1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2014-2018 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/dma-buf.h> 24 #include <linux/list.h> 25 #include <linux/pagemap.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/task.h> 28 #include <drm/ttm/ttm_tt.h> 29 30 #include <drm/drm_exec.h> 31 32 #include "amdgpu_object.h" 33 #include "amdgpu_gem.h" 34 #include "amdgpu_vm.h" 35 #include "amdgpu_hmm.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_dma_buf.h" 38 #include <uapi/linux/kfd_ioctl.h> 39 #include "amdgpu_xgmi.h" 40 #include "kfd_priv.h" 41 #include "kfd_smi_events.h" 42 43 /* Userptr restore delay, just long enough to allow consecutive VM 44 * changes to accumulate 45 */ 46 #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 47 48 /* 49 * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB 50 * BO chunk 51 */ 52 #define VRAM_AVAILABLITY_ALIGN (1 << 21) 53 54 /* Impose limit on how much memory KFD can use */ 55 static struct { 56 uint64_t max_system_mem_limit; 57 uint64_t max_ttm_mem_limit; 58 int64_t system_mem_used; 59 int64_t ttm_mem_used; 60 spinlock_t mem_limit_lock; 61 } kfd_mem_limit; 62 63 static const char * const domain_bit_to_string[] = { 64 "CPU", 65 "GTT", 66 "VRAM", 67 "GDS", 68 "GWS", 69 "OA" 70 }; 71 72 #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] 73 74 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); 75 76 static bool kfd_mem_is_attached(struct amdgpu_vm *avm, 77 struct kgd_mem *mem) 78 { 79 struct kfd_mem_attachment *entry; 80 81 list_for_each_entry(entry, &mem->attachments, list) 82 if (entry->bo_va->base.vm == avm) 83 return true; 84 85 return false; 86 } 87 88 /** 89 * reuse_dmamap() - Check whether adev can share the original 90 * userptr BO 91 * 92 * If both adev and bo_adev are in direct mapping or 93 * in the same iommu group, they can share the original BO. 94 * 95 * @adev: Device to which can or cannot share the original BO 96 * @bo_adev: Device to which allocated BO belongs to 97 * 98 * Return: returns true if adev can share original userptr BO, 99 * false otherwise. 100 */ 101 static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) 102 { 103 return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || 104 (adev->dev->iommu_group == bo_adev->dev->iommu_group); 105 } 106 107 /* Set memory usage limits. Current, limits are 108 * System (TTM + userptr) memory - 15/16th System RAM 109 * TTM memory - 3/8th System RAM 110 */ 111 void amdgpu_amdkfd_gpuvm_init_mem_limits(void) 112 { 113 struct sysinfo si; 114 uint64_t mem; 115 116 if (kfd_mem_limit.max_system_mem_limit) 117 return; 118 119 si_meminfo(&si); 120 mem = si.freeram - si.freehigh; 121 mem *= si.mem_unit; 122 123 spin_lock_init(&kfd_mem_limit.mem_limit_lock); 124 kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4); 125 kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; 126 pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", 127 (kfd_mem_limit.max_system_mem_limit >> 20), 128 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 129 } 130 131 void amdgpu_amdkfd_reserve_system_mem(uint64_t size) 132 { 133 kfd_mem_limit.system_mem_used += size; 134 } 135 136 /* Estimate page table size needed to represent a given memory size 137 * 138 * With 4KB pages, we need one 8 byte PTE for each 4KB of memory 139 * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB 140 * of memory (factor 256K, >> 18). ROCm user mode tries to optimize 141 * for 2MB pages for TLB efficiency. However, small allocations and 142 * fragmented system memory still need some 4KB pages. We choose a 143 * compromise that should work in most cases without reserving too 144 * much memory for page tables unnecessarily (factor 16K, >> 14). 145 */ 146 147 #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) 148 149 /** 150 * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size 151 * of buffer. 152 * 153 * @adev: Device to which allocated BO belongs to 154 * @size: Size of buffer, in bytes, encapsulated by B0. This should be 155 * equivalent to amdgpu_bo_size(BO) 156 * @alloc_flag: Flag used in allocating a BO as noted above 157 * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is 158 * managed as one compute node in driver for app 159 * 160 * Return: 161 * returns -ENOMEM in case of error, ZERO otherwise 162 */ 163 int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, 164 uint64_t size, u32 alloc_flag, int8_t xcp_id) 165 { 166 uint64_t reserved_for_pt = 167 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 168 size_t system_mem_needed, ttm_mem_needed, vram_needed; 169 int ret = 0; 170 uint64_t vram_size = 0; 171 172 system_mem_needed = 0; 173 ttm_mem_needed = 0; 174 vram_needed = 0; 175 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 176 system_mem_needed = size; 177 ttm_mem_needed = size; 178 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 179 /* 180 * Conservatively round up the allocation requirement to 2 MB 181 * to avoid fragmentation caused by 4K allocations in the tail 182 * 2M BO chunk. 183 */ 184 vram_needed = size; 185 /* 186 * For GFX 9.4.3, get the VRAM size from XCP structs 187 */ 188 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 189 return -EINVAL; 190 191 vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); 192 if (adev->gmc.is_app_apu) { 193 system_mem_needed = size; 194 ttm_mem_needed = size; 195 } 196 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 197 system_mem_needed = size; 198 } else if (!(alloc_flag & 199 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 200 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 201 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 202 return -ENOMEM; 203 } 204 205 spin_lock(&kfd_mem_limit.mem_limit_lock); 206 207 if (kfd_mem_limit.system_mem_used + system_mem_needed > 208 kfd_mem_limit.max_system_mem_limit) 209 pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); 210 211 if ((kfd_mem_limit.system_mem_used + system_mem_needed > 212 kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || 213 (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > 214 kfd_mem_limit.max_ttm_mem_limit) || 215 (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > 216 vram_size - reserved_for_pt - atomic64_read(&adev->vram_pin_size))) { 217 ret = -ENOMEM; 218 goto release; 219 } 220 221 /* Update memory accounting by decreasing available system 222 * memory, TTM memory and GPU memory as computed above 223 */ 224 WARN_ONCE(vram_needed && !adev, 225 "adev reference can't be null when vram is used"); 226 if (adev && xcp_id >= 0) { 227 adev->kfd.vram_used[xcp_id] += vram_needed; 228 adev->kfd.vram_used_aligned[xcp_id] += adev->gmc.is_app_apu ? 229 vram_needed : 230 ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); 231 } 232 kfd_mem_limit.system_mem_used += system_mem_needed; 233 kfd_mem_limit.ttm_mem_used += ttm_mem_needed; 234 235 release: 236 spin_unlock(&kfd_mem_limit.mem_limit_lock); 237 return ret; 238 } 239 240 void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, 241 uint64_t size, u32 alloc_flag, int8_t xcp_id) 242 { 243 spin_lock(&kfd_mem_limit.mem_limit_lock); 244 245 if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 246 kfd_mem_limit.system_mem_used -= size; 247 kfd_mem_limit.ttm_mem_used -= size; 248 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 249 WARN_ONCE(!adev, 250 "adev reference can't be null when alloc mem flags vram is set"); 251 if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) 252 goto release; 253 254 if (adev) { 255 adev->kfd.vram_used[xcp_id] -= size; 256 if (adev->gmc.is_app_apu) { 257 adev->kfd.vram_used_aligned[xcp_id] -= size; 258 kfd_mem_limit.system_mem_used -= size; 259 kfd_mem_limit.ttm_mem_used -= size; 260 } else { 261 adev->kfd.vram_used_aligned[xcp_id] -= 262 ALIGN(size, VRAM_AVAILABLITY_ALIGN); 263 } 264 } 265 } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 266 kfd_mem_limit.system_mem_used -= size; 267 } else if (!(alloc_flag & 268 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 269 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 270 pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); 271 goto release; 272 } 273 WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, 274 "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); 275 WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, 276 "KFD TTM memory accounting unbalanced"); 277 WARN_ONCE(kfd_mem_limit.system_mem_used < 0, 278 "KFD system memory accounting unbalanced"); 279 280 release: 281 spin_unlock(&kfd_mem_limit.mem_limit_lock); 282 } 283 284 void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) 285 { 286 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 287 u32 alloc_flags = bo->kfd_bo->alloc_flags; 288 u64 size = amdgpu_bo_size(bo); 289 290 amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, 291 bo->xcp_id); 292 293 kfree(bo->kfd_bo); 294 } 295 296 /** 297 * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information 298 * about USERPTR or DOOREBELL or MMIO BO. 299 * 300 * @adev: Device for which dmamap BO is being created 301 * @mem: BO of peer device that is being DMA mapped. Provides parameters 302 * in building the dmamap BO 303 * @bo_out: Output parameter updated with handle of dmamap BO 304 */ 305 static int 306 create_dmamap_sg_bo(struct amdgpu_device *adev, 307 struct kgd_mem *mem, struct amdgpu_bo **bo_out) 308 { 309 struct drm_gem_object *gem_obj; 310 int ret; 311 uint64_t flags = 0; 312 313 ret = amdgpu_bo_reserve(mem->bo, false); 314 if (ret) 315 return ret; 316 317 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) 318 flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | 319 AMDGPU_GEM_CREATE_UNCACHED); 320 321 ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, 322 AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, 323 ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); 324 325 amdgpu_bo_unreserve(mem->bo); 326 327 if (ret) { 328 pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); 329 return -EINVAL; 330 } 331 332 *bo_out = gem_to_amdgpu_bo(gem_obj); 333 (*bo_out)->parent = amdgpu_bo_ref(mem->bo); 334 return ret; 335 } 336 337 /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's 338 * reservation object. 339 * 340 * @bo: [IN] Remove eviction fence(s) from this BO 341 * @ef: [IN] This eviction fence is removed if it 342 * is present in the shared list. 343 * 344 * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. 345 */ 346 static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, 347 struct amdgpu_amdkfd_fence *ef) 348 { 349 struct dma_fence *replacement; 350 351 if (!ef) 352 return -EINVAL; 353 354 /* TODO: Instead of block before we should use the fence of the page 355 * table update and TLB flush here directly. 356 */ 357 replacement = dma_fence_get_stub(); 358 dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, 359 replacement, DMA_RESV_USAGE_BOOKKEEP); 360 dma_fence_put(replacement); 361 return 0; 362 } 363 364 int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) 365 { 366 struct amdgpu_bo *root = bo; 367 struct amdgpu_vm_bo_base *vm_bo; 368 struct amdgpu_vm *vm; 369 struct amdkfd_process_info *info; 370 struct amdgpu_amdkfd_fence *ef; 371 int ret; 372 373 /* we can always get vm_bo from root PD bo.