1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include <linux/dma-buf.h>
23 #include <linux/list.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/task.h>
27 
28 #include "amdgpu_object.h"
29 #include "amdgpu_gem.h"
30 #include "amdgpu_vm.h"
31 #include "amdgpu_amdkfd.h"
32 #include "amdgpu_dma_buf.h"
33 #include <uapi/linux/kfd_ioctl.h>
34 #include "amdgpu_xgmi.h"
35 
36 /* Userptr restore delay, just long enough to allow consecutive VM
37  * changes to accumulate
38  */
39 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1
40 
41 /*
42  * Align VRAM allocations to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB
43  * BO chunk
44  */
45 #define VRAM_ALLOCATION_ALIGN (1 << 21)
46 
47 /* Impose limit on how much memory KFD can use */
48 static struct {
49 	uint64_t max_system_mem_limit;
50 	uint64_t max_ttm_mem_limit;
51 	int64_t system_mem_used;
52 	int64_t ttm_mem_used;
53 	spinlock_t mem_limit_lock;
54 } kfd_mem_limit;
55 
56 static const char * const domain_bit_to_string[] = {
57 		"CPU",
58 		"GTT",
59 		"VRAM",
60 		"GDS",
61 		"GWS",
62 		"OA"
63 };
64 
65 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1]
66 
67 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work);
68 
69 static bool kfd_mem_is_attached(struct amdgpu_vm *avm,
70 		struct kgd_mem *mem)
71 {
72 	struct kfd_mem_attachment *entry;
73 
74 	list_for_each_entry(entry, &mem->attachments, list)
75 		if (entry->bo_va->base.vm == avm)
76 			return true;
77 
78 	return false;
79 }
80 
81 /* Set memory usage limits. Current, limits are
82  *  System (TTM + userptr) memory - 15/16th System RAM
83  *  TTM memory - 3/8th System RAM
84  */
85 void amdgpu_amdkfd_gpuvm_init_mem_limits(void)
86 {
87 	struct sysinfo si;
88 	uint64_t mem;
89 
90 	si_meminfo(&si);
91 	mem = si.freeram - si.freehigh;
92 	mem *= si.mem_unit;
93 
94 	spin_lock_init(&kfd_mem_limit.mem_limit_lock);
95 	kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4);
96 	kfd_mem_limit.max_ttm_mem_limit = (mem >> 1) - (mem >> 3);
97 	pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n",
98 		(kfd_mem_limit.max_system_mem_limit >> 20),
99 		(kfd_mem_limit.max_ttm_mem_limit >> 20));
100 }
101 
102 void amdgpu_amdkfd_reserve_system_mem(uint64_t size)
103 {
104 	kfd_mem_limit.system_mem_used += size;
105 }
106 
107 /* Estimate page table size needed to represent a given memory size
108  *
109  * With 4KB pages, we need one 8 byte PTE for each 4KB of memory
110  * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB
111  * of memory (factor 256K, >> 18). ROCm user mode tries to optimize
112  * for 2MB pages for TLB efficiency. However, small allocations and
113  * fragmented system memory still need some 4KB pages. We choose a
114  * compromise that should work in most cases without reserving too
115  * much memory for page tables unnecessarily (factor 16K, >> 14).
116  */
117 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM)
118 
119 static size_t amdgpu_amdkfd_acc_size(uint64_t size)
120 {
121 	size >>= PAGE_SHIFT;
122 	size *= sizeof(dma_addr_t) + sizeof(void *);
123 
124 	return __roundup_pow_of_two(sizeof(struct amdgpu_bo)) +
125 		__roundup_pow_of_two(sizeof(struct ttm_tt)) +
126 		PAGE_ALIGN(size);
127 }
128 
129 /**
130  * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size
131  * of buffer including any reserved for control structures
132  *
133  * @adev: Device to which allocated BO belongs to
134  * @size: Size of buffer, in bytes, encapsulated by B0. This should be
135  * equivalent to amdgpu_bo_size(BO)
136  * @alloc_flag: Flag used in allocating a BO as noted above
137  *
138  * Return: returns -ENOMEM in case of error, ZERO otherwise
139  */
140 static int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev,
141 		uint64_t size, u32 alloc_flag)
142 {
143 	uint64_t reserved_for_pt =
144 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
145 	size_t acc_size, system_mem_needed, ttm_mem_needed, vram_needed;
146 	int ret = 0;
147 
148 	acc_size = amdgpu_amdkfd_acc_size(size);
149 
150 	vram_needed = 0;
151 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
152 		system_mem_needed = acc_size + size;
153 		ttm_mem_needed = acc_size + size;
154 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
155 		system_mem_needed = acc_size;
156 		ttm_mem_needed = acc_size;
157 
158 		/*
159 		 * Conservatively round up the allocation requirement to 2 MB
160 		 * to avoid fragmentation caused by 4K allocations in the tail
161 		 * 2M BO chunk.
162 		 */
163 		vram_needed = ALIGN(size, VRAM_ALLOCATION_ALIGN);
164 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
165 		system_mem_needed = acc_size + size;
166 		ttm_mem_needed = acc_size;
167 	} else if (alloc_flag &
168 		   (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
169 		    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
170 		system_mem_needed = acc_size;
171 		ttm_mem_needed = acc_size;
172 	} else {
173 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
174 		return -ENOMEM;
175 	}
176 
177 	spin_lock(&kfd_mem_limit.mem_limit_lock);
178 
179 	if (kfd_mem_limit.system_mem_used + system_mem_needed >
180 	    kfd_mem_limit.max_system_mem_limit)
181 		pr_debug("Set no_system_mem_limit=1 if using shared memory\n");
182 
183 	if ((kfd_mem_limit.system_mem_used + system_mem_needed >
184 	     kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) ||
185 	    (kfd_mem_limit.ttm_mem_used + ttm_mem_needed >
186 	     kfd_mem_limit.max_ttm_mem_limit) ||
187 	    (adev->kfd.vram_used + vram_needed >
188 	     adev->gmc.real_vram_size -
189 	     atomic64_read(&adev->vram_pin_size) -
190 	     reserved_for_pt)) {
191 		ret = -ENOMEM;
192 		goto release;
193 	}
194 
195 	/* Update memory accounting by decreasing available system
196 	 * memory, TTM memory and GPU memory as computed above
197 	 */
198 	adev->kfd.vram_used += vram_needed;
199 	kfd_mem_limit.system_mem_used += system_mem_needed;
200 	kfd_mem_limit.ttm_mem_used += ttm_mem_needed;
201 
202 release:
203 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
204 	return ret;
205 }
206 
207 static void unreserve_mem_limit(struct amdgpu_device *adev,
208 		uint64_t size, u32 alloc_flag)
209 {
210 	size_t acc_size;
211 
212 	acc_size = amdgpu_amdkfd_acc_size(size);
213 
214 	spin_lock(&kfd_mem_limit.mem_limit_lock);
215 
216 	if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
217 		kfd_mem_limit.system_mem_used -= (acc_size + size);
218 		kfd_mem_limit.ttm_mem_used -= (acc_size + size);
219 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
220 		kfd_mem_limit.system_mem_used -= acc_size;
221 		kfd_mem_limit.ttm_mem_used -= acc_size;
222 		adev->kfd.vram_used -= ALIGN(size, VRAM_ALLOCATION_ALIGN);
223 	} else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
224 		kfd_mem_limit.system_mem_used -= (acc_size + size);
225 		kfd_mem_limit.ttm_mem_used -= acc_size;
226 	} else if (alloc_flag &
227 		   (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
228 		    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
229 		kfd_mem_limit.system_mem_used -= acc_size;
230 		kfd_mem_limit.ttm_mem_used -= acc_size;
231 	} else {
232 		pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag);
233 		goto release;
234 	}
235 
236 	WARN_ONCE(adev->kfd.vram_used < 0,
237 		  "KFD VRAM memory accounting unbalanced");
238 	WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0,
239 		  "KFD TTM memory accounting unbalanced");
240 	WARN_ONCE(kfd_mem_limit.system_mem_used < 0,
241 		  "KFD system memory accounting unbalanced");
242 
243 release:
244 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
245 }
246 
247 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo)
248 {
249 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
250 	u32 alloc_flags = bo->kfd_bo->alloc_flags;
251 	u64 size = amdgpu_bo_size(bo);
252 
253 	unreserve_mem_limit(adev, size, alloc_flags);
254 
255 	kfree(bo->kfd_bo);
256 }
257 
258 /**
259  * @create_dmamap_sg_bo: Creates a amdgpu_bo object to reflect information
260  * about USERPTR or DOOREBELL or MMIO BO.
261  * @adev: Device for which dmamap BO is being created
262  * @mem: BO of peer device that is being DMA mapped. Provides parameters
263  *	 in building the dmamap BO
264  * @bo_out: Output parameter updated with handle of dmamap BO
265  */
266 static int
267 create_dmamap_sg_bo(struct amdgpu_device *adev,
268 		 struct kgd_mem *mem, struct amdgpu_bo **bo_out)
269 {
270 	struct drm_gem_object *gem_obj;
271 	int ret, align;
272 
273 	ret = amdgpu_bo_reserve(mem->bo, false);
274 	if (ret)
275 		return ret;
276 
277 	align = 1;
278 	ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, align,
279 			AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE,
280 			ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj);
281 
282 	amdgpu_bo_unreserve(mem->bo);
283 
284 	if (ret) {
285 		pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret);
286 		return -EINVAL;
287 	}
288 
289 	*bo_out = gem_to_amdgpu_bo(gem_obj);
290 	(*bo_out)->parent = amdgpu_bo_ref(mem->bo);
291 	return ret;
292 }
293 
294 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's
295  *  reservation object.
296  *
297  * @bo: [IN] Remove eviction fence(s) from this BO
298  * @ef: [IN] This eviction fence is removed if it
299  *  is present in the shared list.
300  *
301  * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held.
302  */
303 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo,
304 					struct amdgpu_amdkfd_fence *ef)
305 {
306 	struct dma_fence *replacement;
307 
308 	if (!ef)
309 		return -EINVAL;
310 
311 	/* TODO: Instead of block before we should use the fence of the page
312 	 * table update and TLB flush here directly.
313 	 */
314 	replacement = dma_fence_get_stub();
315 	dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context,
316 				replacement, DMA_RESV_USAGE_READ);
317 	dma_fence_put(replacement);
318 	return 0;
319 }
320 
321 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo)
322 {
323 	struct amdgpu_bo *root = bo;
324 	struct amdgpu_vm_bo_base *vm_bo;
325 	struct amdgpu_vm *vm;
326 	struct amdkfd_process_info *info;
327 	struct amdgpu_amdkfd_fence *ef;
328 	int ret;
329 
330 	/* we can always get vm_bo from root PD bo.*/
331 	while (root->parent)
332 		root = root->parent;
333 
334 	vm_bo = root->vm_bo;
335 	if (!vm_bo)
336 		return 0;
337 
338 	vm = vm_bo->vm;
339 	if (!vm)
340 		return 0;
341 
342 	info = vm->process_info;
343 	if (!info || !info->eviction_fence)
344 		return 0;
345 
346 	ef = container_of(dma_fence_get(&info->eviction_fence->base),
347 			struct amdgpu_amdkfd_fence, base);
348 
349 	BUG_ON(!dma_resv_trylock(bo->tbo.base.resv));
350 	ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef);
351 	dma_resv_unlock(bo->tbo.base.resv);
352 
353 	dma_fence_put(&ef->base);
354 	return ret;
355 }
356 
357 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain,
358 				     bool wait)
359 {
360 	struct ttm_operation_ctx ctx = { false, false };
361 	int ret;
362 
363 	if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm),
364 		 "Called with userptr BO"))
365 		return -EINVAL;
366 
367 	amdgpu_bo_placement_from_domain(bo, domain);
368 
369 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
370 	if (ret)
371 		goto validate_fail;
372 	if (wait)
373 		amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
374 
375 validate_fail:
376 	return ret;
377 }
378 
379 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo)
380 {
381 	return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false);
382 }
383 
384 /* vm_validate_pt_pd_bos - Validate page table and directory BOs
385  *
386  * Page directories are not updated here because huge page handling
387  * during page table updates can invalidate page directory entries
388  * again. Page directories are only updated after updating page
389  * tables.
