xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v9.c (revision 47aab53331effedd3f5a6136854bd1da011f94b6)
1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41 #include <uapi/linux/kfd_ioctl.h>
42 
43 enum hqd_dequeue_request_type {
44 	NO_ACTION = 0,
45 	DRAIN_PIPE,
46 	RESET_WAVES,
47 	SAVE_WAVES
48 };
49 
50 static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
51 			uint32_t queue, uint32_t vmid, uint32_t inst)
52 {
53 	mutex_lock(&adev->srbm_mutex);
54 	soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
55 }
56 
57 static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
58 {
59 	soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
60 	mutex_unlock(&adev->srbm_mutex);
61 }
62 
63 void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
64 				uint32_t queue_id, uint32_t inst)
65 {
66 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
67 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
68 
69 	kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
70 }
71 
72 uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
73 			       uint32_t pipe_id, uint32_t queue_id)
74 {
75 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
76 			queue_id;
77 
78 	return 1ull << bit;
79 }
80 
81 void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
82 {
83 	kgd_gfx_v9_unlock_srbm(adev, inst);
84 }
85 
86 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
87 					uint32_t sh_mem_config,
88 					uint32_t sh_mem_ape1_base,
89 					uint32_t sh_mem_ape1_limit,
90 					uint32_t sh_mem_bases, uint32_t inst)
91 {
92 	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
93 
94 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG), sh_mem_config);
95 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_BASES), sh_mem_bases);
96 	/* APE1 no longer exists on GFX9 */
97 
98 	kgd_gfx_v9_unlock_srbm(adev, inst);
99 }
100 
101 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
102 					unsigned int vmid, uint32_t inst)
103 {
104 	/*
105 	 * We have to assume that there is no outstanding mapping.
106 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
107 	 * a mapping is in progress or because a mapping finished
108 	 * and the SW cleared it.
109 	 * So the protocol is to always wait & clear.
110 	 */
111 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
112 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
113 
114 	/*
115 	 * need to do this twice, once for gfx and once for mmhub
116 	 * for ATC add 16 to VMID for mmhub, for IH different registers.
117 	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
118 	 */
119 
120 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
121 	       pasid_mapping);
122 
123 	while (!(RREG32(SOC15_REG_OFFSET(
124 				ATHUB, 0,
125 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
126 		 (1U << vmid)))
127 		cpu_relax();
128 
129 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
130 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
131 	       1U << vmid);
132 
133 	/* Mapping vmid to pasid also for IH block */
134 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
135 	       pasid_mapping);
136 
137 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
138 	       pasid_mapping);
139 
140 	while (!(RREG32(SOC15_REG_OFFSET(
141 				ATHUB, 0,
142 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
143 		 (1U << (vmid + 16))))
144 		cpu_relax();
145 
146 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
147 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
148 	       1U << (vmid + 16));
149 
150 	/* Mapping vmid to pasid also for IH block */
151 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
152 	       pasid_mapping);
153 	return 0;
154 }
155 
156 /* TODO - RING0 form of field is obsolete, seems to date back to SI
157  * but still works
158  */
159 
160 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
161 				uint32_t inst)
162 {
163 	uint32_t mec;
164 	uint32_t pipe;
165 
166 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
167 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
168 
169 	kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
170 
171 	WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
172 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
173 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
174 
175 	kgd_gfx_v9_unlock_srbm(adev, inst);
176 
177 	return 0;
178 }
179 
180 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
181 				unsigned int engine_id,
182 				unsigned int queue_id)
183 {
184 	uint32_t sdma_engine_reg_base = 0;
185 	uint32_t sdma_rlc_reg_offset;
186 
187 	switch (engine_id) {
188 	default:
189 		dev_warn(adev->dev,
190 			 "Invalid sdma engine id (%d), using engine id 0\n",
191 			 engine_id);
192 		fallthrough;
193 	case 0:
194 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
195 				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
196 		break;
197 	case 1:
198 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
199 				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
200 		break;
201 	}
202 
203 	sdma_rlc_reg_offset = sdma_engine_reg_base
204 		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