*/ 374 while (root->parent) 375 root = root->parent; 376 377 vm_bo = root->vm_bo; 378 if (!vm_bo) 379 return 0; 380 381 vm = vm_bo->vm; 382 if (!vm) 383 return 0; 384 385 info = vm->process_info; 386 if (!info || !info->eviction_fence) 387 return 0; 388 389 ef = container_of(dma_fence_get(&info->eviction_fence->base), 390 struct amdgpu_amdkfd_fence, base); 391 392 BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); 393 ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); 394 dma_resv_unlock(bo->tbo.base.resv); 395 396 dma_fence_put(&ef->base); 397 return ret; 398 } 399 400 static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, 401 bool wait) 402 { 403 struct ttm_operation_ctx ctx = { false, false }; 404 int ret; 405 406 if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), 407 "Called with userptr BO")) 408 return -EINVAL; 409 410 /* bo has been pinned, not need validate it */ 411 if (bo->tbo.pin_count) 412 return 0; 413 414 amdgpu_bo_placement_from_domain(bo, domain); 415 416 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 417 if (ret) 418 goto validate_fail; 419 if (wait) 420 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 421 422 validate_fail: 423 return ret; 424 } 425 426 static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) 427 { 428 return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); 429 } 430 431 /* vm_validate_pt_pd_bos - Validate page table and directory BOs 432 * 433 * Page directories are not updated here because huge page handling 434 * during page table updates can invalidate page directory entries 435 * again. Page directories are only updated after updating page 436 * tables. 437 */ 438 static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) 439 { 440 struct amdgpu_bo *pd = vm->root.bo; 441 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 442 int ret; 443 444 ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate_vm_bo, NULL); 445 if (ret) { 446 pr_err("failed to validate PT BOs\n"); 447 return ret; 448 } 449 450 vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); 451 452 return 0; 453 } 454 455 static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) 456 { 457 struct amdgpu_bo *pd = vm->root.bo; 458 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 459 int ret; 460 461 ret = amdgpu_vm_update_pdes(adev, vm, false); 462 if (ret) 463 return ret; 464 465 return amdgpu_sync_fence(sync, vm->last_update); 466 } 467 468 static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) 469 { 470 uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | 471 AMDGPU_VM_MTYPE_DEFAULT; 472 473 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) 474 mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; 475 if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) 476 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; 477 478 return amdgpu_gem_va_map_flags(adev, mapping_flags); 479 } 480 481 /** 482 * create_sg_table() - Create an sg_table for a contiguous DMA addr range 483 * @addr: The starting address to point to 484 * @size: Size of memory area in bytes being pointed to 485 * 486 * Allocates an instance of sg_table and initializes it to point to memory 487 * area specified by input parameters. The address used to build is assumed 488 * to be DMA mapped, if needed. 489 * 490 * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table 491 * because they are physically contiguous. 492 * 493 * Return: Initialized instance of SG Table or NULL 494 */ 495 static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) 496 { 497 struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); 498 499 if (!sg) 500 return NULL; 501 if (sg_alloc_table(sg, 1, GFP_KERNEL)) { 502 kfree(sg); 503 return NULL; 504 } 505 sg_dma_address(sg->sgl) = addr; 506 sg->sgl->length = size; 507 #ifdef CONFIG_NEED_SG_DMA_LENGTH 508 sg->sgl->dma_length = size; 509 #endif 510 return sg; 511 } 512 513 static int 514 kfd_mem_dmamap_userptr(struct kgd_mem *mem, 515 struct kfd_mem_attachment *attachment) 516 { 517 enum dma_data_direction direction = 518 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 519 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 520 struct ttm_operation_ctx ctx = {.interruptible = true}; 521 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 522 struct amdgpu_device *adev = attachment->adev; 523 struct ttm_tt *src_ttm = mem->bo->tbo.ttm; 524 struct ttm_tt *ttm = bo->tbo.ttm; 525 int ret; 526 527 if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) 528 return -EINVAL; 529 530 ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); 531 if (unlikely(!ttm->sg)) 532 return -ENOMEM; 533 534 /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ 535 ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, 536 ttm->num_pages, 0, 537 (u64)ttm->num_pages << PAGE_SHIFT, 538 GFP_KERNEL); 539 if (unlikely(ret)) 540 goto free_sg; 541 542 ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 543 if (unlikely(ret)) 544 goto release_sg; 545 546 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 547 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 548 if (ret) 549 goto unmap_sg; 550 551 return 0; 552 553 unmap_sg: 554 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 555 release_sg: 556 pr_err("DMA map userptr failed: %d\n", ret); 557 sg_free_table(ttm->sg); 558 free_sg: 559 kfree(ttm->sg); 560 ttm->sg = NULL; 561 return ret; 562 } 563 564 static int 565 kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) 566 { 567 struct ttm_operation_ctx ctx = {.interruptible = true}; 568 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 569 int ret; 570 571 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 572 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 573 if (ret) 574 return ret; 575 576 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 577 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 578 } 579 580 /** 581 * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO 582 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 583 * @attachment: Virtual address attachment of the BO on accessing device 584 * 585 * An access request from the device that owns DOORBELL does not require DMA mapping. 586 * This is because the request doesn't go through PCIe root complex i.e. it instead 587 * loops back. The need to DMA map arises only when accessing peer device's DOORBELL 588 * 589 * In contrast, all access requests for MMIO need to be DMA mapped without regard to 590 * device ownership. This is because access requests for MMIO go through PCIe root 591 * complex. 592 * 593 * This is accomplished in two steps: 594 * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used 595 * in updating requesting device's page table 596 * - Signal TTM to mark memory pointed to by requesting device's BO as GPU 597 * accessible. This allows an update of requesting device's page table 598 * with entries associated with DOOREBELL or MMIO memory 599 * 600 * This method is invoked in the following contexts: 601 * - Mapping of DOORBELL or MMIO BO of same or peer device 602 * - Validating an evicted DOOREBELL or MMIO BO on device seeking access 603 * 604 * Return: ZERO if successful, NON-ZERO otherwise 605 */ 606 static int 607 kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, 608 struct kfd_mem_attachment *attachment) 609 { 610 struct ttm_operation_ctx ctx = {.interruptible = true}; 611 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 612 struct amdgpu_device *adev = attachment->adev; 613 struct ttm_tt *ttm = bo->tbo.ttm; 614 enum dma_data_direction dir; 615 dma_addr_t dma_addr; 616 bool mmio; 617 int ret; 618 619 /* Expect SG Table of dmapmap BO to be NULL */ 620 mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); 621 if (unlikely(ttm->sg)) { 622 pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); 623 return -EINVAL; 624 } 625 626 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 627 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 628 dma_addr = mem->bo->tbo.sg->sgl->dma_address; 629 pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); 630 pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); 631 dma_addr = dma_map_resource(adev->dev, dma_addr, 632 mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 633 ret = dma_mapping_error(adev->dev, dma_addr); 634 if (unlikely(ret)) 635 return ret; 636 pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); 637 638 ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); 639 if (unlikely(!ttm->sg)) { 640 ret = -ENOMEM; 641 goto unmap_sg; 642 } 643 644 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); 645 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 646 if (unlikely(ret)) 647 goto free_sg; 648 649 return ret; 650 651 free_sg: 652 sg_free_table(ttm->sg); 653 kfree(ttm->sg); 654 ttm->sg = NULL; 655 unmap_sg: 656 dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, 657 dir, DMA_ATTR_SKIP_CPU_SYNC); 658 return ret; 659 } 660 661 static int 662 kfd_mem_dmamap_attachment(struct kgd_mem *mem, 663 struct kfd_mem_attachment *attachment) 664 { 665 switch (attachment->type) { 666 case KFD_MEM_ATT_SHARED: 667 return 0; 668 case KFD_MEM_ATT_USERPTR: 669 return kfd_mem_dmamap_userptr(mem, attachment); 670 case KFD_MEM_ATT_DMABUF: 671 return kfd_mem_dmamap_dmabuf(attachment); 672 case KFD_MEM_ATT_SG: 673 return kfd_mem_dmamap_sg_bo(mem, attachment); 674 default: 675 WARN_ON_ONCE(1); 676 } 677 return -EINVAL; 678 } 679 680 static void 681 kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, 682 struct kfd_mem_attachment *attachment) 683 { 684 enum dma_data_direction direction = 685 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 686 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 687 struct ttm_operation_ctx ctx = {.interruptible = false}; 688 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 689 struct amdgpu_device *adev = attachment->adev; 690 struct ttm_tt *ttm = bo->tbo.ttm; 691 692 if (unlikely(!ttm->sg)) 693 return; 694 695 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 696 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 697 698 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 699 sg_free_table(ttm->sg); 700 kfree(ttm->sg); 701 ttm->sg = NULL; 702 } 703 704 static void 705 kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) 706 { 707 /* This is a no-op. We don't want to trigger eviction fences when 708 * unmapping DMABufs. Therefore the invalidation (moving to system 709 * domain) is done in kfd_mem_dmamap_dmabuf. 710 */ 711 } 712 713 /** 714 * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO 715 * @mem: SG BO of the DOORBELL or MMIO resource on the owning device 716 * @attachment: Virtual address attachment of the BO on accessing device 717 * 718 * The method performs following steps: 719 * - Signal TTM to mark memory pointed to by BO as GPU inaccessible 720 * - Free SG Table that is used to encapsulate DMA mapped memory of 721 * peer device's DOORBELL or MMIO memory 722 * 723 * This method is invoked in the following contexts: 724 * UNMapping of DOORBELL or MMIO BO on a device having access to its memory 725 * Eviction of DOOREBELL or MMIO BO on device having access to its memory 726 * 727 * Return: void 728 */ 729 static void 730 kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, 731 struct kfd_mem_attachment *attachment) 732 { 733 struct ttm_operation_ctx ctx = {.interruptible = true}; 734 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 735 struct amdgpu_device *adev = attachment->adev; 736 struct ttm_tt *ttm = bo->tbo.ttm; 737 enum dma_data_direction dir; 738 739 if (unlikely(!ttm->sg)) { 740 pr_debug("SG Table of BO is NULL"); 741 return; 742 } 743 744 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 745 ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 746 747 dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 748 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 749 dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, 750 ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); 751 sg_free_table(ttm->sg); 752 kfree(ttm->sg); 753 ttm->sg = NULL; 754 bo->tbo.sg = NULL; 755 } 756 757 static void 758 kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, 759 struct kfd_mem_attachment *attachment) 760 { 761 switch (attachment->type) { 762 case KFD_MEM_ATT_SHARED: 763 break; 764 case KFD_MEM_ATT_USERPTR: 765 kfd_mem_dmaunmap_userptr(mem, attachment); 766 break; 767 case KFD_MEM_ATT_DMABUF: 768 kfd_mem_dmaunmap_dmabuf(attachment); 769 break; 770 case KFD_MEM_ATT_SG: 771 kfd_mem_dmaunmap_sg_bo(mem, attachment); 772 break; 773 default: 774 WARN_ON_ONCE(1); 775 } 776 } 777 778 static int kfd_mem_export_dmabuf(struct kgd_mem *mem) 779 { 780 if (!mem->dmabuf) { 781 struct dma_buf *ret = amdgpu_gem_prime_export( 782 &mem->bo->tbo.base, 783 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? 