390  */
391 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm)
392 {
393 	struct amdgpu_bo *pd = vm->root.bo;
394 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
395 	int ret;
396 
397 	ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL);
398 	if (ret) {
399 		pr_err("failed to validate PT BOs\n");
400 		return ret;
401 	}
402 
403 	ret = amdgpu_amdkfd_validate_vm_bo(NULL, pd);
404 	if (ret) {
405 		pr_err("failed to validate PD\n");
406 		return ret;
407 	}
408 
409 	vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo);
410 
411 	if (vm->use_cpu_for_update) {
412 		ret = amdgpu_bo_kmap(pd, NULL);
413 		if (ret) {
414 			pr_err("failed to kmap PD, ret=%d\n", ret);
415 			return ret;
416 		}
417 	}
418 
419 	return 0;
420 }
421 
422 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync)
423 {
424 	struct amdgpu_bo *pd = vm->root.bo;
425 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
426 	int ret;
427 
428 	ret = amdgpu_vm_update_pdes(adev, vm, false);
429 	if (ret)
430 		return ret;
431 
432 	return amdgpu_sync_fence(sync, vm->last_update);
433 }
434 
435 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem)
436 {
437 	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
438 	bool coherent = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT;
439 	bool uncached = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED;
440 	uint32_t mapping_flags;
441 	uint64_t pte_flags;
442 	bool snoop = false;
443 
444 	mapping_flags = AMDGPU_VM_PAGE_READABLE;
445 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE)
446 		mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE;
447 	if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE)
448 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
449 
450 	switch (adev->asic_type) {
451 	case CHIP_ARCTURUS:
452 		if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
453 			if (bo_adev == adev)
454 				mapping_flags |= coherent ?
455 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
456 			else
457 				mapping_flags |= coherent ?
458 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
459 		} else {
460 			mapping_flags |= coherent ?
461 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
462 		}
463 		break;
464 	case CHIP_ALDEBARAN:
465 		if (coherent && uncached) {
466 			if (adev->gmc.xgmi.connected_to_cpu ||
467 				!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM))
468 				snoop = true;
469 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
470 		} else if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
471 			if (bo_adev == adev) {
472 				mapping_flags |= coherent ?
473 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
474 				if (adev->gmc.xgmi.connected_to_cpu)
475 					snoop = true;
476 			} else {
477 				mapping_flags |= coherent ?
478 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
479 				if (amdgpu_xgmi_same_hive(adev, bo_adev))
480 					snoop = true;
481 			}
482 		} else {
483 			snoop = true;
484 			mapping_flags |= coherent ?
485 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
486 		}
487 		break;
488 	default:
489 		mapping_flags |= coherent ?
490 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
491 	}
492 
493 	pte_flags = amdgpu_gem_va_map_flags(adev, mapping_flags);
494 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
495 
496 	return pte_flags;
497 }
498 
499 /**
500  * create_sg_table() - Create an sg_table for a contiguous DMA addr range
501  * @addr: The starting address to point to
502  * @size: Size of memory area in bytes being pointed to
503  *
504  * Allocates an instance of sg_table and initializes it to point to memory
505  * area specified by input parameters. The address used to build is assumed
506  * to be DMA mapped, if needed.
507  *
508  * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table
509  * because they are physically contiguous.
510  *
511  * Return: Initialized instance of SG Table or NULL
512  */
513 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size)
514 {
515 	struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL);
516 
517 	if (!sg)
518 		return NULL;
519 	if (sg_alloc_table(sg, 1, GFP_KERNEL)) {
520 		kfree(sg);
521 		return NULL;
522 	}
523 	sg_dma_address(sg->sgl) = addr;
524 	sg->sgl->length = size;
525 #ifdef CONFIG_NEED_SG_DMA_LENGTH
526 	sg->sgl->dma_length = size;
527 #endif
528 	return sg;
529 }
530 
531 static int
532 kfd_mem_dmamap_userptr(struct kgd_mem *mem,
533 		       struct kfd_mem_attachment *attachment)
534 {
535 	enum dma_data_direction direction =
536 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
537 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
538 	struct ttm_operation_ctx ctx = {.interruptible = true};
539 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
540 	struct amdgpu_device *adev = attachment->adev;
541 	struct ttm_tt *src_ttm = mem->bo->tbo.ttm;
542 	struct ttm_tt *ttm = bo->tbo.ttm;
543 	int ret;
544 
545 	ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL);
546 	if (unlikely(!ttm->sg))
547 		return -ENOMEM;
548 
549 	if (WARN_ON(ttm->num_pages != src_ttm->num_pages))
550 		return -EINVAL;
551 
552 	/* Same sequence as in amdgpu_ttm_tt_pin_userptr */
553 	ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages,
554 					ttm->num_pages, 0,
555 					(u64)ttm->num_pages << PAGE_SHIFT,
556 					GFP_KERNEL);
557 	if (unlikely(ret))
558 		goto free_sg;
559 
560 	ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
561 	if (unlikely(ret))
562 		goto release_sg;
563 
564 	drm_prime_sg_to_dma_addr_array(ttm->sg, ttm->dma_address,
565 				       ttm->num_pages);
566 
567 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
568 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
569 	if (ret)
570 		goto unmap_sg;
571 
572 	return 0;
573 
574 unmap_sg:
575 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
576 release_sg:
577 	pr_err("DMA map userptr failed: %d\n", ret);
578 	sg_free_table(ttm->sg);
579 free_sg:
580 	kfree(ttm->sg);
581 	ttm->sg = NULL;
582 	return ret;
583 }
584 
585 static int
586 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment)
587 {
588 	struct ttm_operation_ctx ctx = {.interruptible = true};
589 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
590 
591 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
592 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
593 }
594 
595 /**
596  * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO
597  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
598  * @attachment: Virtual address attachment of the BO on accessing device
599  *
600  * An access request from the device that owns DOORBELL does not require DMA mapping.
601  * This is because the request doesn't go through PCIe root complex i.e. it instead
602  * loops back. The need to DMA map arises only when accessing peer device's DOORBELL
603  *
604  * In contrast, all access requests for MMIO need to be DMA mapped without regard to
605  * device ownership. This is because access requests for MMIO go through PCIe root
606  * complex.
607  *
608  * This is accomplished in two steps:
609  *   - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used
610  *         in updating requesting device's page table
611  *   - Signal TTM to mark memory pointed to by requesting device's BO as GPU
612  *         accessible. This allows an update of requesting device's page table
613  *         with entries associated with DOOREBELL or MMIO memory
614  *
615  * This method is invoked in the following contexts:
616  *   - Mapping of DOORBELL or MMIO BO of same or peer device
617  *   - Validating an evicted DOOREBELL or MMIO BO on device seeking access
618  *
619  * Return: ZERO if successful, NON-ZERO otherwise
620  */
621 static int
622 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem,
623 		     struct kfd_mem_attachment *attachment)
624 {
625 	struct ttm_operation_ctx ctx = {.interruptible = true};
626 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
627 	struct amdgpu_device *adev = attachment->adev;
628 	struct ttm_tt *ttm = bo->tbo.ttm;
629 	enum dma_data_direction dir;
630 	dma_addr_t dma_addr;
631 	bool mmio;
632 	int ret;
633 
634 	/* Expect SG Table of dmapmap BO to be NULL */
635 	mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP);
636 	if (unlikely(ttm->sg)) {
637 		pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio);
638 		return -EINVAL;
639 	}
640 
641 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
642 			DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
643 	dma_addr = mem->bo->tbo.sg->sgl->dma_address;
644 	pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length);
645 	pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr);
646 	dma_addr = dma_map_resource(adev->dev, dma_addr,
647 			mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
648 	ret = dma_mapping_error(adev->dev, dma_addr);
649 	if (unlikely(ret))
650 		return ret;
651 	pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr);
652 
653 	ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length);
654 	if (unlikely(!ttm->sg)) {
655 		ret = -ENOMEM;
656 		goto unmap_sg;
657 	}
658 
659 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT);
660 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
661 	if (unlikely(ret))
662 		goto free_sg;
663 
664 	return ret;
665 
666 free_sg:
667 	sg_free_table(ttm->sg);
668 	kfree(ttm->sg);
669 	ttm->sg = NULL;
670 unmap_sg:
671 	dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length,
672 			   dir, DMA_ATTR_SKIP_CPU_SYNC);
673 	return ret;
674 }
675 
676 static int
677 kfd_mem_dmamap_attachment(struct kgd_mem *mem,
678 			  struct kfd_mem_attachment *attachment)
679 {
680 	switch (attachment->type) {
681 	case KFD_MEM_ATT_SHARED:
682 		return 0;
683 	case KFD_MEM_ATT_USERPTR:
684 		return kfd_mem_dmamap_userptr(mem, attachment);
685 	case KFD_MEM_ATT_DMABUF:
686 		return kfd_mem_dmamap_dmabuf(attachment);
687 	case KFD_MEM_ATT_SG:
688 		return kfd_mem_dmamap_sg_bo(mem, attachment);
689 	default:
690 		WARN_ON_ONCE(1);
691 	}
692 	return -EINVAL;
693 }
694 
695 static void
696 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem,
697 			 struct kfd_mem_attachment *attachment)
698 {
699 	enum dma_data_direction direction =
700 		mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
701 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
702 	struct ttm_operation_ctx ctx = {.interruptible = false};
703 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
704 	struct amdgpu_device *adev = attachment->adev;
705 	struct ttm_tt *ttm = bo->tbo.ttm;
706 
707 	if (unlikely(!ttm->sg))
708 		return;
709 
710 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
711 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
712 
713 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
714 	sg_free_table(ttm->sg);
715 	kfree(ttm->sg);
716 	ttm->sg = NULL;
717 }
718 
719 static void
720 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment)
721 {
722 	struct ttm_operation_ctx ctx = {.interruptible = true};
723 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
724 
725 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
726 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
727 }
728 
729 /**
730  * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO
731  * @mem: SG BO of the DOORBELL or MMIO resource on the owning device
732  * @attachment: Virtual address attachment of the BO on accessing device
733  *
734  * The method performs following steps:
735  *   - Signal TTM to mark memory pointed to by BO as GPU inaccessible
736  *   - Free SG Table that is used to encapsulate DMA mapped memory of
737  *          peer device's DOORBELL or MMIO memory
738  *
739  * This method is invoked in the following contexts:
740  *     UNMapping of DOORBELL or MMIO BO on a device having access to its memory
741  *     Eviction of DOOREBELL or MMIO BO on device having access to its memory
742  *
743  * Return: void
744  */
745 static void
746 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem,
747 		       struct kfd_mem_attachment *attachment)
748 {
749 	struct ttm_operation_ctx ctx = {.interruptible = true};
750 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
751 	struct amdgpu_device *adev = attachment->adev;
752 	struct ttm_tt *ttm = bo->tbo.ttm;
753 	enum dma_data_direction dir;
754 
755 	if (unlikely(!ttm->sg)) {
756 		pr_err("SG Table of BO is UNEXPECTEDLY NULL");
757 		return;
758 	}
759 
760 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
761 	ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
762 
763 	dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
764 				DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
765 	dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address,
766 			ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC);
767 	sg_free_table(ttm->sg);
768 	kfree(ttm->sg);
769 	ttm->sg = NULL;
770 	bo->tbo.sg = NULL;
771 }
772 
773 static void
774 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem,
775 			    struct kfd_mem_attachment *attachment)
776 {
777 	switch (attachment->type) {
778 	case KFD_MEM_ATT_SHARED:
779 		break;
780 	case KFD_MEM_ATT_USERPTR:
781 		kfd_mem_dmaunmap_userptr(mem, attachment);
782 		break;
783 	case KFD_MEM_ATT_DMABUF:
784 		kfd_mem_dmaunmap_dmabuf(attachment);
785 		break;
786 	case KFD_MEM_ATT_SG:
787 		kfd_mem_dmaunmap_sg_bo(mem, attachment);
788 		break;
789 	default:
790 		WARN_ON_ONCE(1);
791 	}
792 }
793 
794 static int
795 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem,
796 		      struct amdgpu_bo **bo)
797 {
798 	struct drm_gem_object *gobj;
799 	int ret;
800 
801 	if (!mem->dmabuf) {
802 		mem->dmabuf = amdgpu_gem_prime_export(&mem->bo->tbo.base,
803 			mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ?
804 				DRM_RDWR : 0);
805 		if (IS_ERR(mem->dmabuf)) {
806 			ret = PTR_ERR(mem->dmabuf);
807 			mem->dmabuf = NULL;
808 			return ret;
809 		}
810 	}
811 
812 	gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf);
813 	if (IS_ERR(gobj))
814 		return PTR_ERR(gobj);
815 
816 	*bo = gem_to_amdgpu_bo(gobj);
817 	(*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE;
818 	(*bo)->parent = amdgpu_bo_ref(mem->bo);
819 
820 	return 0;
821 }
822 
823 /* kfd_mem_attach - Add a BO to a VM
824  *
825  * Everything that needs to bo done only once when a BO is first added
826  * to a VM. It can later be mapped and unmapped many times without
827  * repeating these steps.