205 
206 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
207 		 queue_id, sdma_rlc_reg_offset);
208 
209 	return sdma_rlc_reg_offset;
210 }
211 
212 static inline struct v9_mqd *get_mqd(void *mqd)
213 {
214 	return (struct v9_mqd *)mqd;
215 }
216 
217 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
218 {
219 	return (struct v9_sdma_mqd *)mqd;
220 }
221 
222 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
223 			uint32_t pipe_id, uint32_t queue_id,
224 			uint32_t __user *wptr, uint32_t wptr_shift,
225 			uint32_t wptr_mask, struct mm_struct *mm,
226 			uint32_t inst)
227 {
228 	struct v9_mqd *m;
229 	uint32_t *mqd_hqd;
230 	uint32_t reg, hqd_base, data;
231 
232 	m = get_mqd(mqd);
233 
234 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
235 
236 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
237 	mqd_hqd = &m->cp_mqd_base_addr_lo;
238 	hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
239 
240 	for (reg = hqd_base;
241 	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
242 		WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
243 
244 
245 	/* Activate doorbell logic before triggering WPTR poll. */
246 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
247 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
248 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL),
249 					data);
250 
251 	if (wptr) {
252 		/* Don't read wptr with get_user because the user
253 		 * context may not be accessible (if this function
254 		 * runs in a work queue). Instead trigger a one-shot
255 		 * polling read from memory in the CP. This assumes
256 		 * that wptr is GPU-accessible in the queue's VMID via
257 		 * ATC or SVM. WPTR==RPTR before starting the poll so
258 		 * the CP starts fetching new commands from the right
259 		 * place.
260 		 *
261 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
262 		 * tricky. Assume that the queue didn't overflow. The
263 		 * number of valid bits in the 32-bit RPTR depends on
264 		 * the queue size. The remaining bits are taken from
265 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
266 		 * queue size.
267 		 */
268 		uint32_t queue_size =
269 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
270 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
271 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
272 
273 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
274 			guessed_wptr += queue_size;
275 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
276 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
277 
278 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO),
279 		       lower_32_bits(guessed_wptr));
280 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI),
281 		       upper_32_bits(guessed_wptr));
282 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR),
283 		       lower_32_bits((uintptr_t)wptr));
284 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
285 		       upper_32_bits((uintptr_t)wptr));
286 		WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
287 		       (uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
288 	}
289 
290 	/* Start the EOP fetcher */
291 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR),
292 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
293 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
294 
295 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
296 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE), data);
297 
298 	kgd_gfx_v9_release_queue(adev, inst);
299 
300 	return 0;
301 }
302 
303 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
304 			    uint32_t pipe_id, uint32_t queue_id,
305 			    uint32_t doorbell_off, uint32_t inst)
306 {
307 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
308 	struct v9_mqd *m;
309 	uint32_t mec, pipe;
310 	int r;
311 
312 	m = get_mqd(mqd);
313 
314 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
315 
316 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
317 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
318 
319 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
320 		 mec, pipe, queue_id);
321 
322 	spin_lock(&adev->gfx.kiq[inst].ring_lock);
323 	r = amdgpu_ring_alloc(kiq_ring, 7);
324 	if (r) {
325 		pr_err("Failed to alloc KIQ (%d).\n", r);
326 		goto out_unlock;
327 	}
328 
329 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
330 	amdgpu_ring_write(kiq_ring,
331 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
332 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
333 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
334 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
335 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
336 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
337 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
338 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
339 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
340 	amdgpu_ring_write(kiq_ring,
341 			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
342 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
343 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
344 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
