1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 struct cik_sdma_rlc_registers;
49 
50 /*
51  * Register access functions
52  */
53 
54 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
55 		uint32_t sh_mem_config,
56 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
57 		uint32_t sh_mem_bases);
58 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
59 		unsigned int vmid);
60 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
61 		uint32_t hpd_size, uint64_t hpd_gpu_addr);
62 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
63 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
64 			uint32_t queue_id, uint32_t __user *wptr,
65 			uint32_t wptr_shift, uint32_t wptr_mask,
66 			struct mm_struct *mm);
67 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
68 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
69 		uint32_t pipe_id, uint32_t queue_id);
70 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
71 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
72 				enum kfd_preempt_type reset_type,
73 				unsigned int utimeout, uint32_t pipe_id,
74 				uint32_t queue_id);
75 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
76 				unsigned int utimeout);
77 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
78 static int kgd_address_watch_disable(struct kgd_dev *kgd);
79 static int kgd_address_watch_execute(struct kgd_dev *kgd,
80 					unsigned int watch_point_id,
81 					uint32_t cntl_val,
82 					uint32_t addr_hi,
83 					uint32_t addr_lo);
84 static int kgd_wave_control_execute(struct kgd_dev *kgd,
85 					uint32_t gfx_index_val,
86 					uint32_t sq_cmd);
87 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
88 					unsigned int watch_point_id,
89 					unsigned int reg_offset);
90 
91 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
92 		uint8_t vmid);
93 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
94 		uint8_t vmid);
95 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
96 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
97 static void set_scratch_backing_va(struct kgd_dev *kgd,
98 					uint64_t va, uint32_t vmid);
99 
100 /* Because of REG_GET_FIELD() being used, we put this function in the
101  * asic specific file.
102  */
103 static int get_tile_config(struct kgd_dev *kgd,
104 		struct tile_config *config)
105 {
106 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
107 
108 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
109 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
110 				MC_ARB_RAMCFG, NOOFBANK);
111 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
112 				MC_ARB_RAMCFG, NOOFRANKS);
113 
114 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
115 	config->num_tile_configs =
116 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
117 	config->macro_tile_config_ptr =
118 			adev->gfx.config.macrotile_mode_array;
119 	config->num_macro_tile_configs =
120 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
121 
122 	return 0;
123 }
124 
125 static const struct kfd2kgd_calls kfd2kgd = {
126 	.init_gtt_mem_allocation = alloc_gtt_mem,
127 	.free_gtt_mem = free_gtt_mem,
128 	.get_vmem_size = get_vmem_size,
129 	.get_gpu_clock_counter = get_gpu_clock_counter,
130 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
131 	.alloc_pasid = amdgpu_vm_alloc_pasid,
132 	.free_pasid = amdgpu_vm_free_pasid,
133 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
134 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
135 	.init_pipeline = kgd_init_pipeline,
136 	.init_interrupts = kgd_init_interrupts,
137 	.hqd_load = kgd_hqd_load,
138 	.hqd_sdma_load = kgd_hqd_sdma_load,
139 	.hqd_is_occupied = kgd_hqd_is_occupied,
140 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
141 	.hqd_destroy = kgd_hqd_destroy,
142 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
143 	.address_watch_disable = kgd_address_watch_disable,
144 	.address_watch_execute = kgd_address_watch_execute,
145 	.wave_control_execute = kgd_wave_control_execute,
146 	.address_watch_get_offset = kgd_address_watch_get_offset,
147 	.get_atc_vmid_pasid_mapping_pasid =
148 			get_atc_vmid_pasid_mapping_pasid,
149 	.get_atc_vmid_pasid_mapping_valid =
150 			get_atc_vmid_pasid_mapping_valid,
151 	.write_vmid_invalidate_request = write_vmid_invalidate_request,
152 	.get_fw_version = get_fw_version,
153 	.set_scratch_backing_va = set_scratch_backing_va,
154 	.get_tile_config = get_tile_config,
155 };
156 
157 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
158 {
159 	return (struct kfd2kgd_calls *)&kfd2kgd;
160 }
161 
162 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
163 {
164 	return (struct amdgpu_device *)kgd;
165 }
166 
167 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
168 			uint32_t queue, uint32_t vmid)
169 {
170 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
171 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
172 
173 	mutex_lock(&adev->srbm_mutex);
174 	WREG32(mmSRBM_GFX_CNTL, value);
175 }
176 
177 static void unlock_srbm(struct kgd_dev *kgd)
178 {
179 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
180 
181 	WREG32(mmSRBM_GFX_CNTL, 0);
182 	mutex_unlock(&adev->srbm_mutex);
183 }
184 
185 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
186 				uint32_t queue_id)
187 {
188 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
189 
190 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
191 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
192 
193 	lock_srbm(kgd, mec, pipe, queue_id, 0);
194 }
195 
196 static void release_queue(struct kgd_dev *kgd)
197 {
198 	unlock_srbm(kgd);
199 }
200 
201 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
202 					uint32_t sh_mem_config,
203 					uint32_t sh_mem_ape1_base,
204 					uint32_t sh_mem_ape1_limit,
205 					uint32_t sh_mem_bases)
206 {
207 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
208 
209 	lock_srbm(kgd, 0, 0, 0, vmid);
210 
211 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
212 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
213 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
214 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
215 
216 	unlock_srbm(kgd);
217 }
218 
219 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
220 					unsigned int vmid)
221 {
222 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
223 
224 	/*
225 	 * We have to assume that there is no outstanding mapping.
