xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v9.c (revision f7eeb00845934851b580b188f079545ab176fa5c)
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES,
46 	SAVE_WAVES
47 };
48 
49 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
50 			uint32_t queue, uint32_t vmid)
51 {
52 	mutex_lock(&adev->srbm_mutex);
53 	soc15_grbm_select(adev, mec, pipe, queue, vmid);
54 }
55 
56 static void unlock_srbm(struct amdgpu_device *adev)
57 {
58 	soc15_grbm_select(adev, 0, 0, 0, 0);
59 	mutex_unlock(&adev->srbm_mutex);
60 }
61 
62 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
63 				uint32_t queue_id)
64 {
65 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
66 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
67 
68 	lock_srbm(adev, mec, pipe, queue_id, 0);
69 }
70 
71 static uint64_t get_queue_mask(struct amdgpu_device *adev,
72 			       uint32_t pipe_id, uint32_t queue_id)
73 {
74 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
75 			queue_id;
76 
77 	return 1ull << bit;
78 }
79 
80 static void release_queue(struct amdgpu_device *adev)
81 {
82 	unlock_srbm(adev);
83 }
84 
85 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
86 					uint32_t sh_mem_config,
87 					uint32_t sh_mem_ape1_base,
88 					uint32_t sh_mem_ape1_limit,
89 					uint32_t sh_mem_bases)
90 {
91 	lock_srbm(adev, 0, 0, 0, vmid);
92 
93 	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
94 	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
95 	/* APE1 no longer exists on GFX9 */
96 
97 	unlock_srbm(adev);
98 }
99 
100 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
101 					unsigned int vmid)
102 {
103 	/*
104 	 * We have to assume that there is no outstanding mapping.
105 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
106 	 * a mapping is in progress or because a mapping finished
107 	 * and the SW cleared it.
108 	 * So the protocol is to always wait & clear.
109 	 */
110 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
111 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
112 
113 	/*
114 	 * need to do this twice, once for gfx and once for mmhub
115 	 * for ATC add 16 to VMID for mmhub, for IH different registers.
116 	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
117 	 */
118 
119 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
120 	       pasid_mapping);
121 
122 	while (!(RREG32(SOC15_REG_OFFSET(
123 				ATHUB, 0,
124 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
125 		 (1U << vmid)))
126 		cpu_relax();
127 
128 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
129 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
130 	       1U << vmid);
131 
132 	/* Mapping vmid to pasid also for IH block */
133 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
134 	       pasid_mapping);
135 
136 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
137 	       pasid_mapping);
138 
139 	while (!(RREG32(SOC15_REG_OFFSET(
140 				ATHUB, 0,
141 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
142 		 (1U << (vmid + 16))))
143 		cpu_relax();
144 
145 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
146 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
147 	       1U << (vmid + 16));
148 
149 	/* Mapping vmid to pasid also for IH block */
150 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
151 	       pasid_mapping);
152 	return 0;
153 }
154 
155 /* TODO - RING0 form of field is obsolete, seems to date back to SI
156  * but still works
157  */
158 
159 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id)
160 {
161 	uint32_t mec;
162 	uint32_t pipe;
163 
164 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
165 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
166 
167 	lock_srbm(adev, mec, pipe, 0, 0);
168 
169 	WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
170 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
171 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
172 
173 	unlock_srbm(adev);
174 
175 	return 0;
176 }
177 
178 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
179 				unsigned int engine_id,
180 				unsigned int queue_id)
181 {
182 	uint32_t sdma_engine_reg_base = 0;
183 	uint32_t sdma_rlc_reg_offset;
184 
185 	switch (engine_id) {
186 	default:
187 		dev_warn(adev->dev,
188 			 "Invalid sdma engine id (%d), using engine id 0\n",
189 			 engine_id);
190 		fallthrough;
191 	case 0:
192 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
193 				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
194 		break;
195 	case 1:
196 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
197 				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
198 		break;
199 	}
200 
201 	sdma_rlc_reg_offset = sdma_engine_reg_base
202 		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
203 
204 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
205 		 queue_id, sdma_rlc_reg_offset);
206 
207 	return sdma_rlc_reg_offset;
208 }
209 
210 static inline struct v9_mqd *get_mqd(void *mqd)
211 {
212 	return (struct v9_mqd *)mqd;
213 }
214 
215 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
216 {
217 	return (struct v9_sdma_mqd *)mqd;
218 }
219 
220 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
221 			uint32_t pipe_id, uint32_t queue_id,
222 			uint32_t __user *wptr, uint32_t wptr_shift,
223 			uint32_t wptr_mask, struct mm_struct *mm)
224 {
225 	struct v9_mqd *m;
226 	uint32_t *mqd_hqd;
227 	uint32_t reg, hqd_base, data;
228 
229 	m = get_mqd(mqd);
230 
231 	acquire_queue(adev, pipe_id, queue_id);
232 
233 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
234 	mqd_hqd = &m->cp_mqd_base_addr_lo;
235 	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
236 
237 	for (reg = hqd_base;
238 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
239 		WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
240 
241 
242 	/* Activate doorbell logic before triggering WPTR poll. */
243 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
244 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
245 	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
246 
247 	if (wptr) {
248 		/* Don't read wptr with get_user because the user
249 		 * context may not be accessible (if this function
250 		 * runs in a work queue). Instead trigger a one-shot
251 		 * polling read from memory in the CP. This assumes
252 		 * that wptr is GPU-accessible in the queue's VMID via
253 		 * ATC or SVM. WPTR==RPTR before starting the poll so
254 		 * the CP starts fetching new commands from the right
255 		 * place.