345 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
346 	amdgpu_ring_commit(kiq_ring);
347 
348 out_unlock:
349 	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
350 	kgd_gfx_v9_release_queue(adev, inst);
351 
352 	return r;
353 }
354 
355 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
356 			uint32_t pipe_id, uint32_t queue_id,
357 			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
358 {
359 	uint32_t i = 0, reg;
360 #define HQD_N_REGS 56
361 #define DUMP_REG(addr) do {				\
362 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
363 			break;				\
364 		(*dump)[i][0] = (addr) << 2;		\
365 		(*dump)[i++][1] = RREG32(addr);		\
366 	} while (0)
367 
368 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
369 	if (*dump == NULL)
370 		return -ENOMEM;
371 
372 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
373 
374 	for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
375 	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
376 		DUMP_REG(reg);
377 
378 	kgd_gfx_v9_release_queue(adev, inst);
379 
380 	WARN_ON_ONCE(i != HQD_N_REGS);
381 	*n_regs = i;
382 
383 	return 0;
384 }
385 
386 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
387 			     uint32_t __user *wptr, struct mm_struct *mm)
388 {
389 	struct v9_sdma_mqd *m;
390 	uint32_t sdma_rlc_reg_offset;
391 	unsigned long end_jiffies;
392 	uint32_t data;
393 	uint64_t data64;
394 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
395 
396 	m = get_sdma_mqd(mqd);
397 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
398 					    m->sdma_queue_id);
399 
400 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
401 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
402 
403 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
404 	while (true) {
405 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
406 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
407 			break;
408 		if (time_after(jiffies, end_jiffies)) {
409 			pr_err("SDMA RLC not idle in %s\n", __func__);
410 			return -ETIME;
411 		}
412 		usleep_range(500, 1000);
413 	}
414 
415 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
416 	       m->sdmax_rlcx_doorbell_offset);
417 
418 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
419 			     ENABLE, 1);
420 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
421 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
422 				m->sdmax_rlcx_rb_rptr);
423 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
424 				m->sdmax_rlcx_rb_rptr_hi);
425 
426 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
427 	if (read_user_wptr(mm, wptr64, data64)) {
428 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
429 		       lower_32_bits(data64));
430 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
431 		       upper_32_bits(data64));
432 	} else {
433 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
434 		       m->sdmax_rlcx_rb_rptr);
435 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
436 		       m->sdmax_rlcx_rb_rptr_hi);
437 	}
438 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
439 
440 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
441 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
442 			m->sdmax_rlcx_rb_base_hi);
443 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
444 			m->sdmax_rlcx_rb_rptr_addr_lo);
445 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
446 			m->sdmax_rlcx_rb_rptr_addr_hi);
447 
448 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
449 			     RB_ENABLE, 1);
450 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
451 
452 	return 0;
453 }
454 
455 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
456 			     uint32_t engine_id, uint32_t queue_id,
457 			     uint32_t (**dump)[2], uint32_t *n_regs)
458 {
459 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
460 			engine_id, queue_id);
461 	uint32_t i = 0, reg;
462 #undef HQD_N_REGS
463 #define HQD_N_REGS (19+6+7+10)
464 
465 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
466 	if (*dump == NULL)
467 		return -ENOMEM;
468 
469 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
470 		DUMP_REG(sdma_rlc_reg_offset + reg);
471 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
472 		DUMP_REG(sdma_rlc_reg_offset + reg);
473 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
474 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
475 		DUMP_REG(sdma_rlc_reg_offset + reg);
476 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
477 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
478 		DUMP_REG(sdma_rlc_reg_offset + reg);
479 
480 	WARN_ON_ONCE(i != HQD_N_REGS);
481 	*n_regs = i;
482 
483 	return 0;
484 }
485 
486 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
487 				uint64_t queue_address, uint32_t pipe_id,
488 				uint32_t queue_id, uint32_t inst)
489 {
490 	uint32_t act;
491 	bool retval = false;
492 	uint32_t low, high;
493 
494 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
495 	act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
496 	if (act) {
497 		low = lower_32_bits(queue_address >> 8);
498 		high = upper_32_bits(queue_address >> 8);
499 