828  *
829  * 0. Create BO for DMA mapping, if needed
830  * 1. Allocate and initialize BO VA entry data structure
831  * 2. Add BO to the VM
832  * 3. Determine ASIC-specific PTE flags
833  * 4. Alloc page tables and directories if needed
834  * 4a.  Validate new page tables and directories
835  */
836 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem,
837 		struct amdgpu_vm *vm, bool is_aql)
838 {
839 	struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev);
840 	unsigned long bo_size = mem->bo->tbo.base.size;
841 	uint64_t va = mem->va;
842 	struct kfd_mem_attachment *attachment[2] = {NULL, NULL};
843 	struct amdgpu_bo *bo[2] = {NULL, NULL};
844 	bool same_hive = false;
845 	int i, ret;
846 
847 	if (!va) {
848 		pr_err("Invalid VA when adding BO to VM\n");
849 		return -EINVAL;
850 	}
851 
852 	/* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices
853 	 *
854 	 * The access path of MMIO and DOORBELL BOs of is always over PCIe.
855 	 * In contrast the access path of VRAM BOs depens upon the type of
856 	 * link that connects the peer device. Access over PCIe is allowed
857 	 * if peer device has large BAR. In contrast, access over xGMI is
858 	 * allowed for both small and large BAR configurations of peer device
859 	 */
860 	if ((adev != bo_adev) &&
861 	    ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) ||
862 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) ||
863 	     (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) {
864 		if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM)
865 			same_hive = amdgpu_xgmi_same_hive(adev, bo_adev);
866 		if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev))
867 			return -EINVAL;
868 	}
869 
870 	for (i = 0; i <= is_aql; i++) {
871 		attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL);
872 		if (unlikely(!attachment[i])) {
873 			ret = -ENOMEM;
874 			goto unwind;
875 		}
876 
877 		pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va,
878 			 va + bo_size, vm);
879 
880 		if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) ||
881 		    (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && adev->ram_is_direct_mapped) ||
882 		    same_hive) {
883 			/* Mappings on the local GPU, or VRAM mappings in the
884 			 * local hive, or userptr mapping IOMMU direct map mode
885 			 * share the original BO
886 			 */
887 			attachment[i]->type = KFD_MEM_ATT_SHARED;
888 			bo[i] = mem->bo;
889 			drm_gem_object_get(&bo[i]->tbo.base);
890 		} else if (i > 0) {
891 			/* Multiple mappings on the same GPU share the BO */
892 			attachment[i]->type = KFD_MEM_ATT_SHARED;
893 			bo[i] = bo[0];
894 			drm_gem_object_get(&bo[i]->tbo.base);
895 		} else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) {
896 			/* Create an SG BO to DMA-map userptrs on other GPUs */
897 			attachment[i]->type = KFD_MEM_ATT_USERPTR;
898 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
899 			if (ret)
900 				goto unwind;
901 		/* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */
902 		} else if (mem->bo->tbo.type == ttm_bo_type_sg) {
903 			WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL ||
904 				    mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP),
905 				  "Handing invalid SG BO in ATTACH request");
906 			attachment[i]->type = KFD_MEM_ATT_SG;
907 			ret = create_dmamap_sg_bo(adev, mem, &bo[i]);
908 			if (ret)
909 				goto unwind;
910 		/* Enable acces to GTT and VRAM BOs of peer devices */
911 		} else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT ||
912 			   mem->domain == AMDGPU_GEM_DOMAIN_VRAM) {
913 			attachment[i]->type = KFD_MEM_ATT_DMABUF;
914 			ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]);
915 			if (ret)
916 				goto unwind;
917 			pr_debug("Employ DMABUF mechanim to enable peer GPU access\n");
918 		} else {
919 			WARN_ONCE(true, "Handling invalid ATTACH request");
920 			ret = -EINVAL;
921 			goto unwind;
922 		}
923 
924 		/* Add BO to VM internal data structures */
925 		ret = amdgpu_bo_reserve(bo[i], false);
926 		if (ret) {
927 			pr_debug("Unable to reserve BO during memory attach");
928 			goto unwind;
929 		}
930 		attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]);
931 		amdgpu_bo_unreserve(bo[i]);
932 		if (unlikely(!attachment[i]->bo_va)) {
933 			ret = -ENOMEM;
934 			pr_err("Failed to add BO object to VM. ret == %d\n",
935 			       ret);
936 			goto unwind;
937 		}
938 		attachment[i]->va = va;
939 		attachment[i]->pte_flags = get_pte_flags(adev, mem);
940 		attachment[i]->adev = adev;
941 		list_add(&attachment[i]->list, &mem->attachments);
942 
943 		va += bo_size;
944 	}
945 
946 	return 0;
947 
948 unwind:
949 	for (; i >= 0; i--) {
950 		if (!attachment[i])
951 			continue;
952 		if (attachment[i]->bo_va) {
953 			amdgpu_bo_reserve(bo[i], true);
954 			amdgpu_vm_bo_del(adev, attachment[i]->bo_va);
955 			amdgpu_bo_unreserve(bo[i]);
956 			list_del(&attachment[i]->list);
957 		}
958 		if (bo[i])
959 			drm_gem_object_put(&bo[i]->tbo.base);
960 		kfree(attachment[i]);
961 	}
962 	return ret;
963 }
964 
965 static void kfd_mem_detach(struct kfd_mem_attachment *attachment)
966 {
967 	struct amdgpu_bo *bo = attachment->bo_va->base.bo;
968 
969 	pr_debug("\t remove VA 0x%llx in entry %p\n",
970 			attachment->va, attachment);
971 	amdgpu_vm_bo_del(attachment->adev, attachment->bo_va);
972 	drm_gem_object_put(&bo->tbo.base);
973 	list_del(&attachment->list);
974 	kfree(attachment);
975 }
976 
977 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem,
978 				struct amdkfd_process_info *process_info,
979 				bool userptr)
980 {
981 	struct ttm_validate_buffer *entry = &mem->validate_list;
982 	struct amdgpu_bo *bo = mem->bo;
983 
984 	INIT_LIST_HEAD(&entry->head);
985 	entry->num_shared = 1;
986 	entry->bo = &bo->tbo;
987 	mutex_lock(&process_info->lock);
988 	if (userptr)
989 		list_add_tail(&entry->head, &process_info->userptr_valid_list);
990 	else
991 		list_add_tail(&entry->head, &process_info->kfd_bo_list);
992 	mutex_unlock(&process_info->lock);
993 }
994 
995 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem,
996 		struct amdkfd_process_info *process_info)
997 {
998 	struct ttm_validate_buffer *bo_list_entry;
999 
1000 	bo_list_entry = &mem->validate_list;
1001 	mutex_lock(&process_info->lock);
1002 	list_del(&bo_list_entry->head);
1003 	mutex_unlock(&process_info->lock);
1004 }
1005 
1006 /* Initializes user pages. It registers the MMU notifier and validates
1007  * the userptr BO in the GTT domain.
1008  *
1009  * The BO must already be on the userptr_valid_list. Otherwise an
1010  * eviction and restore may happen that leaves the new BO unmapped
1011  * with the user mode queues running.
1012  *
1013  * Takes the process_info->lock to protect against concurrent restore
1014  * workers.
1015  *
1016  * Returns 0 for success, negative errno for errors.
1017  */
1018 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr,
1019 			   bool criu_resume)
1020 {
1021 	struct amdkfd_process_info *process_info = mem->process_info;
1022 	struct amdgpu_bo *bo = mem->bo;
1023 	struct ttm_operation_ctx ctx = { true, false };
1024 	int ret = 0;
1025 
1026 	mutex_lock(&process_info->lock);
1027 
1028 	ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0);
1029 	if (ret) {
1030 		pr_err("%s: Failed to set userptr: %d\n", __func__, ret);
1031 		goto out;
1032 	}
1033 
1034 	ret = amdgpu_mn_register(bo, user_addr);
1035 	if (ret) {
1036 		pr_err("%s: Failed to register MMU notifier: %d\n",
1037 		       __func__, ret);
1038 		goto out;
1039 	}
1040 
1041 	if (criu_resume) {
1042 		/*
1043 		 * During a CRIU restore operation, the userptr buffer objects
1044 		 * will be validated in the restore_userptr_work worker at a
1045 		 * later stage when it is scheduled by another ioctl called by
1046 		 * CRIU master process for the target pid for restore.
1047 		 */
1048 		atomic_inc(&mem->invalid);
1049 		mutex_unlock(&process_info->lock);
1050 		return 0;
1051 	}
1052 
1053 	ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
1054 	if (ret) {
1055 		pr_err("%s: Failed to get user pages: %d\n", __func__, ret);
1056 		goto unregister_out;
1057 	}
1058 
1059 	ret = amdgpu_bo_reserve(bo, true);
1060 	if (ret) {
1061 		pr_err("%s: Failed to reserve BO\n", __func__);
1062 		goto release_out;
1063 	}
1064 	amdgpu_bo_placement_from_domain(bo, mem->domain);
1065 	ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
1066 	if (ret)
1067 		pr_err("%s: failed to validate BO\n", __func__);
1068 	amdgpu_bo_unreserve(bo);
1069 
1070 release_out:
1071 	amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
1072 unregister_out:
1073 	if (ret)
1074 		amdgpu_mn_unregister(bo);
1075 out:
1076 	mutex_unlock(&process_info->lock);
1077 	return ret;
1078 }
1079 
1080 /* Reserving a BO and its page table BOs must happen atomically to
1081  * avoid deadlocks. Some operations update multiple VMs at once. Track
1082  * all the reservation info in a context structure. Optionally a sync
1083  * object can track VM updates.
1084  */
1085 struct bo_vm_reservation_context {
1086 	struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */
1087 	unsigned int n_vms;		    /* Number of VMs reserved	    */
1088 	struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries  */
1089 	struct ww_acquire_ctx ticket;	    /* Reservation ticket	    */
1090 	struct list_head list, duplicates;  /* BO lists			    */
1091 	struct amdgpu_sync *sync;	    /* Pointer to sync object	    */
1092 	bool reserved;			    /* Whether BOs are reserved	    */
1093 };
1094 
1095 enum bo_vm_match {
1096 	BO_VM_NOT_MAPPED = 0,	/* Match VMs where a BO is not mapped */
1097 	BO_VM_MAPPED,		/* Match VMs where a BO is mapped     */
1098 	BO_VM_ALL,		/* Match all VMs a BO was added to    */
1099 };
1100 
1101 /**
1102  * reserve_bo_and_vm - reserve a BO and a VM unconditionally.
1103  * @mem: KFD BO structure.
1104  * @vm: the VM to reserve.
1105  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1106  */
1107 static int reserve_bo_and_vm(struct kgd_mem *mem,
1108 			      struct amdgpu_vm *vm,
1109 			      struct bo_vm_reservation_context *ctx)
1110 {
1111 	struct amdgpu_bo *bo = mem->bo;
1112 	int ret;
1113 
1114 	WARN_ON(!vm);
1115 
1116 	ctx->reserved = false;
1117 	ctx->n_vms = 1;
1118 	ctx->sync = &mem->sync;
1119 
1120 	INIT_LIST_HEAD(&ctx->list);
1121 	INIT_LIST_HEAD(&ctx->duplicates);
1122 
1123 	ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL);
1124 	if (!ctx->vm_pd)
1125 		return -ENOMEM;
1126 
1127 	ctx->kfd_bo.priority = 0;
1128 	ctx->kfd_bo.tv.bo = &bo->tbo;
1129 	ctx->kfd_bo.tv.num_shared = 1;
1130 	list_add(&ctx->kfd_bo.tv.head, &ctx->list);
1131 
1132 	amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]);
1133 
1134 	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
1135 				     false, &ctx->duplicates);
1136 	if (ret) {
1137 		pr_err("Failed to reserve buffers in ttm.\n");
1138 		kfree(ctx->vm_pd);
1139 		ctx->vm_pd = NULL;
1140 		return ret;
1141 	}
1142 
1143 	ctx->reserved = true;
1144 	return 0;
1145 }
1146 
1147 /**
1148  * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally
1149  * @mem: KFD BO structure.
1150  * @vm: the VM to reserve. If NULL, then all VMs associated with the BO
1151  * is used. Otherwise, a single VM associated with the BO.
