1 /* 2 * Copyright 2014-2018 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include "amdgpu.h" 23 #include "amdgpu_amdkfd.h" 24 #include "gc/gc_9_0_offset.h" 25 #include "gc/gc_9_0_sh_mask.h" 26 #include "vega10_enum.h" 27 #include "sdma0/sdma0_4_0_offset.h" 28 #include "sdma0/sdma0_4_0_sh_mask.h" 29 #include "sdma1/sdma1_4_0_offset.h" 30 #include "sdma1/sdma1_4_0_sh_mask.h" 31 #include "athub/athub_1_0_offset.h" 32 #include "athub/athub_1_0_sh_mask.h" 33 #include "oss/osssys_4_0_offset.h" 34 #include "oss/osssys_4_0_sh_mask.h" 35 #include "soc15_common.h" 36 #include "v9_structs.h" 37 #include "soc15.h" 38 #include "soc15d.h" 39 #include "gfx_v9_0.h" 40 #include "amdgpu_amdkfd_gfx_v9.h" 41 42 enum hqd_dequeue_request_type { 43 NO_ACTION = 0, 44 DRAIN_PIPE, 45 RESET_WAVES, 46 SAVE_WAVES 47 }; 48 49 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe, 50 uint32_t queue, uint32_t vmid) 51 { 52 mutex_lock(&adev->srbm_mutex); 53 soc15_grbm_select(adev, mec, pipe, queue, vmid); 54 } 55 56 static void unlock_srbm(struct amdgpu_device *adev) 57 { 58 soc15_grbm_select(adev, 0, 0, 0, 0); 59 mutex_unlock(&adev->srbm_mutex); 60 } 61 62 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id, 63 uint32_t queue_id) 64 { 65 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 66 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 67 68 lock_srbm(adev, mec, pipe, queue_id, 0); 69 } 70 71 static uint64_t get_queue_mask(struct amdgpu_device *adev, 72 uint32_t pipe_id, uint32_t queue_id) 73 { 74 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + 75 queue_id; 76 77 return 1ull << bit; 78 } 79 80 static void release_queue(struct amdgpu_device *adev) 81 { 82 unlock_srbm(adev); 83 } 84 85 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid, 86 uint32_t sh_mem_config, 87 uint32_t sh_mem_ape1_base, 88 uint32_t sh_mem_ape1_limit, 89 uint32_t sh_mem_bases) 90 { 91 lock_srbm(adev, 0, 0, 0, vmid); 92 93 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config); 94 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases); 95 /* APE1 no longer exists on GFX9 */ 96 97 unlock_srbm(adev); 98 } 99 100 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid, 101 unsigned int vmid) 102 { 103 /* 104 * We have to assume that there is no outstanding mapping. 105 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because 106 * a mapping is in progress or because a mapping finished 107 * and the SW cleared it. 108 * So the protocol is to always wait & clear. 109 */ 110 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 111 ATC_VMID0_PASID_MAPPING__VALID_MASK; 112 113 /* 114 * need to do this twice, once for gfx and once for mmhub 115 * for ATC add 16 to VMID for mmhub, for IH different registers. 116 * ATC_VMID0..15 registers are separate from ATC_VMID16..31. 117 */ 118 119 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, 120 pasid_mapping); 121 122 while (!(RREG32(SOC15_REG_OFFSET( 123 ATHUB, 0, 124 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & 125 (1U << vmid))) 126 cpu_relax(); 127 128 WREG32(SOC15_REG_OFFSET(ATHUB, 0, 129 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 130 1U << vmid); 131 132 /* Mapping vmid to pasid also for IH block */ 133 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, 134 pasid_mapping); 135 136 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid, 137 pasid_mapping); 138 139 while (!(RREG32(SOC15_REG_OFFSET( 140 ATHUB, 0, 141 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & 142 (1U << (vmid + 16)))) 143 cpu_relax(); 144 145 WREG32(SOC15_REG_OFFSET(ATHUB, 0, 146 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 147 1U << (vmid + 16)); 148 149 /* Mapping vmid to pasid also for IH block */ 150 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid, 151 pasid_mapping); 152 return 0; 153 } 154 155 /* TODO - RING0 form of field is obsolete, seems to date back to SI 156 * but still works 157 */ 158 159 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id) 160 { 161 uint32_t mec; 162 uint32_t pipe; 163 164 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 165 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 166 167 lock_srbm(adev, mec, pipe, 0, 0); 168 169 WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, 170 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | 171 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); 172 173 unlock_srbm(adev); 174 175 return 0; 176 } 177 178 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, 179 unsigned int engine_id, 180 unsigned int queue_id) 181 { 182 uint32_t sdma_engine_reg_base = 0; 183 uint32_t sdma_rlc_reg_offset; 184 185 switch (engine_id) { 186 default: 187 dev_warn(adev->dev, 188 "Invalid sdma engine id (%d), using engine id 0\n", 189 engine_id); 190 fallthrough; 191 case 0: 192 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0, 193 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL; 194 break; 195 case 1: 196 sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0, 197 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL; 198 break; 199 } 200 201 sdma_rlc_reg_offset = sdma_engine_reg_base 202 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); 203 204 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, 205 queue_id, sdma_rlc_reg_offset); 206 207 return sdma_rlc_reg_offset; 208 } 209 210 static inline struct v9_mqd *get_mqd(void *mqd) 211 { 212 return (struct v9_mqd *)mqd; 213 } 214 215 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd) 216 { 217 return (struct v9_sdma_mqd *)mqd; 218 } 219 220 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd, 221 uint32_t pipe_id, uint32_t queue_id, 222 uint32_t __user *wptr, uint32_t wptr_shift, 223 uint32_t wptr_mask, struct mm_struct *mm) 224 { 225 struct v9_mqd *m; 226 uint32_t *mqd_hqd; 227 uint32_t reg, hqd_base, data; 228 229 m = get_mqd(mqd); 230 231 acquire_queue(adev, pipe_id, queue_id); 232 233 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ 234 mqd_hqd = &m->cp_mqd_base_addr_lo; 235 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 236 237 for (reg = hqd_base; 238 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 239 WREG32_RLC(reg, mqd_hqd[reg - hqd_base]); 240 241 242 /* Activate doorbell logic before triggering WPTR poll. */ 243 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, 244 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); 245 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data); 246 247 if (wptr) { 248 /* Don't read wptr with get_user because the user 249 * context may not be accessible (if this function 250 * runs in a work queue). Instead trigger a one-shot 251 * polling read from memory in the CP. This assumes 252 * that wptr is GPU-accessible in the queue's VMID via 253 * ATC or SVM. WPTR==RPTR before starting the poll so 254 * the CP starts fetching new commands from the right 255 * place. 256 * 257 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit 258 * tricky. Assume that the queue didn't overflow. The 259 * number of valid bits in the 32-bit RPTR depends on 260 * the queue size. The remaining bits are taken from 261 * the saved 64-bit WPTR. If the WPTR wrapped, add the 262 * queue size. 263 */ 264 uint32_t queue_size = 265 2 << REG_GET_FIELD(m->cp_hqd_pq_control, 266 CP_HQD_PQ_CONTROL, QUEUE_SIZE); 267 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); 268 269 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) 270 guessed_wptr += queue_size; 271 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); 272 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; 273 274 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO), 275 lower_32_bits(guessed_wptr)); 276 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI), 277 upper_32_bits(guessed_wptr)); 278 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR), 279 lower_32_bits((uintptr_t)wptr)); 280 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI), 281 upper_32_bits((uintptr_t)wptr)); 282 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1, 283 (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); 284 } 285 286 /* Start the EOP fetcher */ 287 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR), 288 REG_SET_FIELD(m->cp_hqd_eop_rptr, 289 CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); 290 291 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); 292 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data); 293 294 release_queue(adev); 295 296 return 0; 297 } 298 299 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd, 300 uint32_t pipe_id, uint32_t queue_id, 301 uint32_t doorbell_off) 302 { 303 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; 304 struct v9_mqd *m; 305 uint32_t mec, pipe; 306 int r; 307 308 m = get_mqd(mqd); 309 310 acquire_queue(adev, pipe_id, queue_id); 311 312 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 313 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 314 315 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", 316 mec, pipe, queue_id); 317 318 spin_lock(&adev->gfx.kiq.ring_lock); 319 r = amdgpu_ring_alloc(kiq_ring, 7); 320 if (r) { 321 pr_err("Failed to alloc KIQ (%d).