500 		if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
501 		   high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
502 			retval = true;
503 	}
504 	kgd_gfx_v9_release_queue(adev, inst);
505 	return retval;
506 }
507 
508 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
509 {
510 	struct v9_sdma_mqd *m;
511 	uint32_t sdma_rlc_reg_offset;
512 	uint32_t sdma_rlc_rb_cntl;
513 
514 	m = get_sdma_mqd(mqd);
515 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
516 					    m->sdma_queue_id);
517 
518 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
519 
520 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
521 		return true;
522 
523 	return false;
524 }
525 
526 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
527 				enum kfd_preempt_type reset_type,
528 				unsigned int utimeout, uint32_t pipe_id,
529 				uint32_t queue_id, uint32_t inst)
530 {
531 	enum hqd_dequeue_request_type type;
532 	unsigned long end_jiffies;
533 	uint32_t temp;
534 	struct v9_mqd *m = get_mqd(mqd);
535 
536 	if (amdgpu_in_reset(adev))
537 		return -EIO;
538 
539 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
540 
541 	if (m->cp_hqd_vmid == 0)
542 		WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
543 
544 	switch (reset_type) {
545 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
546 		type = DRAIN_PIPE;
547 		break;
548 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
549 		type = RESET_WAVES;
550 		break;
551 	case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
552 		type = SAVE_WAVES;
553 		break;
554 	default:
555 		type = DRAIN_PIPE;
556 		break;
557 	}
558 
559 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST), type);
560 
561 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
562 	while (true) {
563 		temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
564 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
565 			break;
566 		if (time_after(jiffies, end_jiffies)) {
567 			pr_err("cp queue preemption time out.\n");
568 			kgd_gfx_v9_release_queue(adev, inst);
569 			return -ETIME;
570 		}
571 		usleep_range(500, 1000);
572 	}
573 
574 	kgd_gfx_v9_release_queue(adev, inst);
575 	return 0;
576 }
577 
578 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
579 				unsigned int utimeout)
580 {
581 	struct v9_sdma_mqd *m;
582 	uint32_t sdma_rlc_reg_offset;
583 	uint32_t temp;
584 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
585 
586 	m = get_sdma_mqd(mqd);
587 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
588 					    m->sdma_queue_id);
589 
590 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
591 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
592 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
593 
594 	while (true) {
595 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
596 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
597 			break;
598 		if (time_after(jiffies, end_jiffies)) {
599 			pr_err("SDMA RLC not idle in %s\n", __func__);
600 			return -ETIME;
601 		}
602 		usleep_range(500, 1000);
603 	}
604 
605 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
606 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
607 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
608 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
609 
610 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
611 	m->sdmax_rlcx_rb_rptr_hi =
612 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
613 
614 	return 0;
615 }
616 
617 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
618 					uint8_t vmid, uint16_t *p_pasid)
619 {
620 	uint32_t value;
621 
622 	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
623 		     + vmid);
624 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
625 
626 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
627 }
628 
629 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
630 					uint32_t gfx_index_val,
631 					uint32_t sq_cmd, uint32_t inst)
632 {
633 	uint32_t data = 0;
634 
635 	mutex_lock(&adev->grbm_idx_mutex);
636 
637 	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
638 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
639 
640 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
641 		INSTANCE_BROADCAST_WRITES, 1);
642 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
643 		SH_BROADCAST_WRITES, 1);
644 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
645 		SE_BROADCAST_WRITES, 1);
646 
647 	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
648 	mutex_unlock(&adev->grbm_idx_mutex);
649 
650 	return 0;
651 }
652 
653 /*
654  * GFX9 helper for wave launch stall requirements on debug trap setting.
655  *
656  * vmid:
657  *   Target VMID to stall/unstall.
658  *
659  * stall:
660  *   0-unstall wave launch (enable), 1-stall wave launch (disable).
661  *   After wavefront launch has been stalled, allocated waves must drain from
662  *   SPI in order for debug trap settings to take effect on those waves.
663  *   This is roughly a ~96 clock cycle wait on SPI where a read on
664  *   SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles.
665  *   KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required.