784 DRM_RDWR : 0); 785 if (IS_ERR(ret)) 786 return PTR_ERR(ret); 787 mem->dmabuf = ret; 788 } 789 790 return 0; 791 } 792 793 static int 794 kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, 795 struct amdgpu_bo **bo) 796 { 797 struct drm_gem_object *gobj; 798 int ret; 799 800 ret = kfd_mem_export_dmabuf(mem); 801 if (ret) 802 return ret; 803 804 gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); 805 if (IS_ERR(gobj)) 806 return PTR_ERR(gobj); 807 808 *bo = gem_to_amdgpu_bo(gobj); 809 (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; 810 811 return 0; 812 } 813 814 /* kfd_mem_attach - Add a BO to a VM 815 * 816 * Everything that needs to bo done only once when a BO is first added 817 * to a VM. It can later be mapped and unmapped many times without 818 * repeating these steps. 819 * 820 * 0. Create BO for DMA mapping, if needed 821 * 1. Allocate and initialize BO VA entry data structure 822 * 2. Add BO to the VM 823 * 3. Determine ASIC-specific PTE flags 824 * 4. Alloc page tables and directories if needed 825 * 4a. Validate new page tables and directories 826 */ 827 static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, 828 struct amdgpu_vm *vm, bool is_aql) 829 { 830 struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); 831 unsigned long bo_size = mem->bo->tbo.base.size; 832 uint64_t va = mem->va; 833 struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; 834 struct amdgpu_bo *bo[2] = {NULL, NULL}; 835 bool same_hive = false; 836 int i, ret; 837 838 if (!va) { 839 pr_err("Invalid VA when adding BO to VM\n"); 840 return -EINVAL; 841 } 842 843 /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices 844 * 845 * The access path of MMIO and DOORBELL BOs of is always over PCIe. 846 * In contrast the access path of VRAM BOs depens upon the type of 847 * link that connects the peer device. Access over PCIe is allowed 848 * if peer device has large BAR. In contrast, access over xGMI is 849 * allowed for both small and large BAR configurations of peer device 850 */ 851 if ((adev != bo_adev && !adev->gmc.is_app_apu) && 852 ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || 853 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || 854 (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { 855 if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) 856 same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); 857 if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) 858 return -EINVAL; 859 } 860 861 for (i = 0; i <= is_aql; i++) { 862 attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); 863 if (unlikely(!attachment[i])) { 864 ret = -ENOMEM; 865 goto unwind; 866 } 867 868 pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, 869 va + bo_size, vm); 870 871 if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || 872 (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || 873 same_hive) { 874 /* Mappings on the local GPU, or VRAM mappings in the 875 * local hive, or userptr mapping can reuse dma map 876 * address space share the original BO 877 */ 878 attachment[i]->type = KFD_MEM_ATT_SHARED; 879 bo[i] = mem->bo; 880 drm_gem_object_get(&bo[i]->tbo.base); 881 } else if (i > 0) { 882 /* Multiple mappings on the same GPU share the BO */ 883 attachment[i]->type = KFD_MEM_ATT_SHARED; 884 bo[i] = bo[0]; 885 drm_gem_object_get(&bo[i]->tbo.base); 886 } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 887 /* Create an SG BO to DMA-map userptrs on other GPUs */ 888 attachment[i]->type = KFD_MEM_ATT_USERPTR; 889 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 890 if (ret) 891 goto unwind; 892 /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ 893 } else if (mem->bo->tbo.type == ttm_bo_type_sg) { 894 WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || 895 mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), 896 "Handing invalid SG BO in ATTACH request"); 897 attachment[i]->type = KFD_MEM_ATT_SG; 898 ret = create_dmamap_sg_bo(adev, mem, &bo[i]); 899 if (ret) 900 goto unwind; 901 /* Enable acces to GTT and VRAM BOs of peer devices */ 902 } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || 903 mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { 904 attachment[i]->type = KFD_MEM_ATT_DMABUF; 905 ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); 906 if (ret) 907 goto unwind; 908 pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); 909 } else { 910 WARN_ONCE(true, "Handling invalid ATTACH request"); 911 ret = -EINVAL; 912 goto unwind; 913 } 914 915 /* Add BO to VM internal data structures */ 916 ret = amdgpu_bo_reserve(bo[i], false); 917 if (ret) { 918 pr_debug("Unable to reserve BO during memory attach"); 919 goto unwind; 920 } 921 attachment[i]->bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); 922 amdgpu_bo_unreserve(bo[i]); 923 if (unlikely(!attachment[i]->bo_va)) { 924 ret = -ENOMEM; 925 pr_err("Failed to add BO object to VM. ret == %d\n", 926 ret); 927 goto unwind; 928 } 929 attachment[i]->va = va; 930 attachment[i]->pte_flags = get_pte_flags(adev, mem); 931 attachment[i]->adev = adev; 932 list_add(&attachment[i]->list, &mem->attachments); 933 934 va += bo_size; 935 } 936 937 return 0; 938 939 unwind: 940 for (; i >= 0; i--) { 941 if (!attachment[i]) 942 continue; 943 if (attachment[i]->bo_va) { 944 amdgpu_bo_reserve(bo[i], true); 945 amdgpu_vm_bo_del(adev, attachment[i]->bo_va); 946 amdgpu_bo_unreserve(bo[i]); 947 list_del(&attachment[i]->list); 948 } 949 if (bo[i]) 950 drm_gem_object_put(&bo[i]->tbo.base); 951 kfree(attachment[i]); 952 } 953 return ret; 954 } 955 956 static void kfd_mem_detach(struct kfd_mem_attachment *attachment) 957 { 958 struct amdgpu_bo *bo = attachment->bo_va->base.bo; 959 960 pr_debug("\t remove VA 0x%llx in entry %p\n", 961 attachment->va, attachment); 962 amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); 963 drm_gem_object_put(&bo->tbo.base); 964 list_del(&attachment->list); 965 kfree(attachment); 966 } 967 968 static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, 969 struct amdkfd_process_info *process_info, 970 bool userptr) 971 { 972 mutex_lock(&process_info->lock); 973 if (userptr) 974 list_add_tail(&mem->validate_list, 975 &process_info->userptr_valid_list); 976 else 977 list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); 978 mutex_unlock(&process_info->lock); 979 } 980 981 static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, 982 struct amdkfd_process_info *process_info) 983 { 984 mutex_lock(&process_info->lock); 985 list_del(&mem->validate_list); 986 mutex_unlock(&process_info->lock); 987 } 988 989 /* Initializes user pages. It registers the MMU notifier and validates 990 * the userptr BO in the GTT domain. 991 * 992 * The BO must already be on the userptr_valid_list. Otherwise an 993 * eviction and restore may happen that leaves the new BO unmapped 994 * with the user mode queues running. 995 * 996 * Takes the process_info->lock to protect against concurrent restore 997 * workers. 998 * 999 * Returns 0 for success, negative errno for errors. 1000 */ 1001 static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, 1002 bool criu_resume) 1003 { 1004 struct amdkfd_process_info *process_info = mem->process_info; 1005 struct amdgpu_bo *bo = mem->bo; 1006 struct ttm_operation_ctx ctx = { true, false }; 1007 struct hmm_range *range; 1008 int ret = 0; 1009 1010 mutex_lock(&process_info->lock); 1011 1012 ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); 1013 if (ret) { 1014 pr_err("%s: Failed to set userptr: %d\n", __func__, ret); 1015 goto out; 1016 } 1017 1018 ret = amdgpu_hmm_register(bo, user_addr); 1019 if (ret) { 1020 pr_err("%s: Failed to register MMU notifier: %d\n", 1021 __func__, ret); 1022 goto out; 1023 } 1024 1025 if (criu_resume) { 1026 /* 1027 * During a CRIU restore operation, the userptr buffer objects 1028 * will be validated in the restore_userptr_work worker at a 1029 * later stage when it is scheduled by another ioctl called by 1030 * CRIU master process for the target pid for restore. 1031 */ 1032 mutex_lock(&process_info->notifier_lock); 1033 mem->invalid++; 1034 mutex_unlock(&process_info->notifier_lock); 1035 mutex_unlock(&process_info->lock); 1036 return 0; 1037 } 1038 1039 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); 1040 if (ret) { 1041 pr_err("%s: Failed to get user pages: %d\n", __func__, ret); 1042 goto unregister_out; 1043 } 1044 1045 ret = amdgpu_bo_reserve(bo, true); 1046 if (ret) { 1047 pr_err("%s: Failed to reserve BO\n", __func__); 1048 goto release_out; 1049 } 1050 amdgpu_bo_placement_from_domain(bo, mem->domain); 1051 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 1052 if (ret) 1053 pr_err("%s: failed to validate BO\n", __func__); 1054 amdgpu_bo_unreserve(bo); 1055 1056 release_out: 1057 amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); 1058 unregister_out: 1059 if (ret) 1060 amdgpu_hmm_unregister(bo); 1061 out: 1062 mutex_unlock(&process_info->lock); 1063 return ret; 1064 } 1065 1066 /* Reserving a BO and its page table BOs must happen atomically to 1067 * avoid deadlocks. Some operations update multiple VMs at once. Track 1068 * all the reservation info in a context structure. Optionally a sync 1069 * object can track VM updates. 1070 */ 1071 struct bo_vm_reservation_context { 1072 /* DRM execution context for the reservation */ 1073 struct drm_exec exec; 1074 /* Number of VMs reserved */ 1075 unsigned int n_vms; 1076 /* Pointer to sync object */ 1077 struct amdgpu_sync *sync; 1078 }; 1079 1080 enum bo_vm_match { 1081 BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ 1082 BO_VM_MAPPED, /* Match VMs where a BO is mapped */ 1083 BO_VM_ALL, /* Match all VMs a BO was added to */ 1084 }; 1085 1086 /** 1087 * reserve_bo_and_vm - reserve a BO and a VM unconditionally. 1088 * @mem: KFD BO structure. 1089 * @vm: the VM to reserve. 1090 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1091 */ 1092 static int reserve_bo_and_vm(struct kgd_mem *mem, 1093 struct amdgpu_vm *vm, 1094 struct bo_vm_reservation_context *ctx) 1095 { 1096 struct amdgpu_bo *bo = mem->bo; 1097 int ret; 1098 1099 WARN_ON(!vm); 1100 1101 ctx->n_vms = 1; 1102 ctx->sync = &mem->sync; 1103 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT); 1104 drm_exec_until_all_locked(&ctx->exec) { 1105 ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); 1106 drm_exec_retry_on_contention(&ctx->exec); 1107 if (unlikely(ret)) 1108 goto error; 1109 1110 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1111 drm_exec_retry_on_contention(&ctx->exec); 1112 if (unlikely(ret)) 1113 goto error; 1114 } 1115 return 0; 1116 1117 error: 1118 pr_err("Failed to reserve buffers in ttm.\n"); 1119 drm_exec_fini(&ctx->exec); 1120 return ret; 1121 } 1122 1123 /** 1124 * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally 1125 * @mem: KFD BO structure. 