1 /*
2  * Copyright 2014-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_9_0_offset.h"
25 #include "gc/gc_9_0_sh_mask.h"
26 #include "vega10_enum.h"
27 #include "sdma0/sdma0_4_0_offset.h"
28 #include "sdma0/sdma0_4_0_sh_mask.h"
29 #include "sdma1/sdma1_4_0_offset.h"
30 #include "sdma1/sdma1_4_0_sh_mask.h"
31 #include "athub/athub_1_0_offset.h"
32 #include "athub/athub_1_0_sh_mask.h"
33 #include "oss/osssys_4_0_offset.h"
34 #include "oss/osssys_4_0_sh_mask.h"
35 #include "soc15_common.h"
36 #include "v9_structs.h"
37 #include "soc15.h"
38 #include "soc15d.h"
39 #include "gfx_v9_0.h"
40 #include "amdgpu_amdkfd_gfx_v9.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES,
46 	SAVE_WAVES
47 };
48 
49 static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
50 			uint32_t queue, uint32_t vmid, uint32_t inst)
51 {
52 	mutex_lock(&adev->srbm_mutex);
53 	soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst));
54 }
55 
56 static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst)
57 {
58 	soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst));
59 	mutex_unlock(&adev->srbm_mutex);
60 }
61 
62 void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
63 				uint32_t queue_id, uint32_t inst)
64 {
65 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
66 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
67 
68 	kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst);
69 }
70 
71 uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev,
72 			       uint32_t pipe_id, uint32_t queue_id)
73 {
74 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
75 			queue_id;
76 
77 	return 1ull << bit;
78 }
79 
80 void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst)
81 {
82 	kgd_gfx_v9_unlock_srbm(adev, inst);
83 }
84 
85 void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
86 					uint32_t sh_mem_config,
87 					uint32_t sh_mem_ape1_base,
88 					uint32_t sh_mem_ape1_limit,
89 					uint32_t sh_mem_bases, uint32_t inst)
90 {
91 	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
92 
93 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG), sh_mem_config);
94 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmSH_MEM_BASES), sh_mem_bases);
95 	/* APE1 no longer exists on GFX9 */
96 
97 	kgd_gfx_v9_unlock_srbm(adev, inst);
98 }
99 
100 int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
101 					unsigned int vmid, uint32_t inst)
102 {
103 	/*
104 	 * We have to assume that there is no outstanding mapping.
105 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
106 	 * a mapping is in progress or because a mapping finished
107 	 * and the SW cleared it.
108 	 * So the protocol is to always wait & clear.
109 	 */
110 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
111 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
112 
113 	/*
114 	 * need to do this twice, once for gfx and once for mmhub
115 	 * for ATC add 16 to VMID for mmhub, for IH different registers.
116 	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
117 	 */
118 
119 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
120 	       pasid_mapping);
121 
122 	while (!(RREG32(SOC15_REG_OFFSET(
123 				ATHUB, 0,
124 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
125 		 (1U << vmid)))
126 		cpu_relax();
127 
128 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
129 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
130 	       1U << vmid);
131 
132 	/* Mapping vmid to pasid also for IH block */
133 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
134 	       pasid_mapping);
135 
136 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid,
137 	       pasid_mapping);
138 
139 	while (!(RREG32(SOC15_REG_OFFSET(
140 				ATHUB, 0,
141 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
142 		 (1U << (vmid + 16))))
143 		cpu_relax();
144 
145 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
146 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
147 	       1U << (vmid + 16));
148 
149 	/* Mapping vmid to pasid also for IH block */
150 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid,
151 	       pasid_mapping);
152 	return 0;
153 }
154 
155 /* TODO - RING0 form of field is obsolete, seems to date back to SI
156  * but still works
157  */
158 
159 int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
160 				uint32_t inst)
161 {
162 	uint32_t mec;
163 	uint32_t pipe;
164 
165 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
166 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
167 
168 	kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst);
169 
170 	WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL,
171 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
172 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
173 
174 	kgd_gfx_v9_unlock_srbm(adev, inst);
175 
176 	return 0;
177 }
178 
179 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
180 				unsigned int engine_id,
181 				unsigned int queue_id)
182 {
183 	uint32_t sdma_engine_reg_base = 0;
184 	uint32_t sdma_rlc_reg_offset;
185 
186 	switch (engine_id) {
187 	default:
188 		dev_warn(adev->dev,
189 			 "Invalid sdma engine id (%d), using engine id 0\n",
190 			 engine_id);
191 		fallthrough;
192 	case 0:
193 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
194 				mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
195 		break;
196 	case 1:
197 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
198 				mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL;
199 		break;
200 	}
201 
202 	sdma_rlc_reg_offset = sdma_engine_reg_base
203 		+ queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
204 
205 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
206 		 queue_id, sdma_rlc_reg_offset);
207 
208 	return sdma_rlc_reg_offset;
209 }
210 
211 static inline struct v9_mqd *get_mqd(void *mqd)
212 {
213 	return (struct v9_mqd *)mqd;
214 }
215 
216 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
217 {
218 	return (struct v9_sdma_mqd *)mqd;
219 }
220 
221 int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd,
222 			uint32_t pipe_id, uint32_t queue_id,
223 			uint32_t __user *wptr, uint32_t wptr_shift,
224 			uint32_t wptr_mask, struct mm_struct *mm,
225 			uint32_t inst)
226 {
227 	struct v9_mqd *m;
228 	uint32_t *mqd_hqd;
229 	uint32_t reg, hqd_base, data;
230 
231 	m = get_mqd(mqd);
232 
233 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
234 
235 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
236 	mqd_hqd = &m->cp_mqd_base_addr_lo;
237 	hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
238 
239 	for (reg = hqd_base;
240 	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
241 		WREG32_RLC(reg, mqd_hqd[reg - hqd_base]);
242 
243 
244 	/* Activate doorbell logic before triggering WPTR poll. */
245 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
246 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
247 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL),
248 					data);
249 
250 	if (wptr) {
251 		/* Don't read wptr with get_user because the user
252 		 * context may not be accessible (if this function
253 		 * runs in a work queue). Instead trigger a one-shot
254 		 * polling read from memory in the CP. This assumes
255 		 * that wptr is GPU-accessible in the queue's VMID via
256 		 * ATC or SVM. WPTR==RPTR before starting the poll so
257 		 * the CP starts fetching new commands from the right
258 		 * place.
259 		 *
260 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
261 		 * tricky. Assume that the queue didn't overflow. The
262 		 * number of valid bits in the 32-bit RPTR depends on
263 		 * the queue size. The remaining bits are taken from
264 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
265 		 * queue size.
266 		 */
267 		uint32_t queue_size =
268 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
269 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
270 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
271 
272 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
273 			guessed_wptr += queue_size;
274 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
275 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
276 
277 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO),
278 		       lower_32_bits(guessed_wptr));
279 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI),
280 		       upper_32_bits(guessed_wptr));
281 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR),
282 		       lower_32_bits((uintptr_t)wptr));
283 		WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
284 		       upper_32_bits((uintptr_t)wptr));
285 		WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1,
286 		       (uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id));
287 	}
288 
289 	/* Start the EOP fetcher */
290 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR),
291 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
292 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
293 
294 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
295 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE), data);
296 
297 	kgd_gfx_v9_release_queue(adev, inst);
298 
299 	return 0;
300 }
301 
302 int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd,
303 			    uint32_t pipe_id, uint32_t queue_id,
304 			    uint32_t doorbell_off, uint32_t inst)
305 {
306 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring;
307 	struct v9_mqd *m;
308 	uint32_t mec, pipe;
309 	int r;
310 
311 	m = get_mqd(mqd);
312 
313 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
314 
315 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
316 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
317 
318 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
319 		 mec, pipe, queue_id);
320 
321 	spin_lock(&adev->gfx.kiq[inst].ring_lock);
322 	r = amdgpu_ring_alloc(kiq_ring, 7);
323 	if (r) {
324 		pr_err("Failed to alloc KIQ (%d).\n", r);
325 		goto out_unlock;
326 	}
327 
328 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
329 	amdgpu_ring_write(kiq_ring,
330 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
331 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
332 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
333 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
334 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
335 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
336 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
337 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
338 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
339 	amdgpu_ring_write(kiq_ring,
340 			  PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
341 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
342 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