666  *
667  *   NOTE: We can afford to clear the entire STALL_VMID field on unstall
668  *   because GFX9.4.1 cannot support multi-process debugging due to trap
669  *   configuration and masking being limited to global scope.  Always assume
670  *   single process conditions.
671  */
672 #define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY	3
673 void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev,
674 					uint32_t vmid,
675 					bool stall)
676 {
677 	int i;
678 	uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
679 
680 	if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 1))
681 		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID,
682 							stall ? 1 << vmid : 0);
683 	else
684 		data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA,
685 							stall ? 1 : 0);
686 
687 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data);
688 
689 	if (!stall)
690 		return;
691 
692 	for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++)
693 		RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
694 }
695 
696 /*
697  * restore_dbg_registers is ignored here but is a general interface requirement
698  * for devices that support GFXOFF and where the RLC save/restore list
699  * does not support hw registers for debugging i.e. the driver has to manually
700  * initialize the debug mode registers after it has disabled GFX off during the
701  * debug session.
702  */
703 uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev,
704 				bool restore_dbg_registers,
705 				uint32_t vmid)
706 {
707 	mutex_lock(&adev->grbm_idx_mutex);
708 
709 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
710 
711 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
712 
713 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
714 
715 	mutex_unlock(&adev->grbm_idx_mutex);
716 
717 	return 0;
718 }
719 
720 /*
721  * keep_trap_enabled is ignored here but is a general interface requirement
722  * for devices that support multi-process debugging where the performance
723  * overhead from trap temporary setup needs to be bypassed when the debug
724  * session has ended.
725  */
726 uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev,
727 					bool keep_trap_enabled,
728 					uint32_t vmid)
729 {
730 	mutex_lock(&adev->grbm_idx_mutex);
731 
732 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
733 
734 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0);
735 
736 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
737 
738 	mutex_unlock(&adev->grbm_idx_mutex);
739 
740 	return 0;
741 }
742 
743 int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev,
744 					uint32_t trap_override,
745 					uint32_t *trap_mask_supported)
746 {
747 	*trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH;
748 
749 	/* The SPI_GDBG_TRAP_MASK register is global and affects all
750 	 * processes. Only allow OR-ing the address-watch bit, since
751 	 * this only affects processes under the debugger. Other bits
752 	 * should stay 0 to avoid the debugger interfering with other
753 	 * processes.
754 	 */
755 	if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR)
756 		return -EINVAL;
757 
758 	return 0;
759 }
760 
761 uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev,
762 					     uint32_t vmid,
763 					     uint32_t trap_override,
764 					     uint32_t trap_mask_bits,
765 					     uint32_t trap_mask_request,
766 					     uint32_t *trap_mask_prev,
767 					     uint32_t kfd_dbg_cntl_prev)
768 {
769 	uint32_t data, wave_cntl_prev;
770 
771 	mutex_lock(&adev->grbm_idx_mutex);
772 
773 	wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL));
774 
775 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
776 
777 	data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK));
778 	*trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN);
779 
780 	trap_mask_bits = (trap_mask_bits & trap_mask_request) |
781 		(*trap_mask_prev & ~trap_mask_request);
782 
783 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits);
784 	data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override);
785 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data);
786 
787 	/* We need to preserve wave launch mode stall settings. */
788 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev);
789 
790 	mutex_unlock(&adev->grbm_idx_mutex);
791 
792 	return 0;
793 }
794 
795 uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev,
796 					uint8_t wave_launch_mode,
797 					uint32_t vmid)
798 {
799 	uint32_t data = 0;
