_pds(process_info, &sync_obj); 2715 if (ret) { 2716 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2717 goto validate_map_fail; 2718 } 2719 2720 /* Wait for validate and PT updates to finish */ 2721 amdgpu_sync_wait(&sync_obj, false); 2722 2723 /* Release old eviction fence and create new one, because fence only 2724 * goes from unsignaled to signaled, fence cannot be reused. 2725 * Use context and mm from the old fence. 2726 */ 2727 new_fence = amdgpu_amdkfd_fence_create( 2728 process_info->eviction_fence->base.context, 2729 process_info->eviction_fence->mm, 2730 NULL); 2731 if (!new_fence) { 2732 pr_err("Failed to create eviction fence\n"); 2733 ret = -ENOMEM; 2734 goto validate_map_fail; 2735 } 2736 dma_fence_put(&process_info->eviction_fence->base); 2737 process_info->eviction_fence = new_fence; 2738 *ef = dma_fence_get(&new_fence->base); 2739 2740 /* Attach new eviction fence to all BOs except pinned ones */ 2741 list_for_each_entry(mem, &process_info->kfd_bo_list, 2742 validate_list.head) { 2743 if (mem->bo->tbo.pin_count) 2744 continue; 2745 2746 amdgpu_bo_fence(mem->bo, 2747 &process_info->eviction_fence->base, true); 2748 } 2749 /* Attach eviction fence to PD / PT BOs */ 2750 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2751 vm_list_node) { 2752 struct amdgpu_bo *bo = peer_vm->root.bo; 2753 2754 amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true); 2755 } 2756 2757 validate_map_fail: 2758 ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list); 2759 amdgpu_sync_free(&sync_obj); 2760 ttm_reserve_fail: 2761 mutex_unlock(&process_info->lock); 2762 kfree(pd_bo_list); 2763 return ret; 2764 } 2765 2766 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 2767 { 2768 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2769 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 2770 int ret; 2771 2772 if (!info || !gws) 2773 return -EINVAL; 2774 2775 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2776 if (!*mem) 2777 return -ENOMEM; 2778 2779 mutex_init(&(*mem)->lock); 2780 INIT_LIST_HEAD(&(*mem)->attachments); 2781 (*mem)->bo = amdgpu_bo_ref(gws_bo); 2782 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 2783 (*mem)->process_info = process_info; 2784 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 2785 amdgpu_sync_create(&(*mem)->sync); 2786 2787 2788 /* Validate gws bo the first time it is added to process */ 2789 mutex_lock(&(*mem)->process_info->lock); 2790 ret = amdgpu_bo_reserve(gws_bo, false); 2791 if (unlikely(ret)) { 2792 pr_err("Reserve gws bo failed %d\n", ret); 2793 goto bo_reservation_failure; 2794 } 2795 2796 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 2797 if (ret) { 2798 pr_err("GWS BO validate failed %d\n", ret); 2799 goto bo_validation_failure; 2800 } 2801 /* GWS resource is shared b/t amdgpu and amdkfd 2802 * Add process eviction fence to bo so they can 2803 * evict each other. 2804 */ 2805 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 2806 if (ret) 2807 goto reserve_shared_fail; 2808 amdgpu_bo_fence(gws_bo, &process_info->eviction_fence->base, true); 2809 amdgpu_bo_unreserve(gws_bo); 2810 mutex_unlock(&(*mem)->process_info->lock); 2811 2812 return ret; 2813 2814 reserve_shared_fail: 2815 bo_validation_failure: 2816 amdgpu_bo_unreserve(gws_bo); 2817 bo_reservation_failure: 2818 mutex_unlock(&(*mem)->process_info->lock); 2819 amdgpu_sync_free(&(*mem)->sync); 2820 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 2821 amdgpu_bo_unref(&gws_bo); 2822 mutex_destroy(&(*mem)->lock); 2823 kfree(*mem); 2824 *mem = NULL; 2825 return ret; 2826 } 2827 2828 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 2829 { 2830 int ret; 2831 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2832 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 2833 struct amdgpu_bo *gws_bo = kgd_mem->bo; 2834 2835 /* Remove BO from process's validate list so restore worker won't touch 2836 * it anymore 2837 */ 2838 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 2839 2840 ret = amdgpu_bo_reserve(gws_bo, false); 2841 if (unlikely(ret)) { 2842 pr_err("Reserve gws bo failed %d\n", ret); 2843 //TODO add BO back to validate_list? 2844 return ret; 2845 } 2846 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 2847 process_info->eviction_fence); 2848 amdgpu_bo_unreserve(gws_bo); 2849 amdgpu_sync_free(&kgd_mem->sync); 2850 amdgpu_bo_unref(&gws_bo); 2851 mutex_destroy(&kgd_mem->lock); 2852 kfree(mem); 2853 return 0; 2854 } 2855 2856 /* Returns GPU-specific tiling mode information */ 2857 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 2858 struct tile_config *config) 2859 { 2860 config->gb_addr_config = adev->gfx.config.gb_addr_config; 2861 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 2862 config->num_tile_configs = 2863 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 2864 config->macro_tile_config_ptr = 2865 adev->gfx.config.macrotile_mode_array; 2866 config->num_macro_tile_configs = 2867 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 2868 2869 /* Those values are not set from GFX9 onwards */ 2870 config->num_banks = adev->gfx.config.num_banks; 2871 config->num_ranks = adev->gfx.config.num_ranks; 2872 2873 return 0; 2874 } 2875 2876 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 2877 { 2878 struct kfd_mem_attachment *entry; 2879 2880 list_for_each_entry(entry, &mem->attachments, list) { 2881 if (entry->is_mapped && entry->adev == adev) 2882 return true; 2883 } 2884 return false; 2885 } 2886