1152  * @map_type: the mapping status that will be used to filter the VMs.
1153  * @ctx: the struct that will be used in unreserve_bo_and_vms().
1154  *
1155  * Returns 0 for success, negative for failure.
1156  */
1157 static int reserve_bo_and_cond_vms(struct kgd_mem *mem,
1158 				struct amdgpu_vm *vm, enum bo_vm_match map_type,
1159 				struct bo_vm_reservation_context *ctx)
1160 {
1161 	struct amdgpu_bo *bo = mem->bo;
1162 	struct kfd_mem_attachment *entry;
1163 	unsigned int i;
1164 	int ret;
1165 
1166 	ctx->reserved = false;
1167 	ctx->n_vms = 0;
1168 	ctx->vm_pd = NULL;
1169 	ctx->sync = &mem->sync;
1170 
1171 	INIT_LIST_HEAD(&ctx->list);
1172 	INIT_LIST_HEAD(&ctx->duplicates);
1173 
1174 	list_for_each_entry(entry, &mem->attachments, list) {
1175 		if ((vm && vm != entry->bo_va->base.vm) ||
1176 			(entry->is_mapped != map_type
1177 			&& map_type != BO_VM_ALL))
1178 			continue;
1179 
1180 		ctx->n_vms++;
1181 	}
1182 
1183 	if (ctx->n_vms != 0) {
1184 		ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd),
1185 				     GFP_KERNEL);
1186 		if (!ctx->vm_pd)
1187 			return -ENOMEM;
1188 	}
1189 
1190 	ctx->kfd_bo.priority = 0;
1191 	ctx->kfd_bo.tv.bo = &bo->tbo;
1192 	ctx->kfd_bo.tv.num_shared = 1;
1193 	list_add(&ctx->kfd_bo.tv.head, &ctx->list);
1194 
1195 	i = 0;
1196 	list_for_each_entry(entry, &mem->attachments, list) {
1197 		if ((vm && vm != entry->bo_va->base.vm) ||
1198 			(entry->is_mapped != map_type
1199 			&& map_type != BO_VM_ALL))
1200 			continue;
1201 
1202 		amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list,
1203 				&ctx->vm_pd[i]);
1204 		i++;
1205 	}
1206 
1207 	ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list,
1208 				     false, &ctx->duplicates);
1209 	if (ret) {
1210 		pr_err("Failed to reserve buffers in ttm.\n");
1211 		kfree(ctx->vm_pd);
1212 		ctx->vm_pd = NULL;
1213 		return ret;
1214 	}
1215 
1216 	ctx->reserved = true;
1217 	return 0;
1218 }
1219 
1220 /**
1221  * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context
1222  * @ctx: Reservation context to unreserve
1223  * @wait: Optionally wait for a sync object representing pending VM updates
1224  * @intr: Whether the wait is interruptible
1225  *
1226  * Also frees any resources allocated in
1227  * reserve_bo_and_(cond_)vm(s). Returns the status from
1228  * amdgpu_sync_wait.
1229  */
1230 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx,
1231 				 bool wait, bool intr)
1232 {
1233 	int ret = 0;
1234 
1235 	if (wait)
1236 		ret = amdgpu_sync_wait(ctx->sync, intr);
1237 
1238 	if (ctx->reserved)
1239 		ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list);
1240 	kfree(ctx->vm_pd);
1241 
1242 	ctx->sync = NULL;
1243 
1244 	ctx->reserved = false;
1245 	ctx->vm_pd = NULL;
1246 
1247 	return ret;
1248 }
1249 
1250 static void unmap_bo_from_gpuvm(struct kgd_mem *mem,
1251 				struct kfd_mem_attachment *entry,
1252 				struct amdgpu_sync *sync)
1253 {
1254 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1255 	struct amdgpu_device *adev = entry->adev;
1256 	struct amdgpu_vm *vm = bo_va->base.vm;
1257 
1258 	amdgpu_vm_bo_unmap(adev, bo_va, entry->va);
1259 
1260 	amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update);
1261 
1262 	amdgpu_sync_fence(sync, bo_va->last_pt_update);
1263 
1264 	kfd_mem_dmaunmap_attachment(mem, entry);
1265 }
1266 
1267 static int update_gpuvm_pte(struct kgd_mem *mem,
1268 			    struct kfd_mem_attachment *entry,
1269 			    struct amdgpu_sync *sync)
1270 {
1271 	struct amdgpu_bo_va *bo_va = entry->bo_va;
1272 	struct amdgpu_device *adev = entry->adev;
1273 	int ret;
1274 
1275 	ret = kfd_mem_dmamap_attachment(mem, entry);
1276 	if (ret)
1277 		return ret;
1278 
1279 	/* Update the page tables  */
1280 	ret = amdgpu_vm_bo_update(adev, bo_va, false);
1281 	if (ret) {
1282 		pr_err("amdgpu_vm_bo_update failed\n");
1283 		return ret;
1284 	}
1285 
1286 	return amdgpu_sync_fence(sync, bo_va->last_pt_update);
1287 }
1288 
1289 static int map_bo_to_gpuvm(struct kgd_mem *mem,
1290 			   struct kfd_mem_attachment *entry,
1291 			   struct amdgpu_sync *sync,
1292 			   bool no_update_pte)
1293 {
1294 	int ret;
1295 
1296 	/* Set virtual address for the allocation */
1297 	ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0,
1298 			       amdgpu_bo_size(entry->bo_va->base.bo),
1299 			       entry->pte_flags);
1300 	if (ret) {
1301 		pr_err("Failed to map VA 0x%llx in vm. ret %d\n",
1302 				entry->va, ret);
1303 		return ret;
1304 	}
1305 
1306 	if (no_update_pte)
1307 		return 0;
1308 
1309 	ret = update_gpuvm_pte(mem, entry, sync);
1310 	if (ret) {
1311 		pr_err("update_gpuvm_pte() failed\n");
1312 		goto update_gpuvm_pte_failed;
1313 	}
1314 
1315 	return 0;
1316 
1317 update_gpuvm_pte_failed:
1318 	unmap_bo_from_gpuvm(mem, entry, sync);
1319 	return ret;
1320 }
1321 
1322 static int process_validate_vms(struct amdkfd_process_info *process_info)
1323 {
1324 	struct amdgpu_vm *peer_vm;
1325 	int ret;
1326 
1327 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1328 			    vm_list_node) {
1329 		ret = vm_validate_pt_pd_bos(peer_vm);
1330 		if (ret)
1331 			return ret;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 static int process_sync_pds_resv(struct amdkfd_process_info *process_info,
1338 				 struct amdgpu_sync *sync)
1339 {
1340 	struct amdgpu_vm *peer_vm;
1341 	int ret;
1342 
1343 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1344 			    vm_list_node) {
1345 		struct amdgpu_bo *pd = peer_vm->root.bo;
1346 
1347 		ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv,
1348 				       AMDGPU_SYNC_NE_OWNER,
1349 				       AMDGPU_FENCE_OWNER_KFD);
1350 		if (ret)
1351 			return ret;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static int process_update_pds(struct amdkfd_process_info *process_info,
1358 			      struct amdgpu_sync *sync)
1359 {
1360 	struct amdgpu_vm *peer_vm;
1361 	int ret;
1362 
1363 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
1364 			    vm_list_node) {
1365 		ret = vm_update_pds(peer_vm, sync);
1366 		if (ret)
1367 			return ret;
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info,
1374 		       struct dma_fence **ef)
1375 {
1376 	struct amdkfd_process_info *info = NULL;
1377 	int ret;
1378 
1379 	if (!*process_info) {
1380 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1381 		if (!info)
1382 			return -ENOMEM;
1383 
1384 		mutex_init(&info->lock);
1385 		INIT_LIST_HEAD(&info->vm_list_head);
1386 		INIT_LIST_HEAD(&info->kfd_bo_list);
1387 		INIT_LIST_HEAD(&info->userptr_valid_list);
1388 		INIT_LIST_HEAD(&info->userptr_inval_list);
1389 
1390 		info->eviction_fence =
1391 			amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
1392 						   current->mm,
1393 						   NULL);
1394 		if (!info->eviction_fence) {
1395 			pr_err("Failed to create eviction fence\n");
1396 			ret = -ENOMEM;
1397 			goto create_evict_fence_fail;
1398 		}
1399 
1400 		info->pid = get_task_pid(current->group_leader, PIDTYPE_PID);
1401 		atomic_set(&info->evicted_bos, 0);
1402 		INIT_DELAYED_WORK(&info->restore_userptr_work,
1403 				  amdgpu_amdkfd_restore_userptr_worker);
1404 
1405 		*process_info = info;
1406 		*ef = dma_fence_get(&info->eviction_fence->base);
1407 	}
1408 
1409 	vm->process_info = *process_info;
1410 
1411 	/* Validate page directory and attach eviction fence */
1412 	ret = amdgpu_bo_reserve(vm->root.bo, true);
1413 	if (ret)
1414 		goto reserve_pd_fail;
1415 	ret = vm_validate_pt_pd_bos(vm);
1416 	if (ret) {
1417 		pr_err("validate_pt_pd_bos() failed\n");
1418 		goto validate_pd_fail;
1419 	}
1420 	ret = amdgpu_bo_sync_wait(vm->root.bo,
1421 				  AMDGPU_FENCE_OWNER_KFD, false);
1422 	if (ret)
1423 		goto wait_pd_fail;
1424 	ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1);
1425 	if (ret)
1426 		goto reserve_shared_fail;
1427 	amdgpu_bo_fence(vm->root.bo,
1428 			&vm->process_info->eviction_fence->base, true);
1429 	amdgpu_bo_unreserve(vm->root.bo);
1430 
1431 	/* Update process info */
1432 	mutex_lock(&vm->process_info->lock);
1433 	list_add_tail(&vm->vm_list_node,
1434 			&(vm->process_info->vm_list_head));
1435 	vm->process_info->n_vms++;
1436 	mutex_unlock(&vm->process_info->lock);
1437 
1438 	return 0;
1439 
1440 reserve_shared_fail:
1441 wait_pd_fail:
1442 validate_pd_fail:
1443 	amdgpu_bo_unreserve(vm->root.bo);
1444 reserve_pd_fail:
1445 	vm->process_info = NULL;
1446 	if (info) {
1447 		/* Two fence references: one in info and one in *ef */
1448 		dma_fence_put(&info->eviction_fence->base);
1449 		dma_fence_put(*ef);
1450 		*ef = NULL;
1451 		*process_info = NULL;
1452 		put_pid(info->pid);
1453 create_evict_fence_fail:
1454 		mutex_destroy(&info->lock);
1455 		kfree(info);
1456 	}
1457 	return ret;
1458 }
1459 
1460 /**
1461  * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria
1462  * @bo: Handle of buffer object being pinned
1463  * @domain: Domain into which BO should be pinned
1464  *
1465  *   - USERPTR BOs are UNPINNABLE and will return error
1466  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1467  *     PIN count incremented. It is valid to PIN a BO multiple times
1468  *
1469  * Return: ZERO if successful in pinning, Non-Zero in case of error.
1470  */
1471 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain)
1472 {
1473 	int ret = 0;
1474 
1475 	ret = amdgpu_bo_reserve(bo, false);
1476 	if (unlikely(ret))
1477 		return ret;
1478 
1479 	ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0);
1480 	if (ret)
1481 		pr_err("Error in Pinning BO to domain: %d\n", domain);
1482 
1483 	amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
1484 	amdgpu_bo_unreserve(bo);
1485 
1486 	return ret;
1487 }
1488 
1489 /**
1490  * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria
1491  * @bo: Handle of buffer object being unpinned
1492  *
1493  *   - Is a illegal request for USERPTR BOs and is ignored
1494  *   - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their
1495  *     PIN count decremented. Calls to UNPIN must balance calls to PIN
1496  */
1497 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo)
1498 {
1499 	int ret = 0;
1500 
1501 	ret = amdgpu_bo_reserve(bo, false);
1502 	if (unlikely(ret))
1503 		return;
1504 
1505 	amdgpu_bo_unpin(bo);
1506 	amdgpu_bo_unreserve(bo);
1507 }
1508 
1509 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev,
1510 					   struct file *filp, u32 pasid,
1511 					   void **process_info,
1512 					   struct dma_fence **ef)
1513 {
1514 	struct amdgpu_fpriv *drv_priv;
1515 	struct amdgpu_vm *avm;
1516 	int ret;
1517 
1518 	ret = amdgpu_file_to_fpriv(filp, &drv_priv);
1519 	if (ret)
1520 		return ret;
1521 	avm = &drv_priv->vm;
1522 
1523 	/* Already a compute VM? */
1524 	if (avm->process_info)
1525 		return -EINVAL;
1526 
1527 	/* Free the original amdgpu allocated pasid,
1528 	 * will be replaced with kfd allocated pasid.