800 	bool is_mode_set = !!wave_launch_mode;
801 
802 	mutex_lock(&adev->grbm_idx_mutex);
803 
804 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true);
805 
806 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
807 		VMID_MASK, is_mode_set ? 1 << vmid : 0);
808 	data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2,
809 		MODE, is_mode_set ? wave_launch_mode : 0);
810 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data);
811 
812 	kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false);
813 
814 	mutex_unlock(&adev->grbm_idx_mutex);
815 
816 	return 0;
817 }
818 
819 #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H)
820 uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev,
821 					uint64_t watch_address,
822 					uint32_t watch_address_mask,
823 					uint32_t watch_id,
824 					uint32_t watch_mode,
825 					uint32_t debug_vmid)
826 {
827 	uint32_t watch_address_high;
828 	uint32_t watch_address_low;
829 	uint32_t watch_address_cntl;
830 
831 	watch_address_cntl = 0;
832 
833 	watch_address_low = lower_32_bits(watch_address);
834 	watch_address_high = upper_32_bits(watch_address) & 0xffff;
835 
836 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
837 			TCP_WATCH0_CNTL,
838 			VMID,
839 			debug_vmid);
840 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
841 			TCP_WATCH0_CNTL,
842 			MODE,
843 			watch_mode);
844 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
845 			TCP_WATCH0_CNTL,
846 			MASK,
847 			watch_address_mask >> 6);
848 
849 	/* Turning off this watch point until we set all the registers */
850 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
851 			TCP_WATCH0_CNTL,
852 			VALID,
853 			0);
854 
855 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
856 			(watch_id * TCP_WATCH_STRIDE)),
857 			watch_address_cntl);
858 
859 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) +
860 			(watch_id * TCP_WATCH_STRIDE)),
861 			watch_address_high);
862 
863 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) +
864 			(watch_id * TCP_WATCH_STRIDE)),
865 			watch_address_low);
866 
867 	/* Enable the watch point */
868 	watch_address_cntl = REG_SET_FIELD(watch_address_cntl,
869 			TCP_WATCH0_CNTL,
870 			VALID,
871 			1);
872 
873 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
874 			(watch_id * TCP_WATCH_STRIDE)),
875 			watch_address_cntl);
876 
877 	return 0;
878 }
879 
880 uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev,
881 					uint32_t watch_id)
882 {
883 	uint32_t watch_address_cntl;
884 
885 	watch_address_cntl = 0;
886 
887 	WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) +
888 			(watch_id * TCP_WATCH_STRIDE)),
889 			watch_address_cntl);
890 
891 	return 0;
892 }
893 
894 /* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values
895  * The values read are:
896  *     ib_offload_wait_time     -- Wait Count for Indirect Buffer Offloads.
897  *     atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads.
898  *     wrm_offload_wait_time    -- Wait Count for WAIT_REG_MEM Offloads.
899  *     gws_wait_time            -- Wait Count for Global Wave Syncs.
900  *     que_sleep_wait_time      -- Wait Count for Dequeue Retry.
901  *     sch_wave_wait_time       -- Wait Count for Scheduling Wave Message.
902  *     sem_rearm_wait_time      -- Wait Count for Semaphore re-arm.
903  *     deq_retry_wait_time      -- Wait Count for Global Wave Syncs.
904  */
905 void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev,
906 					uint32_t *wait_times)
907 
908 {
909 	*wait_times = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2));
910 }
911 
912 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
913 			uint32_t vmid, uint64_t page_table_base)
914 {
915 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
916 		pr_err("trying to set page table base for wrong VMID %u\n",
917 		       vmid);
918 		return;
919 	}
920 
921 	adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
922 
923 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
924 }
925 
926 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
927 {
928 	mutex_lock(&adev->srbm_mutex);
929 	mutex_lock(&adev->grbm_idx_mutex);
930 
931 }
932 
933 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
934 {
935 	mutex_unlock(&adev->grbm_idx_mutex);
936 	mutex_unlock(&adev->srbm_mutex);
937 }
938 
939 /**
940  * get_wave_count: Read device registers to get number of waves in flight for
941  * a particular queue. The method also returns the VMID associated with the
942  * queue.