1126 * @vm: the VM to reserve. If NULL, then all VMs associated with the BO 1127 * is used. Otherwise, a single VM associated with the BO. 1128 * @map_type: the mapping status that will be used to filter the VMs. 1129 * @ctx: the struct that will be used in unreserve_bo_and_vms(). 1130 * 1131 * Returns 0 for success, negative for failure. 1132 */ 1133 static int reserve_bo_and_cond_vms(struct kgd_mem *mem, 1134 struct amdgpu_vm *vm, enum bo_vm_match map_type, 1135 struct bo_vm_reservation_context *ctx) 1136 { 1137 struct kfd_mem_attachment *entry; 1138 struct amdgpu_bo *bo = mem->bo; 1139 int ret; 1140 1141 ctx->sync = &mem->sync; 1142 drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 1143 DRM_EXEC_IGNORE_DUPLICATES); 1144 drm_exec_until_all_locked(&ctx->exec) { 1145 ctx->n_vms = 0; 1146 list_for_each_entry(entry, &mem->attachments, list) { 1147 if ((vm && vm != entry->bo_va->base.vm) || 1148 (entry->is_mapped != map_type 1149 && map_type != BO_VM_ALL)) 1150 continue; 1151 1152 ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, 1153 &ctx->exec, 2); 1154 drm_exec_retry_on_contention(&ctx->exec); 1155 if (unlikely(ret)) 1156 goto error; 1157 ++ctx->n_vms; 1158 } 1159 1160 ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); 1161 drm_exec_retry_on_contention(&ctx->exec); 1162 if (unlikely(ret)) 1163 goto error; 1164 } 1165 return 0; 1166 1167 error: 1168 pr_err("Failed to reserve buffers in ttm.\n"); 1169 drm_exec_fini(&ctx->exec); 1170 return ret; 1171 } 1172 1173 /** 1174 * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context 1175 * @ctx: Reservation context to unreserve 1176 * @wait: Optionally wait for a sync object representing pending VM updates 1177 * @intr: Whether the wait is interruptible 1178 * 1179 * Also frees any resources allocated in 1180 * reserve_bo_and_(cond_)vm(s). Returns the status from 1181 * amdgpu_sync_wait. 1182 */ 1183 static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, 1184 bool wait, bool intr) 1185 { 1186 int ret = 0; 1187 1188 if (wait) 1189 ret = amdgpu_sync_wait(ctx->sync, intr); 1190 1191 drm_exec_fini(&ctx->exec); 1192 ctx->sync = NULL; 1193 return ret; 1194 } 1195 1196 static void unmap_bo_from_gpuvm(struct kgd_mem *mem, 1197 struct kfd_mem_attachment *entry, 1198 struct amdgpu_sync *sync) 1199 { 1200 struct amdgpu_bo_va *bo_va = entry->bo_va; 1201 struct amdgpu_device *adev = entry->adev; 1202 struct amdgpu_vm *vm = bo_va->base.vm; 1203 1204 amdgpu_vm_bo_unmap(adev, bo_va, entry->va); 1205 1206 amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); 1207 1208 amdgpu_sync_fence(sync, bo_va->last_pt_update); 1209 } 1210 1211 static int update_gpuvm_pte(struct kgd_mem *mem, 1212 struct kfd_mem_attachment *entry, 1213 struct amdgpu_sync *sync) 1214 { 1215 struct amdgpu_bo_va *bo_va = entry->bo_va; 1216 struct amdgpu_device *adev = entry->adev; 1217 int ret; 1218 1219 ret = kfd_mem_dmamap_attachment(mem, entry); 1220 if (ret) 1221 return ret; 1222 1223 /* Update the page tables */ 1224 ret = amdgpu_vm_bo_update(adev, bo_va, false); 1225 if (ret) { 1226 pr_err("amdgpu_vm_bo_update failed\n"); 1227 return ret; 1228 } 1229 1230 return amdgpu_sync_fence(sync, bo_va->last_pt_update); 1231 } 1232 1233 static int map_bo_to_gpuvm(struct kgd_mem *mem, 1234 struct kfd_mem_attachment *entry, 1235 struct amdgpu_sync *sync, 1236 bool no_update_pte) 1237 { 1238 int ret; 1239 1240 /* Set virtual address for the allocation */ 1241 ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, 1242 amdgpu_bo_size(entry->bo_va->base.bo), 1243 entry->pte_flags); 1244 if (ret) { 1245 pr_err("Failed to map VA 0x%llx in vm. ret %d\n", 1246 entry->va, ret); 1247 return ret; 1248 } 1249 1250 if (no_update_pte) 1251 return 0; 1252 1253 ret = update_gpuvm_pte(mem, entry, sync); 1254 if (ret) { 1255 pr_err("update_gpuvm_pte() failed\n"); 1256 goto update_gpuvm_pte_failed; 1257 } 1258 1259 return 0; 1260 1261 update_gpuvm_pte_failed: 1262 unmap_bo_from_gpuvm(mem, entry, sync); 1263 kfd_mem_dmaunmap_attachment(mem, entry); 1264 return ret; 1265 } 1266 1267 static int process_validate_vms(struct amdkfd_process_info *process_info) 1268 { 1269 struct amdgpu_vm *peer_vm; 1270 int ret; 1271 1272 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1273 vm_list_node) { 1274 ret = vm_validate_pt_pd_bos(peer_vm); 1275 if (ret) 1276 return ret; 1277 } 1278 1279 return 0; 1280 } 1281 1282 static int process_sync_pds_resv(struct amdkfd_process_info *process_info, 1283 struct amdgpu_sync *sync) 1284 { 1285 struct amdgpu_vm *peer_vm; 1286 int ret; 1287 1288 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1289 vm_list_node) { 1290 struct amdgpu_bo *pd = peer_vm->root.bo; 1291 1292 ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, 1293 AMDGPU_SYNC_NE_OWNER, 1294 AMDGPU_FENCE_OWNER_KFD); 1295 if (ret) 1296 return ret; 1297 } 1298 1299 return 0; 1300 } 1301 1302 static int process_update_pds(struct amdkfd_process_info *process_info, 1303 struct amdgpu_sync *sync) 1304 { 1305 struct amdgpu_vm *peer_vm; 1306 int ret; 1307 1308 list_for_each_entry(peer_vm, &process_info->vm_list_head, 1309 vm_list_node) { 1310 ret = vm_update_pds(peer_vm, sync); 1311 if (ret) 1312 return ret; 1313 } 1314 1315 return 0; 1316 } 1317 1318 static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, 1319 struct dma_fence **ef) 1320 { 1321 struct amdkfd_process_info *info = NULL; 1322 int ret; 1323 1324 if (!*process_info) { 1325 info = kzalloc(sizeof(*info), GFP_KERNEL); 1326 if (!info) 1327 return -ENOMEM; 1328 1329 mutex_init(&info->lock); 1330 mutex_init(&info->notifier_lock); 1331 INIT_LIST_HEAD(&info->vm_list_head); 1332 INIT_LIST_HEAD(&info->kfd_bo_list); 1333 INIT_LIST_HEAD(&info->userptr_valid_list); 1334 INIT_LIST_HEAD(&info->userptr_inval_list); 1335 1336 info->eviction_fence = 1337 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), 1338 current->mm, 1339 NULL); 1340 if (!info->eviction_fence) { 1341 pr_err("Failed to create eviction fence\n"); 1342 ret = -ENOMEM; 1343 goto create_evict_fence_fail; 1344 } 1345 1346 info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); 1347 INIT_DELAYED_WORK(&info->restore_userptr_work, 1348 amdgpu_amdkfd_restore_userptr_worker); 1349 1350 *process_info = info; 1351 *ef = dma_fence_get(&info->eviction_fence->base); 1352 } 1353 1354 vm->process_info = *process_info; 1355 1356 /* Validate page directory and attach eviction fence */ 1357 ret = amdgpu_bo_reserve(vm->root.bo, true); 1358 if (ret) 1359 goto reserve_pd_fail; 1360 ret = vm_validate_pt_pd_bos(vm); 1361 if (ret) { 1362 pr_err("validate_pt_pd_bos() failed\n"); 1363 goto validate_pd_fail; 1364 } 1365 ret = amdgpu_bo_sync_wait(vm->root.bo, 1366 AMDGPU_FENCE_OWNER_KFD, false); 1367 if (ret) 1368 goto wait_pd_fail; 1369 ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); 1370 if (ret) 1371 goto reserve_shared_fail; 1372 dma_resv_add_fence(vm->root.bo->tbo.base.resv, 1373 &vm->process_info->eviction_fence->base, 1374 DMA_RESV_USAGE_BOOKKEEP); 1375 amdgpu_bo_unreserve(vm->root.bo); 1376 1377 /* Update process info */ 1378 mutex_lock(&vm->process_info->lock); 1379 list_add_tail(&vm->vm_list_node, 1380 &(vm->process_info->vm_list_head)); 1381 vm->process_info->n_vms++; 1382 mutex_unlock(&vm->process_info->lock); 1383 1384 return 0; 1385 1386 reserve_shared_fail: 1387 wait_pd_fail: 1388 validate_pd_fail: 1389 amdgpu_bo_unreserve(vm->root.bo); 1390 reserve_pd_fail: 1391 vm->process_info = NULL; 1392 if (info) { 1393 /* Two fence references: one in info and one in *ef */ 1394 dma_fence_put(&info->eviction_fence->base); 1395 dma_fence_put(*ef); 1396 *ef = NULL; 1397 *process_info = NULL; 1398 put_pid(info->pid); 1399 create_evict_fence_fail: 1400 mutex_destroy(&info->lock); 1401 mutex_destroy(&info->notifier_lock); 1402 kfree(info); 1403 } 1404 return ret; 1405 } 1406 1407 /** 1408 * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria 1409 * @bo: Handle of buffer object being pinned 1410 * @domain: Domain into which BO should be pinned 1411 * 1412 * - USERPTR BOs are UNPINNABLE and will return error 1413 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1414 * PIN count incremented. It is valid to PIN a BO multiple times 1415 * 1416 * Return: ZERO if successful in pinning, Non-Zero in case of error. 1417 */ 1418 static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) 1419 { 1420 int ret = 0; 1421 1422 ret = amdgpu_bo_reserve(bo, false); 1423 if (unlikely(ret)) 1424 return ret; 1425 1426 ret = amdgpu_bo_pin_restricted(bo, domain, 0, 0); 1427 if (ret) 1428 pr_err("Error in Pinning BO to domain: %d\n", domain); 1429 1430 amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); 1431 amdgpu_bo_unreserve(bo); 1432 1433 return ret; 1434 } 1435 1436 /** 1437 * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria 1438 * @bo: Handle of buffer object being unpinned 1439 * 1440 * - Is a illegal request for USERPTR BOs and is ignored 1441 * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their 1442 * PIN count decremented. Calls to UNPIN must balance calls to PIN 1443 */ 1444 static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) 1445 { 1446 int ret = 0; 1447 1448 ret = amdgpu_bo_reserve(bo, false); 1449 if (unlikely(ret)) 1450 return; 1451 1452 amdgpu_bo_unpin(bo); 1453 amdgpu_bo_unreserve(bo); 1454 } 1455 1456 int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, 1457 struct amdgpu_vm *avm, u32 pasid) 1458 1459 { 1460 int ret; 1461 1462 /* Free the original amdgpu allocated pasid, 1463 * will be replaced with kfd allocated pasid. 1464 */ 1465 if (avm->pasid) { 1466 amdgpu_pasid_free(avm->pasid); 1467 amdgpu_vm_set_pasid(adev, avm, 0); 1468 } 1469 1470 ret = amdgpu_vm_set_pasid(adev, avm, pasid); 1471 if (ret) 1472 return ret; 1473 1474 return 0; 1475 } 1476 1477 int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, 1478 struct amdgpu_vm *avm, 1479 void **process_info, 1480 struct dma_fence **ef) 1481 { 1482 int ret; 1483 1484 /* Already a compute VM? */ 1485 if (avm->process_info) 1486 return -EINVAL; 1487 1488 /* Convert VM into a compute VM */ 1489 ret = amdgpu_vm_make_compute(adev, avm); 1490 if (ret) 1491 return ret; 1492 1493 /* Initialize KFD part of the VM and process info */ 1494 ret = init_kfd_vm(avm, process_info, ef); 1495 if (ret) 1496 return ret; 1497 1498 amdgpu_vm_set_task_info(avm); 1499 1500 return 0; 1501 } 1502 1503 void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, 1504 struct amdgpu_vm *vm) 1505 { 1506 struct amdkfd_process_info *process_info = vm->process_info; 1507 1508 if (!process_info) 1509 return; 1510 1511 /* Update process info */ 1512 mutex_lock(&process_info->lock); 1513 process_info->n_vms--; 1514 list_del(&vm->vm_list_node); 1515 mutex_unlock(&process_info->lock); 1516 1517 vm->process_info = NULL; 1518 1519 /* Release per-process resources when last compute VM is destroyed */ 1520 if (!process_info->n_vms) { 1521 WARN_ON(!list_empty(&process_info->kfd_bo_list)); 1522 WARN_ON(!list_empty(&process_info->userptr_valid_list)); 1523 WARN_ON(!list_empty(&process_info->userptr_inval_list)); 1524 1525 dma_fence_put(&process_info->eviction_fence->base); 1526 cancel_delayed_work_sync(&process_info->restore_userptr_work); 1527 put_pid(process_info->pid); 1528 mutex_destroy(&process_info->lock); 1529 mutex_destroy(&process_info->notifier_lock); 1530 kfree(process_info); 1531 } 1532 } 1533 1534 void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, 1535 void *drm_priv) 1536 { 1537 struct amdgpu_vm *avm; 1538 1539 if (WARN_ON(!adev || !drm_priv)) 1540 return; 1541 1542 avm = drm_priv_to_vm(drm_priv); 1543 1544 pr_debug("Releasing process vm %p\n", avm); 1545 1546 /* The original pasid of amdgpu vm has already been 1547 * released during making a amdgpu vm to a compute vm 1548 * The current pasid is managed by kfd and will be 1549 * released on kfd process destroy. Set amdgpu pasid 1550 * to 0 to avoid duplicate release. 