1529 	 */
1530 	if (avm->pasid) {
1531 		amdgpu_pasid_free(avm->pasid);
1532 		amdgpu_vm_set_pasid(adev, avm, 0);
1533 	}
1534 
1535 	/* Convert VM into a compute VM */
1536 	ret = amdgpu_vm_make_compute(adev, avm);
1537 	if (ret)
1538 		return ret;
1539 
1540 	ret = amdgpu_vm_set_pasid(adev, avm, pasid);
1541 	if (ret)
1542 		return ret;
1543 	/* Initialize KFD part of the VM and process info */
1544 	ret = init_kfd_vm(avm, process_info, ef);
1545 	if (ret)
1546 		return ret;
1547 
1548 	amdgpu_vm_set_task_info(avm);
1549 
1550 	return 0;
1551 }
1552 
1553 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
1554 				    struct amdgpu_vm *vm)
1555 {
1556 	struct amdkfd_process_info *process_info = vm->process_info;
1557 	struct amdgpu_bo *pd = vm->root.bo;
1558 
1559 	if (!process_info)
1560 		return;
1561 
1562 	/* Release eviction fence from PD */
1563 	amdgpu_bo_reserve(pd, false);
1564 	amdgpu_bo_fence(pd, NULL, false);
1565 	amdgpu_bo_unreserve(pd);
1566 
1567 	/* Update process info */
1568 	mutex_lock(&process_info->lock);
1569 	process_info->n_vms--;
1570 	list_del(&vm->vm_list_node);
1571 	mutex_unlock(&process_info->lock);
1572 
1573 	vm->process_info = NULL;
1574 
1575 	/* Release per-process resources when last compute VM is destroyed */
1576 	if (!process_info->n_vms) {
1577 		WARN_ON(!list_empty(&process_info->kfd_bo_list));
1578 		WARN_ON(!list_empty(&process_info->userptr_valid_list));
1579 		WARN_ON(!list_empty(&process_info->userptr_inval_list));
1580 
1581 		dma_fence_put(&process_info->eviction_fence->base);
1582 		cancel_delayed_work_sync(&process_info->restore_userptr_work);
1583 		put_pid(process_info->pid);
1584 		mutex_destroy(&process_info->lock);
1585 		kfree(process_info);
1586 	}
1587 }
1588 
1589 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev,
1590 					    void *drm_priv)
1591 {
1592 	struct amdgpu_vm *avm;
1593 
1594 	if (WARN_ON(!adev || !drm_priv))
1595 		return;
1596 
1597 	avm = drm_priv_to_vm(drm_priv);
1598 
1599 	pr_debug("Releasing process vm %p\n", avm);
1600 
1601 	/* The original pasid of amdgpu vm has already been
1602 	 * released during making a amdgpu vm to a compute vm
1603 	 * The current pasid is managed by kfd and will be
1604 	 * released on kfd process destroy. Set amdgpu pasid
1605 	 * to 0 to avoid duplicate release.
1606 	 */
1607 	amdgpu_vm_release_compute(adev, avm);
1608 }
1609 
1610 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv)
1611 {
1612 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1613 	struct amdgpu_bo *pd = avm->root.bo;
1614 	struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev);
1615 
1616 	if (adev->asic_type < CHIP_VEGA10)
1617 		return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT;
1618 	return avm->pd_phys_addr;
1619 }
1620 
1621 void amdgpu_amdkfd_block_mmu_notifications(void *p)
1622 {
1623 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1624 
1625 	mutex_lock(&pinfo->lock);
1626 	WRITE_ONCE(pinfo->block_mmu_notifications, true);
1627 	mutex_unlock(&pinfo->lock);
1628 }
1629 
1630 int amdgpu_amdkfd_criu_resume(void *p)
1631 {
1632 	int ret = 0;
1633 	struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p;
1634 
1635 	mutex_lock(&pinfo->lock);
1636 	pr_debug("scheduling work\n");
1637 	atomic_inc(&pinfo->evicted_bos);
1638 	if (!READ_ONCE(pinfo->block_mmu_notifications)) {
1639 		ret = -EINVAL;
1640 		goto out_unlock;
1641 	}
1642 	WRITE_ONCE(pinfo->block_mmu_notifications, false);
1643 	schedule_delayed_work(&pinfo->restore_userptr_work, 0);
1644 
1645 out_unlock:
1646 	mutex_unlock(&pinfo->lock);
1647 	return ret;
1648 }
1649 
1650 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev)
1651 {
1652 	uint64_t reserved_for_pt =
1653 		ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size);
1654 	size_t available;
1655 
1656 	spin_lock(&kfd_mem_limit.mem_limit_lock);
1657 	available = adev->gmc.real_vram_size
1658 		- adev->kfd.vram_used
1659 		- atomic64_read(&adev->vram_pin_size)
1660 		- reserved_for_pt;
1661 	spin_unlock(&kfd_mem_limit.mem_limit_lock);
1662 
1663 	return ALIGN_DOWN(available, VRAM_ALLOCATION_ALIGN);
1664 }
1665 
1666 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1667 		struct amdgpu_device *adev, uint64_t va, uint64_t size,
1668 		void *drm_priv, struct kgd_mem **mem,
1669 		uint64_t *offset, uint32_t flags, bool criu_resume)
1670 {
1671 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1672 	enum ttm_bo_type bo_type = ttm_bo_type_device;
1673 	struct sg_table *sg = NULL;
1674 	uint64_t user_addr = 0;
1675 	struct amdgpu_bo *bo;
1676 	struct drm_gem_object *gobj = NULL;
1677 	u32 domain, alloc_domain;
1678 	u64 alloc_flags;
1679 	int ret;
1680 
1681 	/*
1682 	 * Check on which domain to allocate BO
1683 	 */
1684 	if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
1685 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM;
1686 		alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE;
1687 		alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ?
1688 			AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0;
1689 	} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
1690 		domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT;
1691 		alloc_flags = 0;
1692 	} else {
1693 		domain = AMDGPU_GEM_DOMAIN_GTT;
1694 		alloc_domain = AMDGPU_GEM_DOMAIN_CPU;
1695 		alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE;
1696 
1697 		if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
1698 			if (!offset || !*offset)
1699 				return -EINVAL;
1700 			user_addr = untagged_addr(*offset);
1701 		} else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1702 				    KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1703 			bo_type = ttm_bo_type_sg;
1704 			if (size > UINT_MAX)
1705 				return -EINVAL;
1706 			sg = create_sg_table(*offset, size);
1707 			if (!sg)
1708 				return -ENOMEM;
1709 		} else {
1710 			return -EINVAL;
1711 		}
1712 	}
1713 
1714 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
1715 	if (!*mem) {
1716 		ret = -ENOMEM;
1717 		goto err;
1718 	}
1719 	INIT_LIST_HEAD(&(*mem)->attachments);
1720 	mutex_init(&(*mem)->lock);
1721 	(*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM);
1722 
1723 	/* Workaround for AQL queue wraparound bug. Map the same
1724 	 * memory twice. That means we only actually allocate half
1725 	 * the memory.
1726 	 */
1727 	if ((*mem)->aql_queue)
1728 		size = size >> 1;
1729 
1730 	(*mem)->alloc_flags = flags;
1731 
1732 	amdgpu_sync_create(&(*mem)->sync);
1733 
1734 	ret = amdgpu_amdkfd_reserve_mem_limit(adev, size, flags);
1735 	if (ret) {
1736 		pr_debug("Insufficient memory\n");
1737 		goto err_reserve_limit;
1738 	}
1739 
1740 	pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n",
1741 			va, size, domain_string(alloc_domain));
1742 
1743 	ret = amdgpu_gem_object_create(adev, size, 1, alloc_domain, alloc_flags,
1744 				       bo_type, NULL, &gobj);
1745 	if (ret) {
1746 		pr_debug("Failed to create BO on domain %s. ret %d\n",
1747 			 domain_string(alloc_domain), ret);
1748 		goto err_bo_create;
1749 	}
1750 	ret = drm_vma_node_allow(&gobj->vma_node, drm_priv);
1751 	if (ret) {
1752 		pr_debug("Failed to allow vma node access. ret %d\n", ret);
1753 		goto err_node_allow;
1754 	}
1755 	bo = gem_to_amdgpu_bo(gobj);
1756 	if (bo_type == ttm_bo_type_sg) {
1757 		bo->tbo.sg = sg;
1758 		bo->tbo.ttm->sg = sg;
1759 	}
1760 	bo->kfd_bo = *mem;
1761 	(*mem)->bo = bo;
1762 	if (user_addr)
1763 		bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO;
1764 
1765 	(*mem)->va = va;
1766 	(*mem)->domain = domain;
1767 	(*mem)->mapped_to_gpu_memory = 0;
1768 	(*mem)->process_info = avm->process_info;
1769 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr);
1770 
1771 	if (user_addr) {
1772 		pr_debug("creating userptr BO for user_addr = %llu\n", user_addr);
1773 		ret = init_user_pages(*mem, user_addr, criu_resume);
1774 		if (ret)
1775 			goto allocate_init_user_pages_failed;
1776 	} else  if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1777 				KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1778 		ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT);
1779 		if (ret) {
1780 			pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n");
1781 			goto err_pin_bo;
1782 		}
1783 		bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
1784 		bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT;
1785 	}
1786 
1787 	if (offset)
1788 		*offset = amdgpu_bo_mmap_offset(bo);
1789 
1790 	return 0;
1791 
1792 allocate_init_user_pages_failed:
1793 err_pin_bo:
1794 	remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info);
1795 	drm_vma_node_revoke(&gobj->vma_node, drm_priv);
1796 err_node_allow:
1797 	/* Don't unreserve system mem limit twice */
1798 	goto err_reserve_limit;
1799 err_bo_create:
1800 	unreserve_mem_limit(adev, size, flags);
1801 err_reserve_limit:
1802 	mutex_destroy(&(*mem)->lock);
1803 	if (gobj)
1804 		drm_gem_object_put(gobj);
1805 	else
1806 		kfree(*mem);
1807 err:
1808 	if (sg) {
1809 		sg_free_table(sg);
1810 		kfree(sg);
1811 	}
1812 	return ret;
1813 }
1814 
1815 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu(
1816 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv,
1817 		uint64_t *size)
1818 {
1819 	struct amdkfd_process_info *process_info = mem->process_info;
1820 	unsigned long bo_size = mem->bo->tbo.base.size;
1821 	struct kfd_mem_attachment *entry, *tmp;
1822 	struct bo_vm_reservation_context ctx;
1823 	struct ttm_validate_buffer *bo_list_entry;
1824 	unsigned int mapped_to_gpu_memory;
1825 	int ret;
1826 	bool is_imported = false;
1827 
1828 	mutex_lock(&mem->lock);
1829 
1830 	/* Unpin MMIO/DOORBELL BO's that were pinned during allocation */
1831 	if (mem->alloc_flags &
1832 	    (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL |
1833 	     KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) {
1834 		amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo);
1835 	}
1836 
1837 	mapped_to_gpu_memory = mem->mapped_to_gpu_memory;
1838 	is_imported = mem->is_imported;
1839 	mutex_unlock(&mem->lock);
1840 	/* lock is not needed after this, since mem is unused and will
1841 	 * be freed anyway
1842 	 */
1843 
1844 	if (mapped_to_gpu_memory > 0) {
1845 		pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n",
1846 				mem->va, bo_size);
1847 		return -EBUSY;
1848 	}
1849 
1850 	/* Make sure restore workers don't access the BO any more */
1851 	bo_list_entry = &mem->validate_list;
1852 	mutex_lock(&process_info->lock);
1853 	list_del(&bo_list_entry->head);
1854 	mutex_unlock(&process_info->lock);
1855 
1856 	/* No more MMU notifiers */
1857 	amdgpu_mn_unregister(mem->bo);
1858 
1859 	ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx);
1860 	if (unlikely(ret))
1861 		return ret;
1862 
1863 	/* The eviction fence should be removed by the last unmap.