\n", r); 322 goto out_unlock; 323 } 324 325 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); 326 amdgpu_ring_write(kiq_ring, 327 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ 328 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ 329 PACKET3_MAP_QUEUES_QUEUE(queue_id) | 330 PACKET3_MAP_QUEUES_PIPE(pipe) | 331 PACKET3_MAP_QUEUES_ME((mec - 1)) | 332 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ 333 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ 334 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ 335 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ 336 amdgpu_ring_write(kiq_ring, 337 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); 338 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); 339 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); 340 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); 341 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); 342 amdgpu_ring_commit(kiq_ring); 343 344 out_unlock: 345 spin_unlock(&adev->gfx.kiq.ring_lock); 346 release_queue(adev); 347 348 return r; 349 } 350 351 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev, 352 uint32_t pipe_id, uint32_t queue_id, 353 uint32_t (**dump)[2], uint32_t *n_regs) 354 { 355 uint32_t i = 0, reg; 356 #define HQD_N_REGS 56 357 #define DUMP_REG(addr) do { \ 358 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ 359 break; \ 360 (*dump)[i][0] = (addr) << 2; \ 361 (*dump)[i++][1] = RREG32(addr); \ 362 } while (0) 363 364 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 365 if (*dump == NULL) 366 return -ENOMEM; 367 368 acquire_queue(adev, pipe_id, queue_id); 369 370 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 371 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 372 DUMP_REG(reg); 373 374 release_queue(adev); 375 376 WARN_ON_ONCE(i != HQD_N_REGS); 377 *n_regs = i; 378 379 return 0; 380 } 381 382 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd, 383 uint32_t __user *wptr, struct mm_struct *mm) 384 { 385 struct v9_sdma_mqd *m; 386 uint32_t sdma_rlc_reg_offset; 387 unsigned long end_jiffies; 388 uint32_t data; 389 uint64_t data64; 390 uint64_t __user *wptr64 = (uint64_t __user *)wptr; 391 392 m = get_sdma_mqd(mqd); 393 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 394 m->sdma_queue_id); 395 396 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 397 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); 398 399 end_jiffies = msecs_to_jiffies(2000) + jiffies; 400 while (true) { 401 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 402 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 403 break; 404 if (time_after(jiffies, end_jiffies)) { 405 pr_err("SDMA RLC not idle in %s\n", __func__); 406 return -ETIME; 407 } 408 usleep_range(500, 1000); 409 } 410 411 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET, 412 m->sdmax_rlcx_doorbell_offset); 413 414 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, 415 ENABLE, 1); 416 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); 417 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, 418 m->sdmax_rlcx_rb_rptr); 419 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI, 420 m->sdmax_rlcx_rb_rptr_hi); 421 422 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); 423 if (read_user_wptr(mm, wptr64, data64)) { 424 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 425 lower_32_bits(data64)); 426 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 427 upper_32_bits(data64)); 428 } else { 429 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 430 m->sdmax_rlcx_rb_rptr); 431 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 432 m->sdmax_rlcx_rb_rptr_hi); 433 } 434 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); 435 436 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); 437 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, 438 m->sdmax_rlcx_rb_base_hi); 439 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 440 m->sdmax_rlcx_rb_rptr_addr_lo); 441 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, 442 m->sdmax_rlcx_rb_rptr_addr_hi); 443 444 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, 445 RB_ENABLE, 1); 446 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); 447 448 return 0; 449 } 450 451 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev, 452 uint32_t engine_id, uint32_t queue_id, 453 uint32_t (**dump)[2], uint32_t *n_regs) 454 { 455 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, 456 engine_id, queue_id); 457 uint32_t i = 0, reg; 458 #undef HQD_N_REGS 459 #define HQD_N_REGS (19+6+7+10) 460 461 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 462 if (*dump == NULL) 463 return -ENOMEM; 464 465 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) 466 DUMP_REG(sdma_rlc_reg_offset + reg); 467 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) 468 DUMP_REG(sdma_rlc_reg_offset + reg); 469 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; 470 