1551 */ 1552 amdgpu_vm_release_compute(adev, avm); 1553 } 1554 1555 uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) 1556 { 1557 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1558 struct amdgpu_bo *pd = avm->root.bo; 1559 struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); 1560 1561 if (adev->asic_type < CHIP_VEGA10) 1562 return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; 1563 return avm->pd_phys_addr; 1564 } 1565 1566 void amdgpu_amdkfd_block_mmu_notifications(void *p) 1567 { 1568 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1569 1570 mutex_lock(&pinfo->lock); 1571 WRITE_ONCE(pinfo->block_mmu_notifications, true); 1572 mutex_unlock(&pinfo->lock); 1573 } 1574 1575 int amdgpu_amdkfd_criu_resume(void *p) 1576 { 1577 int ret = 0; 1578 struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; 1579 1580 mutex_lock(&pinfo->lock); 1581 pr_debug("scheduling work\n"); 1582 mutex_lock(&pinfo->notifier_lock); 1583 pinfo->evicted_bos++; 1584 mutex_unlock(&pinfo->notifier_lock); 1585 if (!READ_ONCE(pinfo->block_mmu_notifications)) { 1586 ret = -EINVAL; 1587 goto out_unlock; 1588 } 1589 WRITE_ONCE(pinfo->block_mmu_notifications, false); 1590 schedule_delayed_work(&pinfo->restore_userptr_work, 0); 1591 1592 out_unlock: 1593 mutex_unlock(&pinfo->lock); 1594 return ret; 1595 } 1596 1597 size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, 1598 uint8_t xcp_id) 1599 { 1600 uint64_t reserved_for_pt = 1601 ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); 1602 ssize_t available; 1603 uint64_t vram_available, system_mem_available, ttm_mem_available; 1604 1605 spin_lock(&kfd_mem_limit.mem_limit_lock); 1606 vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) 1607 - adev->kfd.vram_used_aligned[xcp_id] 1608 - atomic64_read(&adev->vram_pin_size) 1609 - reserved_for_pt; 1610 1611 if (adev->gmc.is_app_apu) { 1612 system_mem_available = no_system_mem_limit ? 1613 kfd_mem_limit.max_system_mem_limit : 1614 kfd_mem_limit.max_system_mem_limit - 1615 kfd_mem_limit.system_mem_used; 1616 1617 ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - 1618 kfd_mem_limit.ttm_mem_used; 1619 1620 available = min3(system_mem_available, ttm_mem_available, 1621 vram_available); 1622 available = ALIGN_DOWN(available, PAGE_SIZE); 1623 } else { 1624 available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); 1625 } 1626 1627 spin_unlock(&kfd_mem_limit.mem_limit_lock); 1628 1629 if (available < 0) 1630 available = 0; 1631 1632 return available; 1633 } 1634 1635 int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( 1636 struct amdgpu_device *adev, uint64_t va, uint64_t size, 1637 void *drm_priv, struct kgd_mem **mem, 1638 uint64_t *offset, uint32_t flags, bool criu_resume) 1639 { 1640 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1641 struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); 1642 enum ttm_bo_type bo_type = ttm_bo_type_device; 1643 struct sg_table *sg = NULL; 1644 uint64_t user_addr = 0; 1645 struct amdgpu_bo *bo; 1646 struct drm_gem_object *gobj = NULL; 1647 u32 domain, alloc_domain; 1648 uint64_t aligned_size; 1649 int8_t xcp_id = -1; 1650 u64 alloc_flags; 1651 int ret; 1652 1653 /* 1654 * Check on which domain to allocate BO 1655 */ 1656 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { 1657 domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; 1658 1659 if (adev->gmc.is_app_apu) { 1660 domain = AMDGPU_GEM_DOMAIN_GTT; 1661 alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1662 alloc_flags = 0; 1663 } else { 1664 alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; 1665 alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? 1666 AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; 1667 } 1668 xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 1669 0 : fpriv->xcp_id; 1670 } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { 1671 domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; 1672 alloc_flags = 0; 1673 } else { 1674 domain = AMDGPU_GEM_DOMAIN_GTT; 1675 alloc_domain = AMDGPU_GEM_DOMAIN_CPU; 1676 alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; 1677 1678 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { 1679 if (!offset || !*offset) 1680 return -EINVAL; 1681 user_addr = untagged_addr(*offset); 1682 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1683 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1684 bo_type = ttm_bo_type_sg; 1685 if (size > UINT_MAX) 1686 return -EINVAL; 1687 sg = create_sg_table(*offset, size); 1688 if (!sg) 1689 return -ENOMEM; 1690 } else { 1691 return -EINVAL; 1692 } 1693 } 1694 1695 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) 1696 alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; 1697 if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) 1698 alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; 1699 1700 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 1701 if (!*mem) { 1702 ret = -ENOMEM; 1703 goto err; 1704 } 1705 INIT_LIST_HEAD(&(*mem)->attachments); 1706 mutex_init(&(*mem)->lock); 1707 (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); 1708 1709 /* Workaround for AQL queue wraparound bug. Map the same 1710 * memory twice. That means we only actually allocate half 1711 * the memory. 1712 */ 1713 if ((*mem)->aql_queue) 1714 size >>= 1; 1715 aligned_size = PAGE_ALIGN(size); 1716 1717 (*mem)->alloc_flags = flags; 1718 1719 amdgpu_sync_create(&(*mem)->sync); 1720 1721 ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, 1722 xcp_id); 1723 if (ret) { 1724 pr_debug("Insufficient memory\n"); 1725 goto err_reserve_limit; 1726 } 1727 1728 pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", 1729 va, (*mem)->aql_queue ? size << 1 : size, 1730 domain_string(alloc_domain), xcp_id); 1731 1732 ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, 1733 bo_type, NULL, &gobj, xcp_id + 1); 1734 if (ret) { 1735 pr_debug("Failed to create BO on domain %s. ret %d\n", 1736 domain_string(alloc_domain), ret); 1737 goto err_bo_create; 1738 } 1739 ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); 1740 if (ret) { 1741 pr_debug("Failed to allow vma node access. ret %d\n", ret); 1742 goto err_node_allow; 1743 } 1744 bo = gem_to_amdgpu_bo(gobj); 1745 if (bo_type == ttm_bo_type_sg) { 1746 bo->tbo.sg = sg; 1747 bo->tbo.ttm->sg = sg; 1748 } 1749 bo->kfd_bo = *mem; 1750 (*mem)->bo = bo; 1751 if (user_addr) 1752 bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; 1753 1754 (*mem)->va = va; 1755 (*mem)->domain = domain; 1756 (*mem)->mapped_to_gpu_memory = 0; 1757 (*mem)->process_info = avm->process_info; 1758 1759 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); 1760 1761 if (user_addr) { 1762 pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); 1763 ret = init_user_pages(*mem, user_addr, criu_resume); 1764 if (ret) 1765 goto allocate_init_user_pages_failed; 1766 } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1767 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1768 ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); 1769 if (ret) { 1770 pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); 1771 goto err_pin_bo; 1772 } 1773 bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; 1774 bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; 1775 } 1776 1777 if (offset) 1778 *offset = amdgpu_bo_mmap_offset(bo); 1779 1780 return 0; 1781 1782 allocate_init_user_pages_failed: 1783 err_pin_bo: 1784 remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); 1785 drm_vma_node_revoke(&gobj->vma_node, drm_priv); 1786 err_node_allow: 1787 /* Don't unreserve system mem limit twice */ 1788 goto err_reserve_limit; 1789 err_bo_create: 1790 amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); 1791 err_reserve_limit: 1792 amdgpu_sync_free(&(*mem)->sync); 1793 mutex_destroy(&(*mem)->lock); 1794 if (gobj) 1795 drm_gem_object_put(gobj); 1796 else 1797 kfree(*mem); 1798 err: 1799 if (sg) { 1800 sg_free_table(sg); 1801 kfree(sg); 1802 } 1803 return ret; 1804 } 1805 1806 int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( 1807 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, 1808 uint64_t *size) 1809 { 1810 struct amdkfd_process_info *process_info = mem->process_info; 1811 unsigned long bo_size = mem->bo->tbo.base.size; 1812 bool use_release_notifier = (mem->bo->kfd_bo == mem); 1813 struct kfd_mem_attachment *entry, *tmp; 1814 struct bo_vm_reservation_context ctx; 1815 unsigned int mapped_to_gpu_memory; 1816 int ret; 1817 bool is_imported = false; 1818 1819 mutex_lock(&mem->lock); 1820 1821 /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ 1822 if (mem->alloc_flags & 1823 (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | 1824 KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { 1825 amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); 1826 } 1827 1828 mapped_to_gpu_memory = mem->mapped_to_gpu_memory; 1829 is_imported = mem->is_imported; 1830 mutex_unlock(&mem->lock); 1831 /* lock is not needed after this, since mem is unused and will 1832 * be freed anyway 1833 */ 1834 1835 if (mapped_to_gpu_memory > 0) { 1836 pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", 1837 mem->va, bo_size); 1838 return -EBUSY; 1839 } 1840 1841 /* Make sure restore workers don't access the BO any more */ 1842 mutex_lock(&process_info->lock); 1843 list_del(&mem->validate_list); 1844 mutex_unlock(&process_info->lock); 1845 1846 /* Cleanup user pages and MMU notifiers */ 1847 if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { 1848 amdgpu_hmm_unregister(mem->bo); 1849 mutex_lock(&process_info->notifier_lock); 1850 amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); 1851 mutex_unlock(&process_info->notifier_lock); 1852 } 1853 1854 ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); 1855 if (unlikely(ret)) 1856 return ret; 1857 1858 /* The eviction fence should be removed by the last unmap. 