343 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
344 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
345 	amdgpu_ring_commit(kiq_ring);
346 
347 out_unlock:
348 	spin_unlock(&adev->gfx.kiq[inst].ring_lock);
349 	kgd_gfx_v9_release_queue(adev, inst);
350 
351 	return r;
352 }
353 
354 int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev,
355 			uint32_t pipe_id, uint32_t queue_id,
356 			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
357 {
358 	uint32_t i = 0, reg;
359 #define HQD_N_REGS 56
360 #define DUMP_REG(addr) do {				\
361 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
362 			break;				\
363 		(*dump)[i][0] = (addr) << 2;		\
364 		(*dump)[i++][1] = RREG32(addr);		\
365 	} while (0)
366 
367 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
368 	if (*dump == NULL)
369 		return -ENOMEM;
370 
371 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
372 
373 	for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR);
374 	     reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++)
375 		DUMP_REG(reg);
376 
377 	kgd_gfx_v9_release_queue(adev, inst);
378 
379 	WARN_ON_ONCE(i != HQD_N_REGS);
380 	*n_regs = i;
381 
382 	return 0;
383 }
384 
385 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
386 			     uint32_t __user *wptr, struct mm_struct *mm)
387 {
388 	struct v9_sdma_mqd *m;
389 	uint32_t sdma_rlc_reg_offset;
390 	unsigned long end_jiffies;
391 	uint32_t data;
392 	uint64_t data64;
393 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
394 
395 	m = get_sdma_mqd(mqd);
396 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
397 					    m->sdma_queue_id);
398 
399 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
400 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
401 
402 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
403 	while (true) {
404 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
405 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
406 			break;
407 		if (time_after(jiffies, end_jiffies)) {
408 			pr_err("SDMA RLC not idle in %s\n", __func__);
409 			return -ETIME;
410 		}
411 		usleep_range(500, 1000);
412 	}
413 
414 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
415 	       m->sdmax_rlcx_doorbell_offset);
416 
417 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
418 			     ENABLE, 1);
419 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
420 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
421 				m->sdmax_rlcx_rb_rptr);
422 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
423 				m->sdmax_rlcx_rb_rptr_hi);
424 
425 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
426 	if (read_user_wptr(mm, wptr64, data64)) {
427 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
428 		       lower_32_bits(data64));
429 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
430 		       upper_32_bits(data64));
431 	} else {
432 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
433 		       m->sdmax_rlcx_rb_rptr);
434 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
435 		       m->sdmax_rlcx_rb_rptr_hi);
436 	}
437 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
438 
439 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
440 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
441 			m->sdmax_rlcx_rb_base_hi);
442 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
443 			m->sdmax_rlcx_rb_rptr_addr_lo);
444 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
445 			m->sdmax_rlcx_rb_rptr_addr_hi);
446 
447 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
448 			     RB_ENABLE, 1);
449 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
450 
451 	return 0;
452 }
453 
454 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
455 			     uint32_t engine_id, uint32_t queue_id,
456 			     uint32_t (**dump)[2], uint32_t *n_regs)
457 {
458 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
459 			engine_id, queue_id);
460 	uint32_t i = 0, reg;
461 #undef HQD_N_REGS
462 #define HQD_N_REGS (19+6+7+10)
463 
464 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
465 	if (*dump == NULL)
466 		return -ENOMEM;
467 
468 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
469 		DUMP_REG(sdma_rlc_reg_offset + reg);
470 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
471 		DUMP_REG(sdma_rlc_reg_offset + reg);
472 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
473 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
474 		DUMP_REG(sdma_rlc_reg_offset + reg);
475 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
476 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
477 		DUMP_REG(sdma_rlc_reg_offset + reg);
478 
479 	WARN_ON_ONCE(i != HQD_N_REGS);
480 	*n_regs = i;
481 
482 	return 0;
483 }
484 
485 bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev,
486 				uint64_t queue_address, uint32_t pipe_id,
487 				uint32_t queue_id, uint32_t inst)
488 {
489 	uint32_t act;
490 	bool retval = false;
491 	uint32_t low, high;
492 
493 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
494 	act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
495 	if (act) {
496 		low = lower_32_bits(queue_address >> 8);
497 		high = upper_32_bits(queue_address >> 8);
498 
499 		if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) &&
500 		   high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI))
501 			retval = true;
502 	}