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) 471 DUMP_REG(sdma_rlc_reg_offset + reg); 472 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; 473 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) 474 DUMP_REG(sdma_rlc_reg_offset + reg); 475 476 WARN_ON_ONCE(i != HQD_N_REGS); 477 *n_regs = i; 478 479 return 0; 480 } 481 482 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev, 483 uint64_t queue_address, uint32_t pipe_id, 484 uint32_t queue_id) 485 { 486 uint32_t act; 487 bool retval = false; 488 uint32_t low, high; 489 490 acquire_queue(adev, pipe_id, queue_id); 491 act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); 492 if (act) { 493 low = lower_32_bits(queue_address >> 8); 494 high = upper_32_bits(queue_address >> 8); 495 496 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) && 497 high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI)) 498 retval = true; 499 } 500 release_queue(adev); 501 return retval; 502 } 503 504 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd) 505 { 506 struct v9_sdma_mqd *m; 507 uint32_t sdma_rlc_reg_offset; 508 uint32_t sdma_rlc_rb_cntl; 509 510 m = get_sdma_mqd(mqd); 511 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 512 m->sdma_queue_id); 513 514 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 515 516 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) 517 return true; 518 519 return false; 520 } 521 522 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd, 523 enum kfd_preempt_type reset_type, 524 unsigned int utimeout, uint32_t pipe_id, 525 uint32_t queue_id) 526 { 527 enum hqd_dequeue_request_type type; 528 unsigned long end_jiffies; 529 uint32_t temp; 530 struct v9_mqd *m = get_mqd(mqd); 531 532 if (amdgpu_in_reset(adev)) 533 return -EIO; 534 535 acquire_queue(adev, pipe_id, queue_id); 536 537 if (m->cp_hqd_vmid == 0) 538 WREG32_FIELD15_RLC(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0); 539 540 switch (reset_type) { 541 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: 542 type = DRAIN_PIPE; 543 break; 544 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: 545 type = RESET_WAVES; 546 break; 547 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE: 548 type = SAVE_WAVES; 549 break; 550 default: 551 type = DRAIN_PIPE; 552 break; 553 } 554 555 WREG32_RLC(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type); 556 557 end_jiffies = (utimeout * HZ / 1000) + jiffies; 558 while (true) { 559 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE); 560 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) 561 break; 562 if (time_after(jiffies, end_jiffies)) { 563 pr_err("cp queue preemption time out.\n"); 564 release_queue(adev); 565 return -ETIME; 566 } 567 usleep_range(500, 1000); 568 } 569 570 release_queue(adev); 571 return 0; 572 } 573 574 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd, 575 unsigned int utimeout) 576 { 577 struct v9_sdma_mqd *m; 578 uint32_t sdma_rlc_reg_offset; 579 uint32_t temp; 580 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; 581 582 m = get_sdma_mqd(mqd); 583 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 584 m->sdma_queue_id); 585 586 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 587 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; 588 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); 589 590 while (true) { 591 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 592 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 593 break; 594 if (time_after(jiffies, end_jiffies)) { 595 pr_err("SDMA RLC not idle in %s\n", __func__); 596 return -ETIME; 597 } 598 usleep_range(500, 1000); 599 } 600 601 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); 602 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 603 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | 604 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); 605 606 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); 607 m->sdmax_rlcx_rb_rptr_hi = 608 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI); 609 610 return 0; 611 } 612 613 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev, 614 uint8_t vmid, uint16_t *p_pasid) 615 { 616 uint32_t value; 617 618 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) 619 + vmid); 620 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; 621 622 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); 623 } 624 625 int kgd_gfx_v9_address_watch_disable(struct amdgpu_device *adev) 626 { 627 return 0; 628 } 629 630 int kgd_gfx_v9_address_watch_execute(struct amdgpu_device *adev, 631 unsigned int watch_point_id, 632 uint32_t cntl_val, 633 uint32_t addr_hi, 634 uint32_t addr_lo) 635 { 636 return 0; 637 } 638 639 