256 		 *
257 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
258 		 * tricky. Assume that the queue didn't overflow. The
259 		 * number of valid bits in the 32-bit RPTR depends on
260 		 * the queue size. The remaining bits are taken from
261 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
262 		 * queue size.
263 		 */
264 		uint32_t queue_size =
265 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
266 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
267 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
268 
269 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
270 			guessed_wptr += queue_size;
271 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
272 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
273 
274 		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
275 		       lower_32_bits(guessed_wptr));
276 		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
277 		       upper_32_bits(guessed_wptr));
278 		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
279 		       lower_32_bits((uintptr_t)wptr));
280 		WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
281 		       upper_32_bits((uintptr_t)wptr));
282 		WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
283 		       (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
284 	}
285 
286 	/* Start the EOP fetcher */
287 	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
288 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
289 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
290 
291 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
292 	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
293 
294 	release_queue(adev);
295 
296 	return 0;
297 }
298 
299 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
300 			    uint32_t pipe_id, uint32_t queue_id,
301 			    uint32_t doorbell_off)
302 {
303 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
304 	struct v9_mqd *m;
305 	uint32_t mec, pipe;
306 	int r;
307 
308 	m = get_mqd(mqd);
309 
310 	acquire_queue(adev, pipe_id, queue_id);
311 
312 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
313 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
314 
315 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
316 		 mec, pipe, queue_id);
317 
318 	spin_lock(&adev->gfx.kiq.ring_lock);
319 	r = amdgpu_ring_alloc(kiq_ring, 7);
320 	if (r) {
321 		pr_err("Failed to alloc KIQ (%d).\n", r);
322 		goto out_unlock;
323 	}
324 
325 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
326 	amdgpu_ring_write(kiq_ring,
327 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
328 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
329 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
330 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
331 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
332 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
333 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
334 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
335 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
336 	amdgpu_ring_write(kiq_ring,
337 			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
338 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
339 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
340 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
341 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
342 	amdgpu_ring_commit(kiq_ring);
343 
344 out_unlock:
345 	spin_unlock(&adev->gfx.kiq.ring_lock);
346 	release_queue(adev);
347 
348 	return r;
349 }
350 
351 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
352 			uint32_t pipe_id, uint32_t queue_id,
353 			uint32_t (**dump)[2], uint32_t *n_regs)
354 {
355 	uint32_t i = 0, reg;
356 #define HQD_N_REGS 56
357 #define DUMP_REG(addr) do {				\
358 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
359 			break;				\
360 		(*dump)[i][0] = (addr) << 2;		\
361 		(*dump)[i++][1] = RREG32(addr);		\
362 	} while (0)
363 
364 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
365 	if (*dump == NULL)
366 		return -ENOMEM;
367 
368 	acquire_queue(adev, pipe_id, queue_id);
369 
370 	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
371 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
372 		DUMP_REG(reg);
373 
374 	release_queue(adev);
375 
376 	WARN_ON_ONCE(i != HQD_N_REGS);
377 	*n_regs = i;
378 
379 	return 0;
380 }
381 
382 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
383 			     uint32_t __user *wptr, struct mm_struct *mm)
384 {
385 	struct v9_sdma_mqd *m;
386 	uint32_t sdma_rlc_reg_offset;
387 	unsigned long end_jiffies;
388 	uint32_t data;
389 	uint64_t data64;
390 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
391 
392 	m = get_sdma_mqd(mqd);
393 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
394 					    m->sdma_queue_id);
395 
396 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
397 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
398 
399 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
400 	while (true) {
401 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
402 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
403 			break;
404 		if (time_after(jiffies, end_jiffies)) {
405 			pr_err("SDMA RLC not idle in %s\n", __func__);
406 			return -ETIME;
407 		}
408 		usleep_range(500, 1000);
409 	}
410 
411 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
412 	       m->sdmax_rlcx_doorbell_offset);
413 
414 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
415 			     ENABLE, 1);
416 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
417 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