503 	kgd_gfx_v9_release_queue(adev, inst);
504 	return retval;
505 }
506 
507 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
508 {
509 	struct v9_sdma_mqd *m;
510 	uint32_t sdma_rlc_reg_offset;
511 	uint32_t sdma_rlc_rb_cntl;
512 
513 	m = get_sdma_mqd(mqd);
514 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
515 					    m->sdma_queue_id);
516 
517 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
518 
519 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
520 		return true;
521 
522 	return false;
523 }
524 
525 int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd,
526 				enum kfd_preempt_type reset_type,
527 				unsigned int utimeout, uint32_t pipe_id,
528 				uint32_t queue_id, uint32_t inst)
529 {
530 	enum hqd_dequeue_request_type type;
531 	unsigned long end_jiffies;
532 	uint32_t temp;
533 	struct v9_mqd *m = get_mqd(mqd);
534 
535 	if (amdgpu_in_reset(adev))
536 		return -EIO;
537 
538 	kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst);
539 
540 	if (m->cp_hqd_vmid == 0)
541 		WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0);
542 
543 	switch (reset_type) {
544 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
545 		type = DRAIN_PIPE;
546 		break;
547 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
548 		type = RESET_WAVES;
549 		break;
550 	case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
551 		type = SAVE_WAVES;
552 		break;
553 	default:
554 		type = DRAIN_PIPE;
555 		break;
556 	}
557 
558 	WREG32_RLC(SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST), type);
559 
560 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
561 	while (true) {
562 		temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE);
563 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
564 			break;
565 		if (time_after(jiffies, end_jiffies)) {
566 			pr_err("cp queue preemption time out.\n");
567 			kgd_gfx_v9_release_queue(adev, inst);
568 			return -ETIME;
569 		}
570 		usleep_range(500, 1000);
571 	}
572 
573 	kgd_gfx_v9_release_queue(adev, inst);
574 	return 0;
575 }
576 
577 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
578 				unsigned int utimeout)
579 {
580 	struct v9_sdma_mqd *m;
581 	uint32_t sdma_rlc_reg_offset;
582 	uint32_t temp;
583 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
584 
585 	m = get_sdma_mqd(mqd);
586 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
587 					    m->sdma_queue_id);
588 
589 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
590 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
591 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
592 
593 	while (true) {
594 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
595 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
596 			break;
597 		if (time_after(jiffies, end_jiffies)) {
598 			pr_err("SDMA RLC not idle in %s\n", __func__);
599 			return -ETIME;
600 		}
601 		usleep_range(500, 1000);
602 	}
603 
604 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
605 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
606 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
607 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
608 
609 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
610 	m->sdmax_rlcx_rb_rptr_hi =
611 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
612 
613 	return 0;
614 }
615 
616 bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
617 					uint8_t vmid, uint16_t *p_pasid)
618 {
619 	uint32_t value;
620 
621 	value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
622 		     + vmid);
623 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
624 
625 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
626 }
627 
628 int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev,
629 					uint32_t gfx_index_val,
630 					uint32_t sq_cmd, uint32_t inst)
631 {
632 	uint32_t data = 0;
633 
634 	mutex_lock(&adev->grbm_idx_mutex);
635 
636 	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val);
637 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd);
638 
639 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
640 		INSTANCE_BROADCAST_WRITES, 1);
641 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
642 		SH_BROADCAST_WRITES, 1);
643 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
644 		SE_BROADCAST_WRITES, 1);
645 
646 	WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data);
647 	mutex_unlock(&adev->grbm_idx_mutex);
648 
649 	return 0;
650 }
651 
652 void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev,
653 			uint32_t vmid, uint64_t page_table_base)
654 {
655 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
656 		pr_err("trying to set page table base for wrong VMID %u\n",
657 		       vmid);
658 		return;
659 	}
660 
661 	adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
662 
663 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
664 }
665 
666 static void lock_spi_csq_mutexes(struct amdgpu_device *adev)
667 {
668 	mutex_lock(&adev->srbm_mutex);
669 	mutex_lock(&adev->grbm_idx_mutex);
670 
671 }
672 
673 static void unlock_spi_csq_mutexes(struct amdgpu_device *adev)
674 {
675 	mutex_unlock(&adev->grbm_idx_mutex);
676 	mutex_unlock(&adev->srbm_mutex);
677 }
678 
679 /**
680  * get_wave_count: Read device registers to get number of waves in flight for
681  * a particular queue. The method also returns the VMID associated with the
682  * queue.