1859 * TODO: Log an error condition if the bo still has the eviction fence 1860 * attached 1861 */ 1862 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 1863 process_info->eviction_fence); 1864 pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, 1865 mem->va + bo_size * (1 + mem->aql_queue)); 1866 1867 /* Remove from VM internal data structures */ 1868 list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { 1869 kfd_mem_dmaunmap_attachment(mem, entry); 1870 kfd_mem_detach(entry); 1871 } 1872 1873 ret = unreserve_bo_and_vms(&ctx, false, false); 1874 1875 /* Free the sync object */ 1876 amdgpu_sync_free(&mem->sync); 1877 1878 /* If the SG is not NULL, it's one we created for a doorbell or mmio 1879 * remap BO. We need to free it. 1880 */ 1881 if (mem->bo->tbo.sg) { 1882 sg_free_table(mem->bo->tbo.sg); 1883 kfree(mem->bo->tbo.sg); 1884 } 1885 1886 /* Update the size of the BO being freed if it was allocated from 1887 * VRAM and is not imported. For APP APU VRAM allocations are done 1888 * in GTT domain 1889 */ 1890 if (size) { 1891 if (!is_imported && 1892 (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || 1893 (adev->gmc.is_app_apu && 1894 mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) 1895 *size = bo_size; 1896 else 1897 *size = 0; 1898 } 1899 1900 /* Free the BO*/ 1901 drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); 1902 if (mem->dmabuf) 1903 dma_buf_put(mem->dmabuf); 1904 mutex_destroy(&mem->lock); 1905 1906 /* If this releases the last reference, it will end up calling 1907 * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why 1908 * this needs to be the last call here. 1909 */ 1910 drm_gem_object_put(&mem->bo->tbo.base); 1911 1912 /* 1913 * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), 1914 * explicitly free it here. 1915 */ 1916 if (!use_release_notifier) 1917 kfree(mem); 1918 1919 return ret; 1920 } 1921 1922 int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( 1923 struct amdgpu_device *adev, struct kgd_mem *mem, 1924 void *drm_priv) 1925 { 1926 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 1927 int ret; 1928 struct amdgpu_bo *bo; 1929 uint32_t domain; 1930 struct kfd_mem_attachment *entry; 1931 struct bo_vm_reservation_context ctx; 1932 unsigned long bo_size; 1933 bool is_invalid_userptr = false; 1934 1935 bo = mem->bo; 1936 if (!bo) { 1937 pr_err("Invalid BO when mapping memory to GPU\n"); 1938 return -EINVAL; 1939 } 1940 1941 /* Make sure restore is not running concurrently. Since we 1942 * don't map invalid userptr BOs, we rely on the next restore 1943 * worker to do the mapping 1944 */ 1945 mutex_lock(&mem->process_info->lock); 1946 1947 /* Lock notifier lock. If we find an invalid userptr BO, we can be 1948 * sure that the MMU notifier is no longer running 1949 * concurrently and the queues are actually stopped 1950 */ 1951 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1952 mutex_lock(&mem->process_info->notifier_lock); 1953 is_invalid_userptr = !!mem->invalid; 1954 mutex_unlock(&mem->process_info->notifier_lock); 1955 } 1956 1957 mutex_lock(&mem->lock); 1958 1959 domain = mem->domain; 1960 bo_size = bo->tbo.base.size; 1961 1962 pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", 1963 mem->va, 1964 mem->va + bo_size * (1 + mem->aql_queue), 1965 avm, domain_string(domain)); 1966 1967 if (!kfd_mem_is_attached(avm, mem)) { 1968 ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); 1969 if (ret) 1970 goto out; 1971 } 1972 1973 ret = reserve_bo_and_vm(mem, avm, &ctx); 1974 if (unlikely(ret)) 1975 goto out; 1976 1977 /* Userptr can be marked as "not invalid", but not actually be 1978 * validated yet (still in the system domain). In that case 1979 * the queues are still stopped and we can leave mapping for 1980 * the next restore worker 1981 */ 1982 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && 1983 bo->tbo.resource->mem_type == TTM_PL_SYSTEM) 1984 is_invalid_userptr = true; 1985 1986 ret = vm_validate_pt_pd_bos(avm); 1987 if (unlikely(ret)) 1988 goto out_unreserve; 1989 1990 if (mem->mapped_to_gpu_memory == 0 && 1991 !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 1992 /* Validate BO only once. The eviction fence gets added to BO 1993 * the first time it is mapped. Validate will wait for all 1994 * background evictions to complete. 1995 */ 1996 ret = amdgpu_amdkfd_bo_validate(bo, domain, true); 1997 if (ret) { 1998 pr_debug("Validate failed\n"); 1999 goto out_unreserve; 2000 } 2001 } 2002 2003 list_for_each_entry(entry, &mem->attachments, list) { 2004 if (entry->bo_va->base.vm != avm || entry->is_mapped) 2005 continue; 2006 2007 pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", 2008 entry->va, entry->va + bo_size, entry); 2009 2010 ret = map_bo_to_gpuvm(mem, entry, ctx.sync, 2011 is_invalid_userptr); 2012 if (ret) { 2013 pr_err("Failed to map bo to gpuvm\n"); 2014 goto out_unreserve; 2015 } 2016 2017 ret = vm_update_pds(avm, ctx.sync); 2018 if (ret) { 2019 pr_err("Failed to update page directories\n"); 2020 goto out_unreserve; 2021 } 2022 2023 entry->is_mapped = true; 2024 mem->mapped_to_gpu_memory++; 2025 pr_debug("\t INC mapping count %d\n", 2026 mem->mapped_to_gpu_memory); 2027 } 2028 2029 if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->tbo.pin_count) 2030 dma_resv_add_fence(bo->tbo.base.resv, 2031 &avm->process_info->eviction_fence->base, 2032 DMA_RESV_USAGE_BOOKKEEP); 2033 ret = unreserve_bo_and_vms(&ctx, false, false); 2034 2035 goto out; 2036 2037 out_unreserve: 2038 unreserve_bo_and_vms(&ctx, false, false); 2039 out: 2040 mutex_unlock(&mem->process_info->lock); 2041 mutex_unlock(&mem->lock); 2042 return ret; 2043 } 2044 2045 int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) 2046 { 2047 struct kfd_mem_attachment *entry; 2048 struct amdgpu_vm *vm; 2049 int ret; 2050 2051 vm = drm_priv_to_vm(drm_priv); 2052 2053 mutex_lock(&mem->lock); 2054 2055 ret = amdgpu_bo_reserve(mem->bo, true); 2056 if (ret) 2057 goto out; 2058 2059 list_for_each_entry(entry, &mem->attachments, list) { 2060 if (entry->bo_va->base.vm != vm) 2061 continue; 2062 if (entry->bo_va->base.bo->tbo.ttm && 2063 !entry->bo_va->base.bo->tbo.ttm->sg) 2064 continue; 2065 2066 kfd_mem_dmaunmap_attachment(mem, entry); 2067 } 2068 2069 amdgpu_bo_unreserve(mem->bo); 2070 out: 2071 mutex_unlock(&mem->lock); 2072 2073 return ret; 2074 } 2075 2076 int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( 2077 struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) 2078 { 2079 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2080 struct amdkfd_process_info *process_info = avm->process_info; 2081 unsigned long bo_size = mem->bo->tbo.base.size; 2082 struct kfd_mem_attachment *entry; 2083 struct bo_vm_reservation_context ctx; 2084 int ret; 2085 2086 mutex_lock(&mem->lock); 2087 2088 ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); 2089 if (unlikely(ret)) 2090 goto out; 2091 /* If no VMs were reserved, it means the BO wasn't actually mapped */ 2092 if (ctx.n_vms == 0) { 2093 ret = -EINVAL; 2094 goto unreserve_out; 2095 } 2096 2097 ret = vm_validate_pt_pd_bos(avm); 2098 if (unlikely(ret)) 2099 goto unreserve_out; 2100 2101 pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", 2102 mem->va, 2103 mem->va + bo_size * (1 + mem->aql_queue), 2104 avm); 2105 2106 list_for_each_entry(entry, &mem->attachments, list) { 2107 if (entry->bo_va->base.vm != avm || !entry->is_mapped) 2108 continue; 2109 2110 pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", 2111 entry->va, entry->va + bo_size, entry); 2112 2113 unmap_bo_from_gpuvm(mem, entry, ctx.sync); 2114 entry->is_mapped = false; 2115 2116 mem->mapped_to_gpu_memory--; 2117 pr_debug("\t DEC mapping count %d\n", 2118 mem->mapped_to_gpu_memory); 2119 } 2120 2121 /* If BO is unmapped from all VMs, unfence it. It can be evicted if 2122 * required. 2123 */ 2124 if (mem->mapped_to_gpu_memory == 0 && 2125 !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && 2126 !mem->bo->tbo.pin_count) 2127 amdgpu_amdkfd_remove_eviction_fence(mem->bo, 2128 process_info->eviction_fence); 2129 2130 unreserve_out: 2131 unreserve_bo_and_vms(&ctx, false, false); 2132 out: 2133 mutex_unlock(&mem->lock); 2134 return ret; 2135 } 2136 2137 int amdgpu_amdkfd_gpuvm_sync_memory( 2138 struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) 2139 { 2140 struct amdgpu_sync sync; 2141 int ret; 2142 2143 amdgpu_sync_create(&sync); 2144 2145 mutex_lock(&mem->lock); 2146 amdgpu_sync_clone(&mem->sync, &sync); 2147 mutex_unlock(&mem->lock); 2148 2149 ret = amdgpu_sync_wait(&sync, intr); 2150 amdgpu_sync_free(&sync); 2151 return ret; 2152 } 2153 2154 /** 2155 * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count 2156 * @adev: Device to which allocated BO belongs 2157 * @bo: Buffer object to be mapped 2158 * 2159 * Before return, bo reference count is incremented. To release the reference and unpin/ 2160 * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. 2161 */ 2162 int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_device *adev, struct amdgpu_bo *bo) 2163 { 2164 int ret; 2165 2166 ret = amdgpu_bo_reserve(bo, true); 2167 if (ret) { 2168 pr_err("Failed to reserve bo. ret %d\n", ret); 2169 goto err_reserve_bo_failed; 2170 } 2171 2172 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2173 if (ret) { 2174 pr_err("Failed to pin bo. ret %d\n", ret); 2175 goto err_pin_bo_failed; 2176 } 2177 2178 ret = amdgpu_ttm_alloc_gart(&bo->tbo); 2179 if (ret) { 2180 pr_err("Failed to bind bo to GART. ret %d\n", ret); 2181 goto err_map_bo_gart_failed; 2182 } 2183 2184 amdgpu_amdkfd_remove_eviction_fence( 2185 bo, bo->vm_bo->vm->process_info->eviction_fence); 2186 2187 amdgpu_bo_unreserve(bo); 2188 2189 bo = amdgpu_bo_ref(bo); 2190 2191 return 0; 2192 2193 err_map_bo_gart_failed: 2194 amdgpu_bo_unpin(bo); 2195 err_pin_bo_failed: 2196 amdgpu_bo_unreserve(bo); 2197 err_reserve_bo_failed: 2198 2199 return ret; 2200 } 2201 2202 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access 2203 * 2204 * @mem: Buffer object to be mapped for CPU access 2205 * @kptr[out]: pointer in kernel CPU address space 2206 * @size[out]: size of the buffer 2207 * 2208 * Pins the BO and maps it for kernel CPU access. The eviction fence is removed 2209 * from the BO, since pinned BOs cannot be evicted. The bo must remain on the 2210 * validate_list, so the GPU mapping can be restored after a page table was 2211 * evicted. 2212 * 2213 * Return: 0 on success, error code on failure 2214 */ 2215 int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, 2216 void **kptr, uint64_t *size) 2217 { 2218 int ret; 2219 struct amdgpu_bo *bo = mem->bo; 2220 2221 if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { 2222 pr_err("userptr can't be mapped to kernel\n"); 2223 return -EINVAL; 2224 } 2225 2226 mutex_lock(&mem->process_info->lock); 2227 2228 ret = amdgpu_bo_reserve(bo, true); 2229 if (ret) { 2230 pr_err("Failed to reserve bo. ret %d\n", ret); 2231 goto bo_reserve_failed; 2232 } 2233 2234 ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); 2235 if (ret) { 2236 pr_err("Failed to pin bo. ret %d\n", ret); 2237 goto pin_failed; 2238 } 2239 2240 ret = amdgpu_bo_kmap(bo, kptr); 2241 if (ret) { 2242 pr_err("Failed to map bo to kernel. ret %d\n", ret); 2243 goto kmap_failed; 2244 } 2245 2246 amdgpu_amdkfd_remove_eviction_fence( 2247 bo, mem->process_info->eviction_fence); 2248 2249 if (size) 2250 *size = amdgpu_bo_size(bo); 2251 2252 amdgpu_bo_unreserve(bo); 2253 2254 mutex_unlock(&mem->process_info->lock); 2255 return 0; 2256 2257 kmap_failed: 2258 amdgpu_bo_unpin(bo); 2259 pin_failed: 2260 amdgpu_bo_unreserve(bo); 2261 bo_reserve_failed: 2262 mutex_unlock(&mem->process_info->lock); 2263 2264 return ret; 2265 } 2266 2267 /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access 2268 * 2269 * @mem: Buffer object to be unmapped for CPU access 2270 * 2271 * Removes the kernel CPU mapping and unpins the BO. It does not restore the 2272 * eviction fence, so this function should only be used for cleanup before the 2273 * BO is destroyed. 2274 */ 2275 void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) 2276 { 2277 struct amdgpu_bo *bo = mem->bo; 2278 2279 amdgpu_bo_reserve(bo, true); 2280 amdgpu_bo_kunmap(bo); 2281 amdgpu_bo_unpin(bo); 2282 amdgpu_bo_unreserve(bo); 2283 } 2284 2285 int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, 2286 struct kfd_vm_fault_info *mem) 2287 { 2288 if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { 2289 *mem = *adev->gmc.vm_fault_info; 2290 mb(); /* make sure read happened */ 2291 atomic_set(&adev->gmc.vm_fault_info_updated, 0); 2292 } 2293 return 0; 2294 } 2295 2296 int amdgpu_amdkfd_gpuvm_import_dmabuf(struct amdgpu_device *adev, 2297 struct dma_buf *dma_buf, 2298 uint64_t va, void *drm_priv, 2299 struct kgd_mem **mem, uint64_t *size, 2300 uint64_t *mmap_offset) 2301 { 2302 struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); 2303 struct drm_gem_object *obj; 2304 struct amdgpu_bo *bo; 2305 int ret; 2306 2307 obj = amdgpu_gem_prime_import(adev_to_drm(adev), dma_buf); 2308 if (IS_ERR(obj)) 2309 return PTR_ERR(obj); 2310 2311 bo = gem_to_amdgpu_bo(obj); 2312 if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | 2313 AMDGPU_GEM_DOMAIN_GTT))) { 2314 /* Only VRAM and GTT BOs are supported */ 2315 ret = -EINVAL; 2316 goto err_put_obj; 2317 } 2318 2319 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2320 if (!