418 				m->sdmax_rlcx_rb_rptr);
419 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
420 				m->sdmax_rlcx_rb_rptr_hi);
421 
422 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
423 	if (read_user_wptr(mm, wptr64, data64)) {
424 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
425 		       lower_32_bits(data64));
426 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
427 		       upper_32_bits(data64));
428 	} else {
429 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
430 		       m->sdmax_rlcx_rb_rptr);
431 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
432 		       m->sdmax_rlcx_rb_rptr_hi);
433 	}
434 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
435 
436 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
437 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
438 			m->sdmax_rlcx_rb_base_hi);
439 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
440 			m->sdmax_rlcx_rb_rptr_addr_lo);
441 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
442 			m->sdmax_rlcx_rb_rptr_addr_hi);
443 
444 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
445 			     RB_ENABLE, 1);
446 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
447 
448 	return 0;
449 }
450 
451 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
452 			     uint32_t engine_id, uint32_t queue_id,
453 			     uint32_t (**dump)[2], uint32_t *n_regs)
454 {
455 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
456 			engine_id, queue_id);
457 	uint32_t i = 0, reg;
458 #undef HQD_N_REGS
459 #define HQD_N_REGS (19+6+7+10)
460 
461 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
462 	if (*dump == NULL)
463 		return -ENOMEM;
464 
465 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
466 		DUMP_REG(sdma_rlc_reg_offset + reg);
467 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
468 		DUMP_REG(sdma_rlc_reg_offset + reg);
469 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
470 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
471 		DUMP_REG(sdma_rlc_reg_offset + reg);
472 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
473 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
474 		DUMP_REG(sdma_rlc_reg_offset + reg);
475 
476 	WARN_ON_ONCE(i != HQD_N_REGS);
477 	*n_regs = i;
478 
479 	return 0;
480 }
481 
482 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
483 				uint64_t queue_address, uint32_t pipe_id,
484 				uint32_t queue_id)
485 {
486 	uint32_t act;
487 	bool retval = false;
488 	uint32_t low, high;
489 
490 	acquire_queue(adev, pipe_id, queue_id);
491 	act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
492 	if (act) {
493 		low = lower_32_bits(queue_address >> 8);
494 		high = upper_32_bits(queue_address >> 8);
495 
496 		if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
497 		   high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
498 			retval = true;
499 	}
500 	release_queue(adev);
501 	return retval;
502 }
503 
504 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
505 {
506 	struct v9_sdma_mqd *m;
507 	uint32_t sdma_rlc_reg_offset;
508 	uint32_t sdma_rlc_rb_cntl;
509 
510 	m = get_sdma_mqd(mqd);
511 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
512 					    m->sdma_queue_id);
513 
514 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
515 
516 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
517 		return true;
518 
519 	return false;
520 }
521 
522 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
523 				enum kfd_preempt_type reset_type,
524 				unsigned int utimeout, uint32_t pipe_id,
525 				uint32_t queue_id)
526 {
527 	enum hqd_dequeue_request_type type;
528 	unsigned long end_jiffies;
529 	uint32_t temp;
530 	struct v9_mqd *m = get_mqd(mqd);
531 
532 	if (amdgpu_in_reset(adev))
533 		return -EIO;
534 
535 	acquire_queue(adev, pipe_id, queue_id);
536 
537 	if (m->cp_hqd_vmid == 0)
538 		WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
539 
540 	switch (reset_type) {
541 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
542 		type = DRAIN_PIPE;
543 		break;
544 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
545 		type = RESET_WAVES;
546 		break;
547 	case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
548 		type = SAVE_WAVES;
549 		break;
550 	default:
551 		type = DRAIN_PIPE;
552 		break;
553 	}
554 
555 	WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
556 
557 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
558 	while (true) {
559 		temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
560 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
561 			break;
562 		if (time_after(jiffies, end_jiffies)) {
563 			pr_err("cp queue preemption time out.\n");
564 			release_queue(adev);
565 			return -ETIME;
566 		}
567 		usleep_range(500, 1000);
568 	}
569 
570 	release_queue(adev);
571 	return 0;
572 }
573 
574 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
575 				unsigned int utimeout)
576 {
577 	struct v9_sdma_mqd *m;
578 	uint32_t sdma_rlc_reg_offset;
579 	uint32_t temp;
580 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
581 
582 	m = get_sdma_mqd(mqd);
583 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
584 					    m->sdma_queue_id);
585 
586 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
587 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
588 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
589 
590 	while (true) {
591 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
592 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
593 			break;
594 		if (time_after(jiffies, end_jiffies)) {