683  *
684  * @adev: Handle of device whose registers are to be read
685  * @queue_idx: Index of queue in the queue-map bit-field
686  * @wave_cnt: Output parameter updated with number of waves in flight
687  * @vmid: Output parameter updated with VMID of queue whose wave count
688  * is being collected
689  */
690 static void get_wave_count(struct amdgpu_device *adev, int queue_idx,
691 		int *wave_cnt, int *vmid, uint32_t inst)
692 {
693 	int pipe_idx;
694 	int queue_slot;
695 	unsigned int reg_val;
696 
697 	/*
698 	 * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID
699 	 * parameters to read out waves in flight. Get VMID if there are
700 	 * non-zero waves in flight.
701 	 */
702 	*vmid = 0xFF;
703 	*wave_cnt = 0;
704 	pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe;
705 	queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe;
706 	soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst);
707 	reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) +
708 			 queue_slot);
709 	*wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK;
710 	if (*wave_cnt != 0)
711 		*vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) &
712 			 CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT;
713 }
714 
715 /**
716  * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each
717  * shader engine and aggregates the number of waves that are in flight for the
718  * process whose pasid is provided as a parameter. The process could have ZERO
719  * or more queues running and submitting waves to compute units.
720  *
721  * @adev: Handle of device from which to get number of waves in flight
722  * @pasid: Identifies the process for which this query call is invoked
723  * @pasid_wave_cnt: Output parameter updated with number of waves in flight that
724  * belong to process with given pasid
725  * @max_waves_per_cu: Output parameter updated with maximum number of waves
726  * possible per Compute Unit
727  *
728  * Note: It's possible that the device has too many queues (oversubscription)
729  * in which case a VMID could be remapped to a different PASID. This could lead
730  * to an inaccurate wave count. Following is a high-level sequence:
731  *    Time T1: vmid = getVmid(); vmid is associated with Pasid P1
732  *    Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2
733  * In the sequence above wave count obtained from time T1 will be incorrectly
734  * lost or added to total wave count.
735  *
736  * The registers that provide the waves in flight are:
737  *
738  *  SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a
739  *  queue is slotted, OFF if there is no queue. A process could have ZERO or
740  *  more queues slotted and submitting waves to be run on compute units. Even
741  *  when there is a queue it is possible there could be zero wave fronts, this
742  *  can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem
743  *  command
744  *
745  *  For each bit that is ON from above:
746  *
747  *    Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the
748  *    number of waves that are in flight for the queue at specified index. The
749  *    index ranges from 0 to 7.
750  *
751  *    If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID
752  *    of the wave(s).
753  *
754  *    Determine if VMID from above step maps to pasid provided as parameter. If
755  *    it matches agrregate the wave count. That the VMID will not match pasid is
756  *    a normal condition i.e. a device is expected to support multiple queues
757  *    from multiple proceses.