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev, 640 uint32_t gfx_index_val, 641 uint32_t sq_cmd) 642 { 643 uint32_t data = 0; 644 645 mutex_lock(&adev->grbm_idx_mutex); 646 647 WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val); 648 WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd); 649 650 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 651 INSTANCE_BROADCAST_WRITES, 1); 652 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 653 SH_BROADCAST_WRITES, 1); 654 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 655 SE_BROADCAST_WRITES, 1); 656 657 WREG32_SOC15_RLC_SHADOW(GC, 0, mmGRBM_GFX_INDEX, data); 658 mutex_unlock(&adev->grbm_idx_mutex); 659 660 return 0; 661 } 662 663 uint32_t kgd_gfx_v9_address_watch_get_offset(struct amdgpu_device *adev, 664 unsigned int watch_point_id, 665 unsigned int reg_offset) 666 { 667 return 0; 668 } 669 670 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev, 671 uint32_t vmid, uint64_t page_table_base) 672 { 673 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 674 pr_err("trying to set page table base for wrong VMID %u\n", 675 vmid); 676 return; 677 } 678 679 adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); 680 681 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); 682 } 683 684 static void lock_spi_csq_mutexes(struct amdgpu_device *adev) 685 { 686 mutex_lock(&adev->srbm_mutex); 687 mutex_lock(&adev->grbm_idx_mutex); 688 689 } 690 691 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev) 692 { 693 mutex_unlock(&adev->grbm_idx_mutex); 694 mutex_unlock(&adev->srbm_mutex); 695 } 696 697 /** 698 * get_wave_count: Read device registers to get number of waves in flight for 699 * a particular queue. The method also returns the VMID associated with the 700 * queue. 701 * 702 * @adev: Handle of device whose registers are to be read 703 * @queue_idx: Index of queue in the queue-map bit-field 704 * @wave_cnt: Output parameter updated with number of waves in flight 705 * @vmid: Output parameter updated with VMID of queue whose wave count 706 * is being collected 707 */ 708 static void get_wave_count(struct amdgpu_device *adev, int queue_idx, 709 int *wave_cnt, int *vmid) 710 { 711 int pipe_idx; 712 int queue_slot; 713 unsigned int reg_val; 714 715 /* 716 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID 717 * parameters to read out waves in flight. Get VMID if there are 718 * non-zero waves in flight. 719 */ 720 *vmid = 0xFF; 721 *wave_cnt = 0; 722 pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe; 723 queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe; 724 soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0); 725 reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, 0, mmSPI_CSQ_WF_ACTIVE_COUNT_0) + 726 queue_slot); 727 *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK; 728 if (*wave_cnt != 0) 729 *vmid = (RREG32_SOC15(GC, 0, mmCP_HQD_VMID) & 730 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT; 731 } 732 733 /** 734 * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each 735 * shader engine and aggregates the number of waves that are in flight for the 736 * process whose pasid is provided as a parameter. The process could have ZERO 737 * or more queues running and submitting waves to compute units. 738 * 739 * @kgd: Handle of device from which to get number of waves in flight 740 * @pasid: Identifies the process for which this query call is invoked 741 * @pasid_wave_cnt: Output parameter updated with number of waves in flight that 742 * belong to process with given pasid 743 * @max_waves_per_cu: Output parameter updated with maximum number of waves 744 * possible per Compute Unit 745 * 746 * Note: It's possible that the device has too many queues (oversubscription) 747 * in which case a VMID could be remapped to a different PASID. This could lead 748 * to an iaccurate wave count. Following is a high-level sequence: 749 * Time T1: vmid = getVmid(); vmid is associated with Pasid P1 750 * Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2 751 * In the sequence above wave count obtained from time T1 will be incorrectly 752 * lost or added to total wave count. 753 * 754 * The registers that provide the waves in flight are: 755 * 756 * SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a 757 * queue is slotted, OFF if there is no queue. A process could have ZERO or 758 * more queues slotted and submitting waves to be run on compute units. Even 759 * when there is a queue it is possible there could be zero wave fronts, this 760 * can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem 761 * command 762 * 763 * For each bit that is ON from above: 764 * 765 * Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the 766 * number of waves that are in flight for the queue at specified index. The 767 * index ranges from 0 to 7. 