595 			pr_err("SDMA RLC not idle in %s\n", __func__);
596 			return -ETIME;
597 		}
598 		usleep_range(500, 1000);
599 	}
600 
601 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
602 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
603 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
604 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
605 
606 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
607 	m->sdmax_rlcx_rb_rptr_hi =
608 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
609 
610 	return 0;
611 }
612 
613 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
614 					uint8_t vmid, uint16_t *p_pasid)
615 {
616 	uint32_t value;
617 
618 	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
619 		     + vmid);
620 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
621 
622 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
623 }
624 
625 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
626 					uint32_t gfx_index_val,
627 					uint32_t sq_cmd)
628 {
629 	uint32_t data = 0;
630 
631 	mutex_lock(&adev->grbm_idx_mutex);
632 
633 	WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
634 	WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
635 
636 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
637 		INSTANCE_BROADCAST_WRITES, 1);
638 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
639 		SH_BROADCAST_WRITES, 1);
640 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641 		SE_BROADCAST_WRITES, 1);
642 
643 	WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data);
644 	mutex_unlock(&adev->grbm_idx_mutex);
645 
646 	return 0;
647 }
648 
649 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
650 			uint32_t vmid, uint64_t page_table_base)
651 {
652 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
653 		pr_err("trying to set page table base for wrong VMID %u\n",
654 		       vmid);
655 		return;
656 	}
657 
658 	adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
659 
660 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
661 }
662 
663 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
664 {
665 	mutex_lock(&adev->srbm_mutex);
666 	mutex_lock(&adev->grbm_idx_mutex);
667 
668 }
669 
670 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
671 {
672 	mutex_unlock(&adev->grbm_idx_mutex);
673 	mutex_unlock(&adev->srbm_mutex);
674 }
675 
676 /**
677  * get_wave_count: Read device registers to get number of waves in flight for
678  * a particular queue. The method also returns the VMID associated with the
679  * queue.
680  *
681  * @adev: Handle of device whose registers are to be read
682  * @queue_idx: Index of queue in the queue-map bit-field
683  * @wave_cnt: Output parameter updated with number of waves in flight
684  * @vmid: Output parameter updated with VMID of queue whose wave count
685  * is being collected
686  */
687 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
688 		int *wave_cnt, int *vmid)
689 {
690 	int pipe_idx;
691 	int queue_slot;
692 	unsigned int reg_val;
693 
694 	/*
695 	 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
696 	 * parameters to read out waves in flight. Get VMID if there are
697 	 * non-zero waves in flight.
698 	 */
699 	*vmid = 0xFF;
700 	*wave_cnt = 0;
701 	pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
702 	queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
703 	soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0);
704 	reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, 0, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
705 			 queue_slot);
706 	*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
707 	if (*wave_cnt != 0)
708 		*vmid = (RREG32_SOC15(GC, 0, mmCP_HQD_VMID) &
709 			 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
710 }
711 
712 /**
713  * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
714  * shader engine and aggregates the number of waves that are in flight for the
715  * process whose pasid is provided as a parameter. The process could have ZERO
716  * or more queues running and submitting waves to compute units.
717  *
718  * @adev: Handle of device from which to get number of waves in flight
719  * @pasid: Identifies the process for which this query call is invoked
720  * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
721  * belong to process with given pasid
722  * @max_waves_per_cu: Output parameter updated with maximum number of waves
723  * possible per Compute Unit
724  *
725  * Note: It's possible that the device has too many queues (oversubscription)
726  * in which case a VMID could be remapped to a different PASID. This could lead
727  * to an inaccurate wave count. Following is a high-level sequence:
728  *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
729  *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
730  * In the sequence above wave count obtained from time T1 will be incorrectly
731  * lost or added to total wave count.
732  *
733  * The registers that provide the waves in flight are:
734  *
735  *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
736  *  queue is slotted, OFF if there is no queue. A process could have ZERO or
737  *  more queues slotted and submitting waves to be run on compute units. Even
738  *  when there is a queue it is possible there could be zero wave fronts, this
739  *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
740  *  command
741  *
742  *  For each bit that is ON from above:
743  *
744  *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
745  *    number of waves that are in flight for the queue at specified index. The
746  *    index ranges from 0 to 7.