758  *
759  *  Reading registers referenced above involves programming GRBM appropriately
760  */
761 void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid,
762 		int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst)
763 {
764 	int qidx;
765 	int vmid;
766 	int se_idx;
767 	int sh_idx;
768 	int se_cnt;
769 	int sh_cnt;
770 	int wave_cnt;
771 	int queue_map;
772 	int pasid_tmp;
773 	int max_queue_cnt;
774 	int vmid_wave_cnt = 0;
775 	DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES);
776 
777 	lock_spi_csq_mutexes(adev);
778 	soc15_grbm_select(adev, 1, 0, 0, 0, inst);
779 
780 	/*
781 	 * Iterate through the shader engines and arrays of the device
782 	 * to get number of waves in flight
783 	 */
784 	bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap,
785 			  KGD_MAX_QUEUES);
786 	max_queue_cnt = adev->gfx.mec.num_pipe_per_mec *
787 			adev->gfx.mec.num_queue_per_pipe;
788 	sh_cnt = adev->gfx.config.max_sh_per_se;
789 	se_cnt = adev->gfx.config.max_shader_engines;
790 	for (se_idx = 0; se_idx < se_cnt; se_idx++) {
791 		for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) {
792 
793 			amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst);
794 			queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS);
795 
796 			/*
797 			 * Assumption: queue map encodes following schema: four
798 			 * pipes per each micro-engine, with each pipe mapping
799 			 * eight queues. This schema is true for GFX9 devices
800 			 * and must be verified for newer device families
801 			 */
802 			for (qidx = 0; qidx < max_queue_cnt; qidx++) {
803 
804 				/* Skip qeueus that are not associated with
805 				 * compute functions
806 				 */
807 				if (!test_bit(qidx, cp_queue_bitmap))
808 					continue;
809 
810 				if (!(queue_map & (1 << qidx)))
811 					continue;
812 
813 				/* Get number of waves in flight and aggregate them */
814 				get_wave_count(adev, qidx, &wave_cnt, &vmid,
815 						inst);
816 				if (wave_cnt != 0) {
817 					pasid_tmp =
818 					  RREG32(SOC15_REG_OFFSET(OSSSYS, inst,
819 						 mmIH_VMID_0_LUT) + vmid);
820 					if (pasid_tmp == pasid)
821 						vmid_wave_cnt += wave_cnt;
822 				}
823 			}
824 		}
825 	}
826 
827 	amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst);
828 	soc15_grbm_select(adev, 0, 0, 0, 0, inst);
829 	unlock_spi_csq_mutexes(adev);
830 
831 	/* Update the output parameters and return */
832 	*pasid_wave_cnt = vmid_wave_cnt;
833 	*max_waves_per_cu = adev->gfx.cu_info.simd_per_cu *
834 				adev->gfx.cu_info.max_waves_per_simd;
835 }
836 
837 void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev,
838 		uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst)
839 {
840 	kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst);
841 
842 	/*
843 	 * Program TBA registers
844 	 */
845 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO,
846                         lower_32_bits(tba_addr >> 8));
847 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI,
848                         upper_32_bits(tba_addr >> 8));
849 
850 	/*
851 	 * Program TMA registers
852 	 */
853 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO,
854 			lower_32_bits(tma_addr >> 8));
855 	WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI,
856 			upper_32_bits(tma_addr >> 8));
857 
858 	kgd_gfx_v9_unlock_srbm(adev, inst);
859 }
860 
861 const struct kfd2kgd_calls gfx_v9_kfd2kgd = {
862 	.program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings,
863 	.set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping,
864 	.init_interrupts = kgd_gfx_v9_init_interrupts,
865 	.hqd_load = kgd_gfx_v9_hqd_load,
866 	.hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load,
867 	.hqd_sdma_load = kgd_hqd_sdma_load,
868 	.hqd_dump = kgd_gfx_v9_hqd_dump,
869 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
870 	.hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied,
871 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
872 	.hqd_destroy = kgd_gfx_v9_hqd_destroy,
873 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
874 	.wave_control_execute = kgd_gfx_v9_wave_control_execute,
875 	.get_atc_vmid_pasid_mapping_info =
876 			kgd_gfx_v9_get_atc_vmid_pasid_mapping_info,
877 	.set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base,
878 	.get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy,
879 	.program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings,
880 };
881