943  *
944  * @adev: Handle of device whose registers are to be read
945  * @queue_idx: Index of queue in the queue-map bit-field
946  * @wave_cnt: Output parameter updated with number of waves in flight
947  * @vmid: Output parameter updated with VMID of queue whose wave count
948  *        is being collected
949  * @inst: xcc's instance number on a multi-XCC setup
950  */
951 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
952 		int *wave_cnt, int *vmid, uint32_t inst)
953 {
954 	int pipe_idx;
955 	int queue_slot;
956 	unsigned int reg_val;
957 
958 	/*
959 	 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
960 	 * parameters to read out waves in flight. Get VMID if there are
961 	 * non-zero waves in flight.
962 	 */
963 	*vmid = 0xFF;
964 	*wave_cnt = 0;
965 	pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
966 	queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
967 	soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst);
968 	reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
969 			 queue_slot);
970 	*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
971 	if (*wave_cnt != 0)
972 		*vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) &
973 			 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
974 }
975 
976 /**
977  * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
978  * shader engine and aggregates the number of waves that are in flight for the
979  * process whose pasid is provided as a parameter. The process could have ZERO
980  * or more queues running and submitting waves to compute units.
981  *
982  * @adev: Handle of device from which to get number of waves in flight
983  * @pasid: Identifies the process for which this query call is invoked
984  * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
985  *                  belong to process with given pasid
986  * @max_waves_per_cu: Output parameter updated with maximum number of waves
987  *                    possible per Compute Unit
988  * @inst: xcc's instance number on a multi-XCC setup
989  *
990  * Note: It's possible that the device has too many queues (oversubscription)
991  * in which case a VMID could be remapped to a different PASID. This could lead
992  * to an inaccurate wave count. Following is a high-level sequence:
993  *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
994  *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
995  * In the sequence above wave count obtained from time T1 will be incorrectly
996  * lost or added to total wave count.
997  *
998  * The registers that provide the waves in flight are:
999  *
1000  *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
1001  *  queue is slotted, OFF if there is no queue. A process could have ZERO or
1002  *  more queues slotted and submitting waves to be run on compute units. Even
1003  *  when there is a queue it is possible there could be zero wave fronts, this
1004  *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
1005  *  command
1006  *
1007  *  For each bit that is ON from above:
1008  *
1009  *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
1010  *    number of waves that are in flight for the queue at specified index. The
1011  *    index ranges from 0 to 7.
1012  *
1013  *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
1014  *    of the wave(s).
1015  *
1016  *    Determine if VMID from above step maps to pasid provided as parameter. If
1017  *    it matches agrregate the wave count. That the VMID will not match pasid is
1018  *    a normal condition i.e. a device is expected to support multiple queues
1019  *    from multiple proceses.
1020  *
1021  *  Reading registers referenced above involves programming GRBM appropriately
1022  */
1023 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
1024 		int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst)
1025 {
1026 	int qidx;
1027 	int vmid;
1028 	int se_idx;
1029 	int sh_idx;
1030 	int se_cnt;
1031 	int sh_cnt;
1032 	int wave_cnt;
1033 	int queue_map;
1034 	int pasid_tmp;
1035 	int max_queue_cnt;
1036 	int vmid_wave_cnt = 0;
1037 	DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
1038 
1039 	lock_spi_csq_mutexes(adev);
1040 	soc15_grbm_select(adev, 1, 0, 0, 0, inst);
1041 
1042 	/*
1043 	 * Iterate through the shader engines and arrays of the device
1044 	 * to get number of waves in flight
1045 	 */
1046 	bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
1047 			  KGD_MAX_QUEUES);
1048 	max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
1049 			adev->gfx.mec.num_queue_per_pipe;
1050 	sh_cnt = adev->gfx.config.max_sh_per_se;
1051 	se_cnt = adev->gfx.config.max_shader_engines;