1864 	 * TODO: Log an error condition if the bo still has the eviction fence
1865 	 * attached
1866 	 */
1867 	amdgpu_amdkfd_remove_eviction_fence(mem->bo,
1868 					process_info->eviction_fence);
1869 	pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va,
1870 		mem->va + bo_size * (1 + mem->aql_queue));
1871 
1872 	/* Remove from VM internal data structures */
1873 	list_for_each_entry_safe(entry, tmp, &mem->attachments, list)
1874 		kfd_mem_detach(entry);
1875 
1876 	ret = unreserve_bo_and_vms(&ctx, false, false);
1877 
1878 	/* Free the sync object */
1879 	amdgpu_sync_free(&mem->sync);
1880 
1881 	/* If the SG is not NULL, it's one we created for a doorbell or mmio
1882 	 * remap BO. We need to free it.
1883 	 */
1884 	if (mem->bo->tbo.sg) {
1885 		sg_free_table(mem->bo->tbo.sg);
1886 		kfree(mem->bo->tbo.sg);
1887 	}
1888 
1889 	/* Update the size of the BO being freed if it was allocated from
1890 	 * VRAM and is not imported.
1891 	 */
1892 	if (size) {
1893 		if ((mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM) &&
1894 		    (!is_imported))
1895 			*size = bo_size;
1896 		else
1897 			*size = 0;
1898 	}
1899 
1900 	/* Free the BO*/
1901 	drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv);
1902 	if (mem->dmabuf)
1903 		dma_buf_put(mem->dmabuf);
1904 	mutex_destroy(&mem->lock);
1905 
1906 	/* If this releases the last reference, it will end up calling
1907 	 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why
1908 	 * this needs to be the last call here.
1909 	 */
1910 	drm_gem_object_put(&mem->bo->tbo.base);
1911 
1912 	return ret;
1913 }
1914 
1915 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1916 		struct amdgpu_device *adev, struct kgd_mem *mem,
1917 		void *drm_priv)
1918 {
1919 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
1920 	int ret;
1921 	struct amdgpu_bo *bo;
1922 	uint32_t domain;
1923 	struct kfd_mem_attachment *entry;
1924 	struct bo_vm_reservation_context ctx;
1925 	unsigned long bo_size;
1926 	bool is_invalid_userptr = false;
1927 
1928 	bo = mem->bo;
1929 	if (!bo) {
1930 		pr_err("Invalid BO when mapping memory to GPU\n");
1931 		return -EINVAL;
1932 	}
1933 
1934 	/* Make sure restore is not running concurrently. Since we
1935 	 * don't map invalid userptr BOs, we rely on the next restore
1936 	 * worker to do the mapping
1937 	 */
1938 	mutex_lock(&mem->process_info->lock);
1939 
1940 	/* Lock mmap-sem. If we find an invalid userptr BO, we can be
1941 	 * sure that the MMU notifier is no longer running
1942 	 * concurrently and the queues are actually stopped
1943 	 */
1944 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1945 		mmap_write_lock(current->mm);
1946 		is_invalid_userptr = atomic_read(&mem->invalid);
1947 		mmap_write_unlock(current->mm);
1948 	}
1949 
1950 	mutex_lock(&mem->lock);
1951 
1952 	domain = mem->domain;
1953 	bo_size = bo->tbo.base.size;
1954 
1955 	pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n",
1956 			mem->va,
1957 			mem->va + bo_size * (1 + mem->aql_queue),
1958 			avm, domain_string(domain));
1959 
1960 	if (!kfd_mem_is_attached(avm, mem)) {
1961 		ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue);
1962 		if (ret)
1963 			goto out;
1964 	}
1965 
1966 	ret = reserve_bo_and_vm(mem, avm, &ctx);
1967 	if (unlikely(ret))
1968 		goto out;
1969 
1970 	/* Userptr can be marked as "not invalid", but not actually be
1971 	 * validated yet (still in the system domain). In that case
1972 	 * the queues are still stopped and we can leave mapping for
1973 	 * the next restore worker
1974 	 */
1975 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) &&
1976 	    bo->tbo.resource->mem_type == TTM_PL_SYSTEM)
1977 		is_invalid_userptr = true;
1978 
1979 	ret = vm_validate_pt_pd_bos(avm);
1980 	if (unlikely(ret))
1981 		goto out_unreserve;
1982 
1983 	if (mem->mapped_to_gpu_memory == 0 &&
1984 	    !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
1985 		/* Validate BO only once. The eviction fence gets added to BO
1986 		 * the first time it is mapped. Validate will wait for all
1987 		 * background evictions to complete.
1988 		 */
1989 		ret = amdgpu_amdkfd_bo_validate(bo, domain, true);
1990 		if (ret) {
1991 			pr_debug("Validate failed\n");
1992 			goto out_unreserve;
1993 		}
1994 	}
1995 
1996 	list_for_each_entry(entry, &mem->attachments, list) {
1997 		if (entry->bo_va->base.vm != avm || entry->is_mapped)
1998 			continue;
1999 
2000 		pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n",
2001 			 entry->va, entry->va + bo_size, entry);
2002 
2003 		ret = map_bo_to_gpuvm(mem, entry, ctx.sync,
2004 				      is_invalid_userptr);
2005 		if (ret) {
2006 			pr_err("Failed to map bo to gpuvm\n");
2007 			goto out_unreserve;
2008 		}
2009 
2010 		ret = vm_update_pds(avm, ctx.sync);
2011 		if (ret) {
2012 			pr_err("Failed to update page directories\n");
2013 			goto out_unreserve;
2014 		}
2015 
2016 		entry->is_mapped = true;
2017 		mem->mapped_to_gpu_memory++;
2018 		pr_debug("\t INC mapping count %d\n",
2019 			 mem->mapped_to_gpu_memory);
2020 	}
2021 
2022 	if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count)
2023 		amdgpu_bo_fence(bo,
2024 				&avm->process_info->eviction_fence->base,
2025 				true);
2026 	ret = unreserve_bo_and_vms(&ctx, false, false);
2027 
2028 	goto out;
2029 
2030 out_unreserve:
2031 	unreserve_bo_and_vms(&ctx, false, false);
2032 out:
2033 	mutex_unlock(&mem->process_info->lock);
2034 	mutex_unlock(&mem->lock);
2035 	return ret;
2036 }
2037 
2038 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
2039 		struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv)
2040 {
2041 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2042 	struct amdkfd_process_info *process_info = avm->process_info;
2043 	unsigned long bo_size = mem->bo->tbo.base.size;
2044 	struct kfd_mem_attachment *entry;
2045 	struct bo_vm_reservation_context ctx;
2046 	int ret;
2047 
2048 	mutex_lock(&mem->lock);
2049 
2050 	ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx);
2051 	if (unlikely(ret))
2052 		goto out;
2053 	/* If no VMs were reserved, it means the BO wasn't actually mapped */
2054 	if (ctx.n_vms == 0) {
2055 		ret = -EINVAL;
2056 		goto unreserve_out;
2057 	}
2058 
2059 	ret = vm_validate_pt_pd_bos(avm);
2060 	if (unlikely(ret))
2061 		goto unreserve_out;
2062 
2063 	pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n",
2064 		mem->va,
2065 		mem->va + bo_size * (1 + mem->aql_queue),
2066 		avm);
2067 
2068 	list_for_each_entry(entry, &mem->attachments, list) {
2069 		if (entry->bo_va->base.vm != avm || !entry->is_mapped)
2070 			continue;
2071 
2072 		pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n",
2073 			 entry->va, entry->va + bo_size, entry);
2074 
2075 		unmap_bo_from_gpuvm(mem, entry, ctx.sync);
2076 		entry->is_mapped = false;
2077 
2078 		mem->mapped_to_gpu_memory--;
2079 		pr_debug("\t DEC mapping count %d\n",
2080 			 mem->mapped_to_gpu_memory);
2081 	}
2082 
2083 	/* If BO is unmapped from all VMs, unfence it. It can be evicted if
2084 	 * required.
2085 	 */
2086 	if (mem->mapped_to_gpu_memory == 0 &&
2087 	    !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) &&
2088 	    !mem->bo->tbo.pin_count)
2089 		amdgpu_amdkfd_remove_eviction_fence(mem->bo,
2090 						process_info->eviction_fence);
2091 
2092 unreserve_out:
2093 	unreserve_bo_and_vms(&ctx, false, false);
2094 out:
2095 	mutex_unlock(&mem->lock);
2096 	return ret;
2097 }
2098 
2099 int amdgpu_amdkfd_gpuvm_sync_memory(
2100 		struct amdgpu_device *adev, struct kgd_mem *mem, bool intr)
2101 {
2102 	struct amdgpu_sync sync;
2103 	int ret;
2104 
2105 	amdgpu_sync_create(&sync);
2106 
2107 	mutex_lock(&mem->lock);
2108 	amdgpu_sync_clone(&mem->sync, &sync);
2109 	mutex_unlock(&mem->lock);
2110 
2111 	ret = amdgpu_sync_wait(&sync, intr);
2112 	amdgpu_sync_free(&sync);
2113 	return ret;
2114 }
2115 
2116 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access
2117  *
2118  * @mem: Buffer object to be mapped for CPU access
2119  * @kptr[out]: pointer in kernel CPU address space
2120  * @size[out]: size of the buffer
2121  *
2122  * Pins the BO and maps it for kernel CPU access. The eviction fence is removed
2123  * from the BO, since pinned BOs cannot be evicted. The bo must remain on the
2124  * validate_list, so the GPU mapping can be restored after a page table was
2125  * evicted.
2126  *
2127  * Return: 0 on success, error code on failure
2128  */
2129 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem,
2130 					     void **kptr, uint64_t *size)
2131 {
2132 	int ret;
2133 	struct amdgpu_bo *bo = mem->bo;
2134 
2135 	if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) {
2136 		pr_err("userptr can't be mapped to kernel\n");
2137 		return -EINVAL;
2138 	}
2139 
2140 	mutex_lock(&mem->process_info->lock);
2141 
2142 	ret = amdgpu_bo_reserve(bo, true);
2143 	if (ret) {
2144 		pr_err("Failed to reserve bo. ret %d\n", ret);
2145 		goto bo_reserve_failed;
2146 	}
2147 
2148 	ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
2149 	if (ret) {
2150 		pr_err("Failed to pin bo. ret %d\n", ret);
2151 		goto pin_failed;
2152 	}
2153 
2154 	ret = amdgpu_bo_kmap(bo, kptr);
2155 	if (ret) {
2156 		pr_err("Failed to map bo to kernel. ret %d\n", ret);
2157 		goto kmap_failed;
2158 	}
2159 
2160 	amdgpu_amdkfd_remove_eviction_fence(
2161 		bo, mem->process_info->eviction_fence);
2162 
2163 	if (size)
2164 		*size = amdgpu_bo_size(bo);
2165 
2166 	amdgpu_bo_unreserve(bo);
2167 
2168 	mutex_unlock(&mem->process_info->lock);
2169 	return 0;
2170 
2171 kmap_failed:
2172 	amdgpu_bo_unpin(bo);
2173 pin_failed:
2174 	amdgpu_bo_unreserve(bo);
2175 bo_reserve_failed:
2176 	mutex_unlock(&mem->process_info->lock);
2177 
2178 	return ret;
2179 }
2180 
2181 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access
2182  *
2183  * @mem: Buffer object to be unmapped for CPU access
2184  *
2185  * Removes the kernel CPU mapping and unpins the BO. It does not restore the
2186  * eviction fence, so this function should only be used for cleanup before the
2187  * BO is destroyed.