*mem) { 2321 ret = -ENOMEM; 2322 goto err_put_obj; 2323 } 2324 2325 ret = drm_vma_node_allow(&obj->vma_node, drm_priv); 2326 if (ret) 2327 goto err_free_mem; 2328 2329 if (size) 2330 *size = amdgpu_bo_size(bo); 2331 2332 if (mmap_offset) 2333 *mmap_offset = amdgpu_bo_mmap_offset(bo); 2334 2335 INIT_LIST_HEAD(&(*mem)->attachments); 2336 mutex_init(&(*mem)->lock); 2337 2338 (*mem)->alloc_flags = 2339 ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? 2340 KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) 2341 | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE 2342 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; 2343 2344 get_dma_buf(dma_buf); 2345 (*mem)->dmabuf = dma_buf; 2346 (*mem)->bo = bo; 2347 (*mem)->va = va; 2348 (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !adev->gmc.is_app_apu ? 2349 AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; 2350 2351 (*mem)->mapped_to_gpu_memory = 0; 2352 (*mem)->process_info = avm->process_info; 2353 add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); 2354 amdgpu_sync_create(&(*mem)->sync); 2355 (*mem)->is_imported = true; 2356 2357 return 0; 2358 2359 err_free_mem: 2360 kfree(*mem); 2361 err_put_obj: 2362 drm_gem_object_put(obj); 2363 return ret; 2364 } 2365 2366 int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, 2367 struct dma_buf **dma_buf) 2368 { 2369 int ret; 2370 2371 mutex_lock(&mem->lock); 2372 ret = kfd_mem_export_dmabuf(mem); 2373 if (ret) 2374 goto out; 2375 2376 get_dma_buf(mem->dmabuf); 2377 *dma_buf = mem->dmabuf; 2378 out: 2379 mutex_unlock(&mem->lock); 2380 return ret; 2381 } 2382 2383 /* Evict a userptr BO by stopping the queues if necessary 2384 * 2385 * Runs in MMU notifier, may be in RECLAIM_FS context. This means it 2386 * cannot do any memory allocations, and cannot take any locks that 2387 * are held elsewhere while allocating memory. 2388 * 2389 * It doesn't do anything to the BO itself. The real work happens in 2390 * restore, where we get updated page addresses. This function only 2391 * ensures that GPU access to the BO is stopped. 2392 */ 2393 int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, 2394 unsigned long cur_seq, struct kgd_mem *mem) 2395 { 2396 struct amdkfd_process_info *process_info = mem->process_info; 2397 int r = 0; 2398 2399 /* Do not process MMU notifications during CRIU restore until 2400 * KFD_CRIU_OP_RESUME IOCTL is received 2401 */ 2402 if (READ_ONCE(process_info->block_mmu_notifications)) 2403 return 0; 2404 2405 mutex_lock(&process_info->notifier_lock); 2406 mmu_interval_set_seq(mni, cur_seq); 2407 2408 mem->invalid++; 2409 if (++process_info->evicted_bos == 1) { 2410 /* First eviction, stop the queues */ 2411 r = kgd2kfd_quiesce_mm(mni->mm, 2412 KFD_QUEUE_EVICTION_TRIGGER_USERPTR); 2413 if (r) 2414 pr_err("Failed to quiesce KFD\n"); 2415 schedule_delayed_work(&process_info->restore_userptr_work, 2416 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2417 } 2418 mutex_unlock(&process_info->notifier_lock); 2419 2420 return r; 2421 } 2422 2423 /* Update invalid userptr BOs 2424 * 2425 * Moves invalidated (evicted) userptr BOs from userptr_valid_list to 2426 * userptr_inval_list and updates user pages for all BOs that have 2427 * been invalidated since their last update. 2428 */ 2429 static int update_invalid_user_pages(struct amdkfd_process_info *process_info, 2430 struct mm_struct *mm) 2431 { 2432 struct kgd_mem *mem, *tmp_mem; 2433 struct amdgpu_bo *bo; 2434 struct ttm_operation_ctx ctx = { false, false }; 2435 uint32_t invalid; 2436 int ret = 0; 2437 2438 mutex_lock(&process_info->notifier_lock); 2439 2440 /* Move all invalidated BOs to the userptr_inval_list */ 2441 list_for_each_entry_safe(mem, tmp_mem, 2442 &process_info->userptr_valid_list, 2443 validate_list) 2444 if (mem->invalid) 2445 list_move_tail(&mem->validate_list, 2446 &process_info->userptr_inval_list); 2447 2448 /* Go through userptr_inval_list and update any invalid user_pages */ 2449 list_for_each_entry(mem, &process_info->userptr_inval_list, 2450 validate_list) { 2451 invalid = mem->invalid; 2452 if (!invalid) 2453 /* BO hasn't been invalidated since the last 2454 * revalidation attempt. Keep its page list. 2455 */ 2456 continue; 2457 2458 bo = mem->bo; 2459 2460 amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); 2461 mem->range = NULL; 2462 2463 /* BO reservations and getting user pages (hmm_range_fault) 2464 * must happen outside the notifier lock 2465 */ 2466 mutex_unlock(&process_info->notifier_lock); 2467 2468 /* Move the BO to system (CPU) domain if necessary to unmap 2469 * and free the SG table 2470 */ 2471 if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { 2472 if (amdgpu_bo_reserve(bo, true)) 2473 return -EAGAIN; 2474 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); 2475 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2476 amdgpu_bo_unreserve(bo); 2477 if (ret) { 2478 pr_err("%s: Failed to invalidate userptr BO\n", 2479 __func__); 2480 return -EAGAIN; 2481 } 2482 } 2483 2484 /* Get updated user pages */ 2485 ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, 2486 &mem->range); 2487 if (ret) { 2488 pr_debug("Failed %d to get user pages\n", ret); 2489 2490 /* Return -EFAULT bad address error as success. It will 2491 * fail later with a VM fault if the GPU tries to access 2492 * it. Better than hanging indefinitely with stalled 2493 * user mode queues. 2494 * 2495 * Return other error -EBUSY or -ENOMEM to retry restore 2496 */ 2497 if (ret != -EFAULT) 2498 return ret; 2499 2500 ret = 0; 2501 } 2502 2503 mutex_lock(&process_info->notifier_lock); 2504 2505 /* Mark the BO as valid unless it was invalidated 2506 * again concurrently. 2507 */ 2508 if (mem->invalid != invalid) { 2509 ret = -EAGAIN; 2510 goto unlock_out; 2511 } 2512 /* set mem valid if mem has hmm range associated */ 2513 if (mem->range) 2514 mem->invalid = 0; 2515 } 2516 2517 unlock_out: 2518 mutex_unlock(&process_info->notifier_lock); 2519 2520 return ret; 2521 } 2522 2523 /* Validate invalid userptr BOs 2524 * 2525 * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables 2526 * with new page addresses and waits for the page table updates to complete. 2527 */ 2528 static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) 2529 { 2530 struct ttm_operation_ctx ctx = { false, false }; 2531 struct amdgpu_sync sync; 2532 struct drm_exec exec; 2533 2534 struct amdgpu_vm *peer_vm; 2535 struct kgd_mem *mem, *tmp_mem; 2536 struct amdgpu_bo *bo; 2537 int ret; 2538 2539 amdgpu_sync_create(&sync); 2540 2541 drm_exec_init(&exec, 0); 2542 /* Reserve all BOs and page tables for validation */ 2543 drm_exec_until_all_locked(&exec) { 2544 /* Reserve all the page directories */ 2545 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2546 vm_list_node) { 2547 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2548 drm_exec_retry_on_contention(&exec); 2549 if (unlikely(ret)) 2550 goto unreserve_out; 2551 } 2552 2553 /* Reserve the userptr_inval_list entries to resv_list */ 2554 list_for_each_entry(mem, &process_info->userptr_inval_list, 2555 validate_list) { 2556 struct drm_gem_object *gobj; 2557 2558 gobj = &mem->bo->tbo.base; 2559 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2560 drm_exec_retry_on_contention(&exec); 2561 if (unlikely(ret)) 2562 goto unreserve_out; 2563 } 2564 } 2565 2566 ret = process_validate_vms(process_info); 2567 if (ret) 2568 goto unreserve_out; 2569 2570 /* Validate BOs and update GPUVM page tables */ 2571 list_for_each_entry_safe(mem, tmp_mem, 2572 &process_info->userptr_inval_list, 2573 validate_list) { 2574 struct kfd_mem_attachment *attachment; 2575 2576 bo = mem->bo; 2577 2578 /* Validate the BO if we got user pages */ 2579 if (bo->tbo.ttm->pages[0]) { 2580 amdgpu_bo_placement_from_domain(bo, mem->domain); 2581 ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 2582 if (ret) { 2583 pr_err("%s: failed to validate BO\n", __func__); 2584 goto unreserve_out; 2585 } 2586 } 2587 2588 /* Update mapping. If the BO was not validated 2589 * (because we couldn't get user pages), this will 2590 * clear the page table entries, which will result in 2591 * VM faults if the GPU tries to access the invalid 2592 * memory. 2593 */ 2594 list_for_each_entry(attachment, &mem->attachments, list) { 2595 if (!attachment->is_mapped) 2596 continue; 2597 2598 kfd_mem_dmaunmap_attachment(mem, attachment); 2599 ret = update_gpuvm_pte(mem, attachment, &sync); 2600 if (ret) { 2601 pr_err("%s: update PTE failed\n", __func__); 2602 /* make sure this gets validated again */ 2603 mutex_lock(&process_info->notifier_lock); 2604 mem->invalid++; 2605 mutex_unlock(&process_info->notifier_lock); 2606 goto unreserve_out; 2607 } 2608 } 2609 } 2610 2611 /* Update page directories */ 2612 ret = process_update_pds(process_info, &sync); 2613 2614 unreserve_out: 2615 drm_exec_fini(&exec); 2616 amdgpu_sync_wait(&sync, false); 2617 amdgpu_sync_free(&sync); 2618 2619 return ret; 2620 } 2621 2622 /* Confirm that all user pages are valid while holding the notifier lock 2623 * 2624 * Moves valid BOs from the userptr_inval_list back to userptr_val_list. 2625 */ 2626 static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) 2627 { 2628 struct kgd_mem *mem, *tmp_mem; 2629 int ret = 0; 2630 2631 list_for_each_entry_safe(mem, tmp_mem, 2632 &process_info->userptr_inval_list, 2633 validate_list) { 2634 bool valid; 2635 2636 /* keep mem without hmm range at userptr_inval_list */ 2637 if (!mem->range) 2638 continue; 2639 2640 /* Only check mem with hmm range associated */ 2641 valid = amdgpu_ttm_tt_get_user_pages_done( 2642 mem->bo->tbo.ttm, mem->range); 2643 2644 mem->range = NULL; 2645 if (!valid) { 2646 WARN(!mem->invalid, "Invalid BO not marked invalid"); 2647 ret = -EAGAIN; 2648 continue; 2649 } 2650 2651 if (mem->invalid) { 2652 WARN(1, "Valid BO is marked invalid"); 2653 ret = -EAGAIN; 2654 continue; 2655 } 2656 2657 list_move_tail(&mem->validate_list, 2658 &process_info->userptr_valid_list); 2659 } 2660 2661 return ret; 2662 } 2663 2664 /* Worker callback to restore evicted userptr BOs 2665 * 2666 * Tries to update and validate all userptr BOs. If successful and no 2667 * concurrent evictions happened, the queues are restarted. Otherwise, 2668 * reschedule for another attempt later. 2669 */ 2670 static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) 2671 { 2672 struct delayed_work *dwork = to_delayed_work(work); 2673 struct amdkfd_process_info *process_info = 2674 container_of(dwork, struct amdkfd_process_info, 2675 restore_userptr_work); 2676 struct task_struct *usertask; 2677 struct mm_struct *mm; 2678 uint32_t evicted_bos; 2679 2680 mutex_lock(&process_info->notifier_lock); 2681 evicted_bos = process_info->evicted_bos; 2682 mutex_unlock(&process_info->notifier_lock); 2683 if (!evicted_bos) 2684 return; 2685 2686 /* Reference task and mm in case of concurrent process termination */ 2687 usertask = get_pid_task(process_info->pid, PIDTYPE_PID); 2688 if (!usertask) 2689 return; 2690 mm = get_task_mm(usertask); 2691 if (!mm) { 2692 put_task_struct(usertask); 2693 return; 2694 } 2695 2696 mutex_lock(&process_info->lock); 2697 2698 if (update_invalid_user_pages(process_info, mm)) 2699 goto unlock_out; 2700 /* userptr_inval_list can be empty if all evicted userptr BOs 2701 * have been freed. In that case there is nothing to validate 2702 * and we can just restart the queues. 