1052 	for (se_idx = 0; se_idx < se_cnt; se_idx++) {
1053 		for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
1054 
1055 			amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst);
1056 			queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS);
1057 
1058 			/*
1059 			 * Assumption: queue map encodes following schema: four
1060 			 * pipes per each micro-engine, with each pipe mapping
1061 			 * eight queues. This schema is true for GFX9 devices
1062 			 * and must be verified for newer device families
1063 			 */
1064 			for (qidx = 0; qidx < max_queue_cnt; qidx++) {
1065 
1066 				/* Skip qeueus that are not associated with
1067 				 * compute functions
1068 				 */
1069 				if (!test_bit(qidx, cp_queue_bitmap))
1070 					continue;
1071 
1072 				if (!(queue_map & (1 << qidx)))
1073 					continue;
1074 
1075 				/* Get number of waves in flight and aggregate them */
1076 				get_wave_count(adev, qidx, &wave_cnt, &vmid,
1077 						inst);
1078 				if (wave_cnt != 0) {
1079 					pasid_tmp =
1080 					  RREG32(SOC15_REG_OFFSET(OSSSYS, inst,
1081 						 mmIH_VMID_0_LUT) + vmid);
1082 					if (pasid_tmp == pasid)
1083 						vmid_wave_cnt += wave_cnt;
1084 				}
1085 			}
1086 		}
1087 	}
1088 
1089 	amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
1090 	soc15_grbm_select(adev, 0, 0, 0, 0, inst);
1091 	unlock_spi_csq_mutexes(adev);
1092 
1093 	/* Update the output parameters and return */
1094 	*pasid_wave_cnt = vmid_wave_cnt;
1095 	*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
1096 				adev->gfx.cu_info.max_waves_per_simd;
1097 }
1098 
1099 void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev,
1100 		uint32_t wait_times,
1101 		uint32_t grace_period,
1102 		uint32_t *reg_offset,
1103 		uint32_t *reg_data)
1104 {
1105 	*reg_data = wait_times;
1106 
1107 	/*
1108 	 * The CP cannont handle a 0 grace period input and will result in
1109 	 * an infinite grace period being set so set to 1 to prevent this.
1110 	 */
1111 	if (grace_period == 0)
1112 		grace_period = 1;
1113 
1114 	*reg_data = REG_SET_FIELD(*reg_data,
1115 			CP_IQ_WAIT_TIME2,
1116 			SCH_WAVE,
1117 			grace_period);
1118 
1119 	*reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2);
1120 }
1121 
1122 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
1123 		uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
1124 {
1125 	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
1126 
1127 	/*
1128 	 * Program TBA registers
1129 	 */
1130 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
1131                         lower_32_bits(tba_addr >> 8));
1132 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
1133                         upper_32_bits(tba_addr >> 8));
1134 
1135 	/*
1136 	 * Program TMA registers
1137 	 */
1138 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
1139 			lower_32_bits(tma_addr >> 8));
1140 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
1141 			upper_32_bits(tma_addr >> 8));
1142 
1143 	kgd_gfx_v9_unlock_srbm(adev, inst);
1144 }
1145 
1146 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
1147 	.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
1148 	.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
1149 	.init_interrupts = kgd_gfx_v9_init_interrupts,
1150 	.hqd_load = kgd_gfx_v9_hqd_load,
1151 	.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
1152 	.hqd_sdma_load = kgd_hqd_sdma_load,
1153 	.hqd_dump = kgd_gfx_v9_hqd_dump,
1154 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
1155 	.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
1156 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
1157 	.hqd_destroy = kgd_gfx_v9_hqd_destroy,
1158 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
1159 	.wave_control_execute = kgd_gfx_v9_wave_control_execute,
1160 	.get_atc_vmid_pasid_mapping_info =
1161 			kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
1162 	.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
1163 	.enable_debug_trap = kgd_gfx_v9_enable_debug_trap,
1164 	.disable_debug_trap = kgd_gfx_v9_disable_debug_trap,
1165 	.validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request,
1166 	.set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override,
1167 	.set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode,
1168 	.set_address_watch = kgd_gfx_v9_set_address_watch,
1169 	.clear_address_watch = kgd_gfx_v9_clear_address_watch,
1170 	.get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times,
1171 	.build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info,
1172 	.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
1173 	.program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
1174 };
1175