2188  */
2189 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem)
2190 {
2191 	struct amdgpu_bo *bo = mem->bo;
2192 
2193 	amdgpu_bo_reserve(bo, true);
2194 	amdgpu_bo_kunmap(bo);
2195 	amdgpu_bo_unpin(bo);
2196 	amdgpu_bo_unreserve(bo);
2197 }
2198 
2199 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev,
2200 					  struct kfd_vm_fault_info *mem)
2201 {
2202 	if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) {
2203 		*mem = *adev->gmc.vm_fault_info;
2204 		mb();
2205 		atomic_set(&adev->gmc.vm_fault_info_updated, 0);
2206 	}
2207 	return 0;
2208 }
2209 
2210 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev,
2211 				      struct dma_buf *dma_buf,
2212 				      uint64_t va, void *drm_priv,
2213 				      struct kgd_mem **mem, uint64_t *size,
2214 				      uint64_t *mmap_offset)
2215 {
2216 	struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv);
2217 	struct drm_gem_object *obj;
2218 	struct amdgpu_bo *bo;
2219 	int ret;
2220 
2221 	if (dma_buf->ops != &amdgpu_dmabuf_ops)
2222 		/* Can't handle non-graphics buffers */
2223 		return -EINVAL;
2224 
2225 	obj = dma_buf->priv;
2226 	if (drm_to_adev(obj->dev) != adev)
2227 		/* Can't handle buffers from other devices */
2228 		return -EINVAL;
2229 
2230 	bo = gem_to_amdgpu_bo(obj);
2231 	if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
2232 				    AMDGPU_GEM_DOMAIN_GTT)))
2233 		/* Only VRAM and GTT BOs are supported */
2234 		return -EINVAL;
2235 
2236 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2237 	if (!*mem)
2238 		return -ENOMEM;
2239 
2240 	ret = drm_vma_node_allow(&obj->vma_node, drm_priv);
2241 	if (ret) {
2242 		kfree(mem);
2243 		return ret;
2244 	}
2245 
2246 	if (size)
2247 		*size = amdgpu_bo_size(bo);
2248 
2249 	if (mmap_offset)
2250 		*mmap_offset = amdgpu_bo_mmap_offset(bo);
2251 
2252 	INIT_LIST_HEAD(&(*mem)->attachments);
2253 	mutex_init(&(*mem)->lock);
2254 
2255 	(*mem)->alloc_flags =
2256 		((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2257 		KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT)
2258 		| KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE
2259 		| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
2260 
2261 	drm_gem_object_get(&bo->tbo.base);
2262 	(*mem)->bo = bo;
2263 	(*mem)->va = va;
2264 	(*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
2265 		AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT;
2266 	(*mem)->mapped_to_gpu_memory = 0;
2267 	(*mem)->process_info = avm->process_info;
2268 	add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false);
2269 	amdgpu_sync_create(&(*mem)->sync);
2270 	(*mem)->is_imported = true;
2271 
2272 	return 0;
2273 }
2274 
2275 /* Evict a userptr BO by stopping the queues if necessary
2276  *
2277  * Runs in MMU notifier, may be in RECLAIM_FS context. This means it
2278  * cannot do any memory allocations, and cannot take any locks that
2279  * are held elsewhere while allocating memory. Therefore this is as
2280  * simple as possible, using atomic counters.
2281  *
2282  * It doesn't do anything to the BO itself. The real work happens in
2283  * restore, where we get updated page addresses. This function only
2284  * ensures that GPU access to the BO is stopped.
2285  */
2286 int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem,
2287 				struct mm_struct *mm)
2288 {
2289 	struct amdkfd_process_info *process_info = mem->process_info;
2290 	int evicted_bos;
2291 	int r = 0;
2292 
2293 	/* Do not process MMU notifications until stage-4 IOCTL is received */
2294 	if (READ_ONCE(process_info->block_mmu_notifications))
2295 		return 0;
2296 
2297 	atomic_inc(&mem->invalid);
2298 	evicted_bos = atomic_inc_return(&process_info->evicted_bos);
2299 	if (evicted_bos == 1) {
2300 		/* First eviction, stop the queues */
2301 		r = kgd2kfd_quiesce_mm(mm);
2302 		if (r)
2303 			pr_err("Failed to quiesce KFD\n");
2304 		schedule_delayed_work(&process_info->restore_userptr_work,
2305 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2306 	}
2307 
2308 	return r;
2309 }
2310 
2311 /* Update invalid userptr BOs
2312  *
2313  * Moves invalidated (evicted) userptr BOs from userptr_valid_list to
2314  * userptr_inval_list and updates user pages for all BOs that have
2315  * been invalidated since their last update.
2316  */
2317 static int update_invalid_user_pages(struct amdkfd_process_info *process_info,
2318 				     struct mm_struct *mm)
2319 {
2320 	struct kgd_mem *mem, *tmp_mem;
2321 	struct amdgpu_bo *bo;
2322 	struct ttm_operation_ctx ctx = { false, false };
2323 	int invalid, ret;
2324 
2325 	/* Move all invalidated BOs to the userptr_inval_list and
2326 	 * release their user pages by migration to the CPU domain
2327 	 */
2328 	list_for_each_entry_safe(mem, tmp_mem,
2329 				 &process_info->userptr_valid_list,
2330 				 validate_list.head) {
2331 		if (!atomic_read(&mem->invalid))
2332 			continue; /* BO is still valid */
2333 
2334 		bo = mem->bo;
2335 
2336 		if (amdgpu_bo_reserve(bo, true))
2337 			return -EAGAIN;
2338 		amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU);
2339 		ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2340 		amdgpu_bo_unreserve(bo);
2341 		if (ret) {
2342 			pr_err("%s: Failed to invalidate userptr BO\n",
2343 			       __func__);
2344 			return -EAGAIN;
2345 		}
2346 
2347 		list_move_tail(&mem->validate_list.head,
2348 			       &process_info->userptr_inval_list);
2349 	}
2350 
2351 	if (list_empty(&process_info->userptr_inval_list))
2352 		return 0; /* All evicted userptr BOs were freed */
2353 
2354 	/* Go through userptr_inval_list and update any invalid user_pages */
2355 	list_for_each_entry(mem, &process_info->userptr_inval_list,
2356 			    validate_list.head) {
2357 		invalid = atomic_read(&mem->invalid);
2358 		if (!invalid)
2359 			/* BO hasn't been invalidated since the last
2360 			 * revalidation attempt. Keep its BO list.
2361 			 */
2362 			continue;
2363 
2364 		bo = mem->bo;
2365 
2366 		/* Get updated user pages */
2367 		ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages);
2368 		if (ret) {
2369 			pr_debug("Failed %d to get user pages\n", ret);
2370 
2371 			/* Return -EFAULT bad address error as success. It will
2372 			 * fail later with a VM fault if the GPU tries to access
2373 			 * it. Better than hanging indefinitely with stalled
2374 			 * user mode queues.
2375 			 *
2376 			 * Return other error -EBUSY or -ENOMEM to retry restore
2377 			 */
2378 			if (ret != -EFAULT)
2379 				return ret;
2380 		} else {
2381 
2382 			/*
2383 			 * FIXME: Cannot ignore the return code, must hold
2384 			 * notifier_lock
2385 			 */
2386 			amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm);
2387 		}
2388 
2389 		/* Mark the BO as valid unless it was invalidated
2390 		 * again concurrently.
2391 		 */
2392 		if (atomic_cmpxchg(&mem->invalid, invalid, 0) != invalid)
2393 			return -EAGAIN;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 /* Validate invalid userptr BOs
2400  *
2401  * Validates BOs on the userptr_inval_list, and moves them back to the
2402  * userptr_valid_list. Also updates GPUVM page tables with new page
2403  * addresses and waits for the page table updates to complete.
2404  */
2405 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info)
2406 {
2407 	struct amdgpu_bo_list_entry *pd_bo_list_entries;
2408 	struct list_head resv_list, duplicates;
2409 	struct ww_acquire_ctx ticket;
2410 	struct amdgpu_sync sync;
2411 
2412 	struct amdgpu_vm *peer_vm;
2413 	struct kgd_mem *mem, *tmp_mem;
2414 	struct amdgpu_bo *bo;
2415 	struct ttm_operation_ctx ctx = { false, false };
2416 	int i, ret;
2417 
2418 	pd_bo_list_entries = kcalloc(process_info->n_vms,
2419 				     sizeof(struct amdgpu_bo_list_entry),
2420 				     GFP_KERNEL);
2421 	if (!pd_bo_list_entries) {
2422 		pr_err("%s: Failed to allocate PD BO list entries\n", __func__);
2423 		ret = -ENOMEM;
2424 		goto out_no_mem;
2425 	}
2426 
2427 	INIT_LIST_HEAD(&resv_list);
2428 	INIT_LIST_HEAD(&duplicates);
2429 
2430 	/* Get all the page directory BOs that need to be reserved */
2431 	i = 0;
2432 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2433 			    vm_list_node)
2434 		amdgpu_vm_get_pd_bo(peer_vm, &resv_list,
2435 				    &pd_bo_list_entries[i++]);
2436 	/* Add the userptr_inval_list entries to resv_list */
2437 	list_for_each_entry(mem, &process_info->userptr_inval_list,
2438 			    validate_list.head) {
2439 		list_add_tail(&mem->resv_list.head, &resv_list);
2440 		mem->resv_list.bo = mem->validate_list.bo;
2441 		mem->resv_list.num_shared = mem->validate_list.num_shared;
2442 	}
2443 
2444 	/* Reserve all BOs and page tables for validation */
2445 	ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates);
2446 	WARN(!list_empty(&duplicates), "Duplicates should be empty");
2447 	if (ret)
2448 		goto out_free;
2449 
2450 	amdgpu_sync_create(&sync);
2451 
2452 	ret = process_validate_vms(process_info);
2453 	if (ret)
2454 		goto unreserve_out;
2455 
2456 	/* Validate BOs and update GPUVM page tables */
2457 	list_for_each_entry_safe(mem, tmp_mem,
2458 				 &process_info->userptr_inval_list,
2459 				 validate_list.head) {
2460 		struct kfd_mem_attachment *attachment;
2461 
2462 		bo = mem->bo;
2463 
2464 		/* Validate the BO if we got user pages */
2465 		if (bo->tbo.ttm->pages[0]) {
2466 			amdgpu_bo_placement_from_domain(bo, mem->domain);
2467 			ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
2468 			if (ret) {
2469 				pr_err("%s: failed to validate BO\n", __func__);
2470 				goto unreserve_out;
2471 			}
2472 		}
2473 
2474 		list_move_tail(&mem->validate_list.head,
2475 			       &process_info->userptr_valid_list);
2476 
2477 		/* Update mapping. If the BO was not validated
2478 		 * (because we couldn't get user pages), this will
2479 		 * clear the page table entries, which will result in
2480 		 * VM faults if the GPU tries to access the invalid
2481 		 * memory.
2482 		 */
2483 		list_for_each_entry(attachment, &mem->attachments, list) {
2484 			if (!attachment->is_mapped)
2485 				continue;
2486 
2487 			kfd_mem_dmaunmap_attachment(mem, attachment);
2488 			ret = update_gpuvm_pte(mem, attachment, &sync);
2489 			if (ret) {
2490 				pr_err("%s: update PTE failed\n", __func__);
2491 				/* make sure this gets validated again */
2492 				atomic_inc(&mem->invalid);
2493 				goto unreserve_out;
2494 			}
2495 		}
2496 	}
2497 
2498 	/* Update page directories */
2499 	ret = process_update_pds(process_info, &sync);
2500 
2501 unreserve_out:
2502 	ttm_eu_backoff_reservation(&ticket, &resv_list);
2503 	amdgpu_sync_wait(&sync, false);
2504 	amdgpu_sync_free(&sync);
2505 out_free:
2506 	kfree(pd_bo_list_entries);
2507 out_no_mem:
2508 
2509 	return ret;
2510 }
2511 
2512 /* Worker callback to restore evicted userptr BOs
2513  *
2514  * Tries to update and validate all userptr BOs. If successful and no
2515  * concurrent evictions happened, the queues are restarted. Otherwise,
2516  * reschedule for another attempt later.
2517  */
2518 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work)
2519 {
2520 	struct delayed_work *dwork = to_delayed_work(work);
2521 	struct amdkfd_process_info *process_info =
2522 		container_of(dwork, struct amdkfd_process_info,
2523 			     restore_userptr_work);
2524 	struct task_struct *usertask;
2525 	struct mm_struct *mm;
2526 	int evicted_bos;
2527 
2528 	evicted_bos = atomic_read(&process_info->evicted_bos);
2529 	if (!evicted_bos)
2530 		return;
2531 
2532 	/* Reference task and mm in case of concurrent process termination */
2533 	usertask = get_pid_task(process_info->pid, PIDTYPE_PID);
2534 	if (!usertask)
2535 		return;
2536 	mm = get_task_mm(usertask);
2537 	if (!mm) {
2538 		put_task_struct(usertask);
2539 		return;
2540 	}
2541 
2542 	mutex_lock(&process_info->lock);
2543 
2544 	if (update_invalid_user_pages(process_info, mm))
2545 		goto unlock_out;
2546 	/* userptr_inval_list can be empty if all evicted userptr BOs
2547 	 * have been freed. In that case there is nothing to validate
2548 	 * and we can just restart the queues.
2549 	 */
2550 	if (!list_empty(&process_info->userptr_inval_list)) {
2551 		if (atomic_read(&process_info->evicted_bos) != evicted_bos)
2552 			goto unlock_out; /* Concurrent eviction, try again */
2553 
2554 		if (validate_invalid_user_pages(process_info))
2555 			goto unlock_out;
2556 	}
2557 	/* Final check for concurrent evicton and atomic update. If
2558 	 * another eviction happens after successful update, it will
2559 	 * be a first eviction that calls quiesce_mm. The eviction
2560 	 * reference counting inside KFD will handle this case.