747  *
748  *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
749  *    of the wave(s).
750  *
751  *    Determine if VMID from above step maps to pasid provided as parameter. If
752  *    it matches agrregate the wave count. That the VMID will not match pasid is
753  *    a normal condition i.e. a device is expected to support multiple queues
754  *    from multiple proceses.
755  *
756  *  Reading registers referenced above involves programming GRBM appropriately
757  */
758 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
759 		int *pasid_wave_cnt, int *max_waves_per_cu)
760 {
761 	int qidx;
762 	int vmid;
763 	int se_idx;
764 	int sh_idx;
765 	int se_cnt;
766 	int sh_cnt;
767 	int wave_cnt;
768 	int queue_map;
769 	int pasid_tmp;
770 	int max_queue_cnt;
771 	int vmid_wave_cnt = 0;
772 	DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
773 
774 	lock_spi_csq_mutexes(adev);
775 	soc15_grbm_select(adev, 1, 0, 0, 0);
776 
777 	/*
778 	 * Iterate through the shader engines and arrays of the device
779 	 * to get number of waves in flight
780 	 */
781 	bitmap_complement(cp_queue_bitmap, adev->gfx.mec.queue_bitmap,
782 			  KGD_MAX_QUEUES);
783 	max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
784 			adev->gfx.mec.num_queue_per_pipe;
785 	sh_cnt = adev->gfx.config.max_sh_per_se;
786 	se_cnt = adev->gfx.config.max_shader_engines;
787 	for (se_idx = 0; se_idx < se_cnt; se_idx++) {
788 		for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
789 
790 			gfx_v9_0_select_se_sh(adev, se_idx, sh_idx, 0xffffffff);
791 			queue_map = RREG32_SOC15(GC, 0, mmSPI_CSQ_WF_ACTIVE_STATUS);
792 
793 			/*
794 			 * Assumption: queue map encodes following schema: four
795 			 * pipes per each micro-engine, with each pipe mapping
796 			 * eight queues. This schema is true for GFX9 devices
797 			 * and must be verified for newer device families
798 			 */
799 			for (qidx = 0; qidx < max_queue_cnt; qidx++) {
800 
801 				/* Skip qeueus that are not associated with
802 				 * compute functions
803 				 */
804 				if (!test_bit(qidx, cp_queue_bitmap))
805 					continue;
806 
807 				if (!(queue_map & (1 << qidx)))
808 					continue;
809 
810 				/* Get number of waves in flight and aggregate them */
811 				get_wave_count(adev, qidx, &wave_cnt, &vmid);
812 				if (wave_cnt != 0) {
813 					pasid_tmp =
814 					  RREG32(SOC15_REG_OFFSET(OSSSYS, 0,
815 						 mmIH_VMID_0_LUT) + vmid);
816 					if (pasid_tmp == pasid)
817 						vmid_wave_cnt += wave_cnt;
818 				}
819 			}
820 		}
821 	}
822 
823 	gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff);
824 	soc15_grbm_select(adev, 0, 0, 0, 0);
825 	unlock_spi_csq_mutexes(adev);
826 
827 	/* Update the output parameters and return */
828 	*pasid_wave_cnt = vmid_wave_cnt;
829 	*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
830 				adev->gfx.cu_info.max_waves_per_simd;
831 }
832 
833 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
834                         uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr)
835 {
836 	lock_srbm(adev, 0, 0, 0, vmid);
837 
838 	/*
839 	 * Program TBA registers
840 	 */
841 	WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_LO,
842                         lower_32_bits(tba_addr >> 8));
843 	WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_HI,
844                         upper_32_bits(tba_addr >> 8));
845 
846 	/*
847 	 * Program TMA registers
848 	 */
849 	WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_LO,
850 			lower_32_bits(tma_addr >> 8));
851 	WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_HI,
852 			upper_32_bits(tma_addr >> 8));
853 
854 	unlock_srbm(adev);
855 }
856 
857 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
858 	.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
859 	.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
860 	.init_interrupts = kgd_gfx_v9_init_interrupts,
861 	.hqd_load = kgd_gfx_v9_hqd_load,
862 	.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
863 	.hqd_sdma_load = kgd_hqd_sdma_load,
864 	.hqd_dump = kgd_gfx_v9_hqd_dump,
865 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
866 	.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
867 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
868 	.hqd_destroy = kgd_gfx_v9_hqd_destroy,
869 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
870 	.wave_control_execute = kgd_gfx_v9_wave_control_execute,
871 	.get_atc_vmid_pasid_mapping_info =
872 			kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
873 	.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
874 	.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
875 	.program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
876 };
877