768 * 769 * If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID 770 * of the wave(s). 771 * 772 * Determine if VMID from above step maps to pasid provided as parameter. If 773 * it matches agrregate the wave count. That the VMID will not match pasid is 774 * a normal condition i.e. a device is expected to support multiple queues 775 * from multiple proceses. 776 * 777 * Reading registers referenced above involves programming GRBM appropriately 778 */ 779 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid, 780 int *pasid_wave_cnt, int *max_waves_per_cu) 781 { 782 int qidx; 783 int vmid; 784 int se_idx; 785 int sh_idx; 786 int se_cnt; 787 int sh_cnt; 788 int wave_cnt; 789 int queue_map; 790 int pasid_tmp; 791 int max_queue_cnt; 792 int vmid_wave_cnt = 0; 793 DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES); 794 795 lock_spi_csq_mutexes(adev); 796 soc15_grbm_select(adev, 1, 0, 0, 0); 797 798 /* 799 * Iterate through the shader engines and arrays of the device 800 * to get number of waves in flight 801 */ 802 bitmap_complement(cp_queue_bitmap, adev->gfx.mec.queue_bitmap, 803 KGD_MAX_QUEUES); 804 max_queue_cnt = adev->gfx.mec.num_pipe_per_mec * 805 adev->gfx.mec.num_queue_per_pipe; 806 sh_cnt = adev->gfx.config.max_sh_per_se; 807 se_cnt = adev->gfx.config.max_shader_engines; 808 for (se_idx = 0; se_idx < se_cnt; se_idx++) { 809 for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) { 810 811 gfx_v9_0_select_se_sh(adev, se_idx, sh_idx, 0xffffffff); 812 queue_map = RREG32_SOC15(GC, 0, mmSPI_CSQ_WF_ACTIVE_STATUS); 813 814 /* 815 * Assumption: queue map encodes following schema: four 816 * pipes per each micro-engine, with each pipe mapping 817 * eight queues. This schema is true for GFX9 devices 818 * and must be verified for newer device families 819 */ 820 for (qidx = 0; qidx < max_queue_cnt; qidx++) { 821 822 /* Skip qeueus that are not associated with 823 * compute functions 824 */ 825 if (!test_bit(qidx, cp_queue_bitmap)) 826 continue; 827 828 if (!(queue_map & (1 << qidx))) 829 continue; 830 831 /* Get number of waves in flight and aggregate them */ 832 get_wave_count(adev, qidx, &wave_cnt, &vmid); 833 if (wave_cnt != 0) { 834 pasid_tmp = 835 RREG32(SOC15_REG_OFFSET(OSSSYS, 0, 836 mmIH_VMID_0_LUT) + vmid); 837 if (pasid_tmp == pasid) 838 vmid_wave_cnt += wave_cnt; 839 } 840 } 841 } 842 } 843 844 gfx_v9_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); 845 soc15_grbm_select(adev, 0, 0, 0, 0); 846 unlock_spi_csq_mutexes(adev); 847 848 /* Update the output parameters and return */ 849 *pasid_wave_cnt = vmid_wave_cnt; 850 *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu * 851 adev->gfx.cu_info.max_waves_per_simd; 852 } 853 854 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev, 855 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr) 856 { 857 lock_srbm(adev, 0, 0, 0, vmid); 858 859 /* 860 * Program TBA registers 861 */ 862 WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_LO, 863 lower_32_bits(tba_addr >> 8)); 864 WREG32_SOC15(GC, 0, mmSQ_SHADER_TBA_HI, 865 upper_32_bits(tba_addr >> 8)); 866 867 /* 868 * Program TMA registers 869 */ 870 WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_LO, 871 lower_32_bits(tma_addr >> 8)); 872 WREG32_SOC15(GC, 0, mmSQ_SHADER_TMA_HI, 873 upper_32_bits(tma_addr >> 8)); 874 875 unlock_srbm(adev); 876 } 877 878 const struct kfd2kgd_calls gfx_v9_kfd2kgd = { 879 .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings, 880 .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping, 881 .init_interrupts = kgd_gfx_v9_init_interrupts, 882 .hqd_load = kgd_gfx_v9_hqd_load, 883 .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load, 884 .hqd_sdma_load = kgd_hqd_sdma_load, 885 .hqd_dump = kgd_gfx_v9_hqd_dump, 886 .hqd_sdma_dump = kgd_hqd_sdma_dump, 887 .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied, 888 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, 889 .hqd_destroy = kgd_gfx_v9_hqd_destroy, 890 .hqd_sdma_destroy = kgd_hqd_sdma_destroy, 891 .address_watch_disable = kgd_gfx_v9_address_watch_disable, 892 .address_watch_execute = kgd_gfx_v9_address_watch_execute, 893 .wave_control_execute = kgd_gfx_v9_wave_control_execute, 894 .address_watch_get_offset = kgd_gfx_v9_address_watch_get_offset, 895 .get_atc_vmid_pasid_mapping_info = 896 kgd_gfx_v9_get_atc_vmid_pasid_mapping_info, 897 .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base, 898 .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy, 899 .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings, 900 }; 901