2703 */ 2704 if (!list_empty(&process_info->userptr_inval_list)) { 2705 if (validate_invalid_user_pages(process_info)) 2706 goto unlock_out; 2707 } 2708 /* Final check for concurrent evicton and atomic update. If 2709 * another eviction happens after successful update, it will 2710 * be a first eviction that calls quiesce_mm. The eviction 2711 * reference counting inside KFD will handle this case. 2712 */ 2713 mutex_lock(&process_info->notifier_lock); 2714 if (process_info->evicted_bos != evicted_bos) 2715 goto unlock_notifier_out; 2716 2717 if (confirm_valid_user_pages_locked(process_info)) { 2718 WARN(1, "User pages unexpectedly invalid"); 2719 goto unlock_notifier_out; 2720 } 2721 2722 process_info->evicted_bos = evicted_bos = 0; 2723 2724 if (kgd2kfd_resume_mm(mm)) { 2725 pr_err("%s: Failed to resume KFD\n", __func__); 2726 /* No recovery from this failure. Probably the CP is 2727 * hanging. No point trying again. 2728 */ 2729 } 2730 2731 unlock_notifier_out: 2732 mutex_unlock(&process_info->notifier_lock); 2733 unlock_out: 2734 mutex_unlock(&process_info->lock); 2735 2736 /* If validation failed, reschedule another attempt */ 2737 if (evicted_bos) { 2738 schedule_delayed_work(&process_info->restore_userptr_work, 2739 msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); 2740 2741 kfd_smi_event_queue_restore_rescheduled(mm); 2742 } 2743 mmput(mm); 2744 put_task_struct(usertask); 2745 } 2746 2747 /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given 2748 * KFD process identified by process_info 2749 * 2750 * @process_info: amdkfd_process_info of the KFD process 2751 * 2752 * After memory eviction, restore thread calls this function. The function 2753 * should be called when the Process is still valid. BO restore involves - 2754 * 2755 * 1. Release old eviction fence and create new one 2756 * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. 2757 * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of 2758 * BOs that need to be reserved. 2759 * 4. Reserve all the BOs 2760 * 5. Validate of PD and PT BOs. 2761 * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence 2762 * 7. Add fence to all PD and PT BOs. 2763 * 8. Unreserve all BOs 2764 */ 2765 int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) 2766 { 2767 struct amdkfd_process_info *process_info = info; 2768 struct amdgpu_vm *peer_vm; 2769 struct kgd_mem *mem; 2770 struct amdgpu_amdkfd_fence *new_fence; 2771 struct list_head duplicate_save; 2772 struct amdgpu_sync sync_obj; 2773 unsigned long failed_size = 0; 2774 unsigned long total_size = 0; 2775 struct drm_exec exec; 2776 int ret; 2777 2778 INIT_LIST_HEAD(&duplicate_save); 2779 2780 mutex_lock(&process_info->lock); 2781 2782 drm_exec_init(&exec, 0); 2783 drm_exec_until_all_locked(&exec) { 2784 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2785 vm_list_node) { 2786 ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); 2787 drm_exec_retry_on_contention(&exec); 2788 if (unlikely(ret)) 2789 goto ttm_reserve_fail; 2790 } 2791 2792 /* Reserve all BOs and page tables/directory. Add all BOs from 2793 * kfd_bo_list to ctx.list 2794 */ 2795 list_for_each_entry(mem, &process_info->kfd_bo_list, 2796 validate_list) { 2797 struct drm_gem_object *gobj; 2798 2799 gobj = &mem->bo->tbo.base; 2800 ret = drm_exec_prepare_obj(&exec, gobj, 1); 2801 drm_exec_retry_on_contention(&exec); 2802 if (unlikely(ret)) 2803 goto ttm_reserve_fail; 2804 } 2805 } 2806 2807 amdgpu_sync_create(&sync_obj); 2808 2809 /* Validate PDs and PTs */ 2810 ret = process_validate_vms(process_info); 2811 if (ret) 2812 goto validate_map_fail; 2813 2814 ret = process_sync_pds_resv(process_info, &sync_obj); 2815 if (ret) { 2816 pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); 2817 goto validate_map_fail; 2818 } 2819 2820 /* Validate BOs and map them to GPUVM (update VM page tables). */ 2821 list_for_each_entry(mem, &process_info->kfd_bo_list, 2822 validate_list) { 2823 2824 struct amdgpu_bo *bo = mem->bo; 2825 uint32_t domain = mem->domain; 2826 struct kfd_mem_attachment *attachment; 2827 struct dma_resv_iter cursor; 2828 struct dma_fence *fence; 2829 2830 total_size += amdgpu_bo_size(bo); 2831 2832 ret = amdgpu_amdkfd_bo_validate(bo, domain, false); 2833 if (ret) { 2834 pr_debug("Memory eviction: Validate BOs failed\n"); 2835 failed_size += amdgpu_bo_size(bo); 2836 ret = amdgpu_amdkfd_bo_validate(bo, 2837 AMDGPU_GEM_DOMAIN_GTT, false); 2838 if (ret) { 2839 pr_debug("Memory eviction: Try again\n"); 2840 goto validate_map_fail; 2841 } 2842 } 2843 dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, 2844 DMA_RESV_USAGE_KERNEL, fence) { 2845 ret = amdgpu_sync_fence(&sync_obj, fence); 2846 if (ret) { 2847 pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); 2848 goto validate_map_fail; 2849 } 2850 } 2851 list_for_each_entry(attachment, &mem->attachments, list) { 2852 if (!attachment->is_mapped) 2853 continue; 2854 2855 kfd_mem_dmaunmap_attachment(mem, attachment); 2856 ret = update_gpuvm_pte(mem, attachment, &sync_obj); 2857 if (ret) { 2858 pr_debug("Memory eviction: update PTE failed. Try again\n"); 2859 goto validate_map_fail; 2860 } 2861 } 2862 } 2863 2864 if (failed_size) 2865 pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); 2866 2867 /* Update page directories */ 2868 ret = process_update_pds(process_info, &sync_obj); 2869 if (ret) { 2870 pr_debug("Memory eviction: update PDs failed. Try again\n"); 2871 goto validate_map_fail; 2872 } 2873 2874 /* Wait for validate and PT updates to finish */ 2875 amdgpu_sync_wait(&sync_obj, false); 2876 2877 /* Release old eviction fence and create new one, because fence only 2878 * goes from unsignaled to signaled, fence cannot be reused. 2879 * Use context and mm from the old fence. 2880 */ 2881 new_fence = amdgpu_amdkfd_fence_create( 2882 process_info->eviction_fence->base.context, 2883 process_info->eviction_fence->mm, 2884 NULL); 2885 if (!new_fence) { 2886 pr_err("Failed to create eviction fence\n"); 2887 ret = -ENOMEM; 2888 goto validate_map_fail; 2889 } 2890 dma_fence_put(&process_info->eviction_fence->base); 2891 process_info->eviction_fence = new_fence; 2892 *ef = dma_fence_get(&new_fence->base); 2893 2894 /* Attach new eviction fence to all BOs except pinned ones */ 2895 list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { 2896 if (mem->bo->tbo.pin_count) 2897 continue; 2898 2899 dma_resv_add_fence(mem->bo->tbo.base.resv, 2900 &process_info->eviction_fence->base, 2901 DMA_RESV_USAGE_BOOKKEEP); 2902 } 2903 /* Attach eviction fence to PD / PT BOs */ 2904 list_for_each_entry(peer_vm, &process_info->vm_list_head, 2905 vm_list_node) { 2906 struct amdgpu_bo *bo = peer_vm->root.bo; 2907 2908 dma_resv_add_fence(bo->tbo.base.resv, 2909 &process_info->eviction_fence->base, 2910 DMA_RESV_USAGE_BOOKKEEP); 2911 } 2912 2913 validate_map_fail: 2914 amdgpu_sync_free(&sync_obj); 2915 ttm_reserve_fail: 2916 drm_exec_fini(&exec); 2917 mutex_unlock(&process_info->lock); 2918 return ret; 2919 } 2920 2921 int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) 2922 { 2923 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2924 struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; 2925 int ret; 2926 2927 if (!info || !gws) 2928 return -EINVAL; 2929 2930 *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); 2931 if (!*mem) 2932 return -ENOMEM; 2933 2934 mutex_init(&(*mem)->lock); 2935 INIT_LIST_HEAD(&(*mem)->attachments); 2936 (*mem)->bo = amdgpu_bo_ref(gws_bo); 2937 (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; 2938 (*mem)->process_info = process_info; 2939 add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); 2940 amdgpu_sync_create(&(*mem)->sync); 2941 2942 2943 /* Validate gws bo the first time it is added to process */ 2944 mutex_lock(&(*mem)->process_info->lock); 2945 ret = amdgpu_bo_reserve(gws_bo, false); 2946 if (unlikely(ret)) { 2947 pr_err("Reserve gws bo failed %d\n", ret); 2948 goto bo_reservation_failure; 2949 } 2950 2951 ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); 2952 if (ret) { 2953 pr_err("GWS BO validate failed %d\n", ret); 2954 goto bo_validation_failure; 2955 } 2956 /* GWS resource is shared b/t amdgpu and amdkfd 2957 * Add process eviction fence to bo so they can 2958 * evict each other. 2959 */ 2960 ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); 2961 if (ret) 2962 goto reserve_shared_fail; 2963 dma_resv_add_fence(gws_bo->tbo.base.resv, 2964 &process_info->eviction_fence->base, 2965 DMA_RESV_USAGE_BOOKKEEP); 2966 amdgpu_bo_unreserve(gws_bo); 2967 mutex_unlock(&(*mem)->process_info->lock); 2968 2969 return ret; 2970 2971 reserve_shared_fail: 2972 bo_validation_failure: 2973 amdgpu_bo_unreserve(gws_bo); 2974 bo_reservation_failure: 2975 mutex_unlock(&(*mem)->process_info->lock); 2976 amdgpu_sync_free(&(*mem)->sync); 2977 remove_kgd_mem_from_kfd_bo_list(*mem, process_info); 2978 amdgpu_bo_unref(&gws_bo); 2979 mutex_destroy(&(*mem)->lock); 2980 kfree(*mem); 2981 *mem = NULL; 2982 return ret; 2983 } 2984 2985 int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) 2986 { 2987 int ret; 2988 struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; 2989 struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; 2990 struct amdgpu_bo *gws_bo = kgd_mem->bo; 2991 2992 /* Remove BO from process's validate list so restore worker won't touch 2993 * it anymore 2994 */ 2995 remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); 2996 2997 ret = amdgpu_bo_reserve(gws_bo, false); 2998 if (unlikely(ret)) { 2999 pr_err("Reserve gws bo failed %d\n", ret); 3000 //TODO add BO back to validate_list? 3001 return ret; 3002 } 3003 amdgpu_amdkfd_remove_eviction_fence(gws_bo, 3004 process_info->eviction_fence); 3005 amdgpu_bo_unreserve(gws_bo); 3006 amdgpu_sync_free(&kgd_mem->sync); 3007 amdgpu_bo_unref(&gws_bo); 3008 mutex_destroy(&kgd_mem->lock); 3009 kfree(mem); 3010 return 0; 3011 } 3012 3013 /* Returns GPU-specific tiling mode information */ 3014 int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, 3015 struct tile_config *config) 3016 { 3017 config->gb_addr_config = adev->gfx.config.gb_addr_config; 3018 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 3019 config->num_tile_configs = 3020 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 3021 config->macro_tile_config_ptr = 3022 adev->gfx.config.macrotile_mode_array; 3023 config->num_macro_tile_configs = 3024 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 3025 3026 /* Those values are not set from GFX9 onwards */ 3027 config->num_banks = adev->gfx.config.num_banks; 3028 config->num_ranks = adev->gfx.config.num_ranks; 3029 3030 return 0; 3031 } 3032 3033 bool amdgpu_amdkfd_bo_mapped_to_dev(struct amdgpu_device *adev, struct kgd_mem *mem) 3034 { 3035 struct kfd_mem_attachment *entry; 3036 3037 list_for_each_entry(entry, &mem->attachments, list) { 3038 if (entry->is_mapped && entry->adev == adev) 3039 return true; 3040 } 3041 return false; 3042 } 3043 3044 #if defined(CONFIG_DEBUG_FS) 3045 3046 int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) 3047 { 3048 3049 spin_lock(&kfd_mem_limit.mem_limit_lock); 3050 seq_printf(m, "System mem used %lldM out of %lluM\n", 3051 (kfd_mem_limit.system_mem_used >> 20), 3052 (kfd_mem_limit.max_system_mem_limit >> 20)); 3053 seq_printf(m, "TTM mem used %lldM out of %lluM\n", 3054 (kfd_mem_limit.ttm_mem_used >> 20), 3055 (kfd_mem_limit.max_ttm_mem_limit >> 20)); 3056 spin_unlock(&kfd_mem_limit.mem_limit_lock); 3057 3058 return 0; 3059 } 3060 3061 #endif 3062