2561 	 */
2562 	if (atomic_cmpxchg(&process_info->evicted_bos, evicted_bos, 0) !=
2563 	    evicted_bos)
2564 		goto unlock_out;
2565 	evicted_bos = 0;
2566 	if (kgd2kfd_resume_mm(mm)) {
2567 		pr_err("%s: Failed to resume KFD\n", __func__);
2568 		/* No recovery from this failure. Probably the CP is
2569 		 * hanging. No point trying again.
2570 		 */
2571 	}
2572 
2573 unlock_out:
2574 	mutex_unlock(&process_info->lock);
2575 	mmput(mm);
2576 	put_task_struct(usertask);
2577 
2578 	/* If validation failed, reschedule another attempt */
2579 	if (evicted_bos)
2580 		schedule_delayed_work(&process_info->restore_userptr_work,
2581 			msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS));
2582 }
2583 
2584 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given
2585  *   KFD process identified by process_info
2586  *
2587  * @process_info: amdkfd_process_info of the KFD process
2588  *
2589  * After memory eviction, restore thread calls this function. The function
2590  * should be called when the Process is still valid. BO restore involves -
2591  *
2592  * 1.  Release old eviction fence and create new one
2593  * 2.  Get two copies of PD BO list from all the VMs. Keep one copy as pd_list.
2594  * 3   Use the second PD list and kfd_bo_list to create a list (ctx.list) of
2595  *     BOs that need to be reserved.
2596  * 4.  Reserve all the BOs
2597  * 5.  Validate of PD and PT BOs.
2598  * 6.  Validate all KFD BOs using kfd_bo_list and Map them and add new fence
2599  * 7.  Add fence to all PD and PT BOs.
2600  * 8.  Unreserve all BOs
2601  */
2602 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef)
2603 {
2604 	struct amdgpu_bo_list_entry *pd_bo_list;
2605 	struct amdkfd_process_info *process_info = info;
2606 	struct amdgpu_vm *peer_vm;
2607 	struct kgd_mem *mem;
2608 	struct bo_vm_reservation_context ctx;
2609 	struct amdgpu_amdkfd_fence *new_fence;
2610 	int ret = 0, i;
2611 	struct list_head duplicate_save;
2612 	struct amdgpu_sync sync_obj;
2613 	unsigned long failed_size = 0;
2614 	unsigned long total_size = 0;
2615 
2616 	INIT_LIST_HEAD(&duplicate_save);
2617 	INIT_LIST_HEAD(&ctx.list);
2618 	INIT_LIST_HEAD(&ctx.duplicates);
2619 
2620 	pd_bo_list = kcalloc(process_info->n_vms,
2621 			     sizeof(struct amdgpu_bo_list_entry),
2622 			     GFP_KERNEL);
2623 	if (!pd_bo_list)
2624 		return -ENOMEM;
2625 
2626 	i = 0;
2627 	mutex_lock(&process_info->lock);
2628 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2629 			vm_list_node)
2630 		amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]);
2631 
2632 	/* Reserve all BOs and page tables/directory. Add all BOs from
2633 	 * kfd_bo_list to ctx.list
2634 	 */
2635 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2636 			    validate_list.head) {
2637 
2638 		list_add_tail(&mem->resv_list.head, &ctx.list);
2639 		mem->resv_list.bo = mem->validate_list.bo;
2640 		mem->resv_list.num_shared = mem->validate_list.num_shared;
2641 	}
2642 
2643 	ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list,
2644 				     false, &duplicate_save);
2645 	if (ret) {
2646 		pr_debug("Memory eviction: TTM Reserve Failed. Try again\n");
2647 		goto ttm_reserve_fail;
2648 	}
2649 
2650 	amdgpu_sync_create(&sync_obj);
2651 
2652 	/* Validate PDs and PTs */
2653 	ret = process_validate_vms(process_info);
2654 	if (ret)
2655 		goto validate_map_fail;
2656 
2657 	ret = process_sync_pds_resv(process_info, &sync_obj);
2658 	if (ret) {
2659 		pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n");
2660 		goto validate_map_fail;
2661 	}
2662 
2663 	/* Validate BOs and map them to GPUVM (update VM page tables). */
2664 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2665 			    validate_list.head) {
2666 
2667 		struct amdgpu_bo *bo = mem->bo;
2668 		uint32_t domain = mem->domain;
2669 		struct kfd_mem_attachment *attachment;
2670 		struct dma_resv_iter cursor;
2671 		struct dma_fence *fence;
2672 
2673 		total_size += amdgpu_bo_size(bo);
2674 
2675 		ret = amdgpu_amdkfd_bo_validate(bo, domain, false);
2676 		if (ret) {
2677 			pr_debug("Memory eviction: Validate BOs failed\n");
2678 			failed_size += amdgpu_bo_size(bo);
2679 			ret = amdgpu_amdkfd_bo_validate(bo,
2680 						AMDGPU_GEM_DOMAIN_GTT, false);
2681 			if (ret) {
2682 				pr_debug("Memory eviction: Try again\n");
2683 				goto validate_map_fail;
2684 			}
2685 		}
2686 		dma_resv_for_each_fence(&cursor, bo->tbo.base.resv,
2687 					DMA_RESV_USAGE_KERNEL, fence) {
2688 			ret = amdgpu_sync_fence(&sync_obj, fence);
2689 			if (ret) {
2690 				pr_debug("Memory eviction: Sync BO fence failed. Try again\n");
2691 				goto validate_map_fail;
2692 			}
2693 		}
2694 		list_for_each_entry(attachment, &mem->attachments, list) {
2695 			if (!attachment->is_mapped)
2696 				continue;
2697 
2698 			kfd_mem_dmaunmap_attachment(mem, attachment);
2699 			ret = update_gpuvm_pte(mem, attachment, &sync_obj);
2700 			if (ret) {
2701 				pr_debug("Memory eviction: update PTE failed. Try again\n");
2702 				goto validate_map_fail;
2703 			}
2704 		}
2705 	}
2706 
2707 	if (failed_size)
2708 		pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size);
2709 
2710 	/* Update page directories */
2711 	ret = process_update_pds(process_info, &sync_obj);
2712 	if (ret) {
2713 		pr_debug("Memory eviction: update PDs failed. Try again\n");
2714 		goto validate_map_fail;
2715 	}
2716 
2717 	/* Wait for validate and PT updates to finish */
2718 	amdgpu_sync_wait(&sync_obj, false);
2719 
2720 	/* Release old eviction fence and create new one, because fence only
2721 	 * goes from unsignaled to signaled, fence cannot be reused.
2722 	 * Use context and mm from the old fence.
2723 	 */
2724 	new_fence = amdgpu_amdkfd_fence_create(
2725 				process_info->eviction_fence->base.context,
2726 				process_info->eviction_fence->mm,
2727 				NULL);
2728 	if (!new_fence) {
2729 		pr_err("Failed to create eviction fence\n");
2730 		ret = -ENOMEM;
2731 		goto validate_map_fail;
2732 	}
2733 	dma_fence_put(&process_info->eviction_fence->base);
2734 	process_info->eviction_fence = new_fence;
2735 	*ef = dma_fence_get(&new_fence->base);
2736 
2737 	/* Attach new eviction fence to all BOs except pinned ones */
2738 	list_for_each_entry(mem, &process_info->kfd_bo_list,
2739 		validate_list.head) {
2740 		if (mem->bo->tbo.pin_count)
2741 			continue;
2742 
2743 		amdgpu_bo_fence(mem->bo,
2744 			&process_info->eviction_fence->base, true);
2745 	}
2746 	/* Attach eviction fence to PD / PT BOs */
2747 	list_for_each_entry(peer_vm, &process_info->vm_list_head,
2748 			    vm_list_node) {
2749 		struct amdgpu_bo *bo = peer_vm->root.bo;
2750 
2751 		amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true);
2752 	}
2753 
2754 validate_map_fail:
2755 	ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list);
2756 	amdgpu_sync_free(&sync_obj);
2757 ttm_reserve_fail:
2758 	mutex_unlock(&process_info->lock);
2759 	kfree(pd_bo_list);
2760 	return ret;
2761 }
2762 
2763 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem)
2764 {
2765 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
2766 	struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws;
2767 	int ret;
2768 
2769 	if (!info || !gws)
2770 		return -EINVAL;
2771 
2772 	*mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL);
2773 	if (!*mem)
2774 		return -ENOMEM;
2775 
2776 	mutex_init(&(*mem)->lock);
2777 	INIT_LIST_HEAD(&(*mem)->attachments);
2778 	(*mem)->bo = amdgpu_bo_ref(gws_bo);
2779 	(*mem)->domain = AMDGPU_GEM_DOMAIN_GWS;
2780 	(*mem)->process_info = process_info;
2781 	add_kgd_mem_to_kfd_bo_list(*mem, process_info, false);
2782 	amdgpu_sync_create(&(*mem)->sync);
2783 
2784 
2785 	/* Validate gws bo the first time it is added to process */
2786 	mutex_lock(&(*mem)->process_info->lock);
2787 	ret = amdgpu_bo_reserve(gws_bo, false);
2788 	if (unlikely(ret)) {
2789 		pr_err("Reserve gws bo failed %d\n", ret);
2790 		goto bo_reservation_failure;
2791 	}
2792 
2793 	ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true);
2794 	if (ret) {
2795 		pr_err("GWS BO validate failed %d\n", ret);
2796 		goto bo_validation_failure;
2797 	}
2798 	/* GWS resource is shared b/t amdgpu and amdkfd
2799 	 * Add process eviction fence to bo so they can
2800 	 * evict each other.
2801 	 */
2802 	ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1);
2803 	if (ret)
2804 		goto reserve_shared_fail;
2805 	amdgpu_bo_fence(gws_bo, &process_info->eviction_fence->base, true);
2806 	amdgpu_bo_unreserve(gws_bo);
2807 	mutex_unlock(&(*mem)->process_info->lock);
2808 
2809 	return ret;
2810 
2811 reserve_shared_fail:
2812 bo_validation_failure:
2813 	amdgpu_bo_unreserve(gws_bo);
2814 bo_reservation_failure:
2815 	mutex_unlock(&(*mem)->process_info->lock);
2816 	amdgpu_sync_free(&(*mem)->sync);
2817 	remove_kgd_mem_from_kfd_bo_list(*mem, process_info);
2818 	amdgpu_bo_unref(&gws_bo);
2819 	mutex_destroy(&(*mem)->lock);
2820 	kfree(*mem);
2821 	*mem = NULL;
2822 	return ret;
2823 }
2824 
2825 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem)
2826 {
2827 	int ret;
2828 	struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info;
2829 	struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
2830 	struct amdgpu_bo *gws_bo = kgd_mem->bo;
2831 
2832 	/* Remove BO from process's validate list so restore worker won't touch
2833 	 * it anymore
2834 	 */
2835 	remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info);
2836 
2837 	ret = amdgpu_bo_reserve(gws_bo, false);
2838 	if (unlikely(ret)) {
2839 		pr_err("Reserve gws bo failed %d\n", ret);
2840 		//TODO add BO back to validate_list?
2841 		return ret;
2842 	}
2843 	amdgpu_amdkfd_remove_eviction_fence(gws_bo,
2844 			process_info->eviction_fence);
2845 	amdgpu_bo_unreserve(gws_bo);
2846 	amdgpu_sync_free(&kgd_mem->sync);
2847 	amdgpu_bo_unref(&gws_bo);
2848 	mutex_destroy(&kgd_mem->lock);
2849 	kfree(mem);
2850 	return 0;
2851 }
2852 
2853 /* Returns GPU-specific tiling mode information */
2854 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev,
2855 				struct tile_config *config)
2856 {
2857 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
2858 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
2859 	config->num_tile_configs =
2860 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
2861 	config->macro_tile_config_ptr =
2862 			adev->gfx.config.macrotile_mode_array;
2863 	config->num_macro_tile_configs =
2864 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
2865 
2866 	/* Those values are not set from GFX9 onwards */
2867 	config->num_banks = adev->gfx.config.num_banks;
2868 	config->num_ranks = adev->gfx.config.num_ranks;
2869 
2870 	return 0;
2871 }
2872 
2873 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem)
2874 {
2875 	struct kfd_mem_attachment *entry;
2876 
2877 	list_for_each_entry(entry, &mem->attachments, list) {
2878 		if (entry->is_mapped && entry->adev == adev)
2879 			return true;
2880 	}
2881 	return false;
2882 }
2883