226 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
227 	 * a mapping is in progress or because a mapping finished
228 	 * and the SW cleared it.
229 	 * So the protocol is to always wait & clear.
230 	 */
231 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
232 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
233 
234 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
235 
236 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
237 		cpu_relax();
238 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
239 
240 	/* Mapping vmid to pasid also for IH block */
241 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
242 
243 	return 0;
244 }
245 
246 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
247 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
248 {
249 	/* amdgpu owns the per-pipe state */
250 	return 0;
251 }
252 
253 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
254 {
255 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
256 	uint32_t mec;
257 	uint32_t pipe;
258 
259 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
260 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
261 
262 	lock_srbm(kgd, mec, pipe, 0, 0);
263 
264 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
265 
266 	unlock_srbm(kgd);
267 
268 	return 0;
269 }
270 
271 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
272 {
273 	return 0;
274 }
275 
276 static inline struct vi_mqd *get_mqd(void *mqd)
277 {
278 	return (struct vi_mqd *)mqd;
279 }
280 
281 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
282 {
283 	return (struct cik_sdma_rlc_registers *)mqd;
284 }
285 
286 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
287 			uint32_t queue_id, uint32_t __user *wptr,
288 			uint32_t wptr_shift, uint32_t wptr_mask,
289 			struct mm_struct *mm)
290 {
291 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
292 	struct vi_mqd *m;
293 	uint32_t *mqd_hqd;
294 	uint32_t reg, wptr_val, data;
295 	bool valid_wptr = false;
296 
297 	m = get_mqd(mqd);
298 
299 	acquire_queue(kgd, pipe_id, queue_id);
300 
301 	/* HIQ is set during driver init period with vmid set to 0*/
302 	if (m->cp_hqd_vmid == 0) {
303 		uint32_t value, mec, pipe;
304 
305 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
306 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
307 
308 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
309 			mec, pipe, queue_id);
310 		value = RREG32(mmRLC_CP_SCHEDULERS);
311 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
312 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
313 		WREG32(mmRLC_CP_SCHEDULERS, value);
314 	}
315 
316 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
317 	mqd_hqd = &m->cp_mqd_base_addr_lo;
318 
319 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
320 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
321 
322 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
323 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
324 	 * on ASICs that do not support context-save.
325 	 * EOP writes/reads can start anywhere in the ring.
326 	 */
327 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
328 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
329 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
330 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
331 	}
332 
333 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
334 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
335 
336 	/* Copy userspace write pointer value to register.
337 	 * Activate doorbell logic to monitor subsequent changes.
338 	 */
339 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
340 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
341 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
342 
343 	/* read_user_ptr may take the mm->mmap_sem.
344 	 * release srbm_mutex to avoid circular dependency between
345 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
346 	 */
347 	release_queue(kgd);
348 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
349 	acquire_queue(kgd, pipe_id, queue_id);
350 	if (valid_wptr)
351 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
352 
353 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
354 	WREG32(mmCP_HQD_ACTIVE, data);
355 
356 	release_queue(kgd);
357 
358 	return 0;
359 }
360 
361 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
362 {
363 	return 0;
364 }
365 
366 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
367 				uint32_t pipe_id, uint32_t queue_id)
368 {
369 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
370 	uint32_t act;
371 	bool retval = false;
372 	uint32_t low, high;
373 
374 	acquire_queue(kgd, pipe_id, queue_id);
375 	act = RREG32(mmCP_HQD_ACTIVE);
376 	if (act) {
377 		low = lower_32_bits(queue_address >> 8);
378 		high = upper_32_bits(queue_address >> 8);
379 
380 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
381 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
382 			retval = true;
383 	}
384 	release_queue(kgd);
385 	return retval;
386 }
387 
388 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
389 {
390 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
391 	struct cik_sdma_rlc_registers *m;
392 	uint32_t sdma_base_addr;
393 	uint32_t sdma_rlc_rb_cntl;
394 
395 	m = get_sdma_mqd(mqd);
396 	sdma_base_addr = get_sdma_base_addr(m);
397 
398 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
399 
400 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
401 		return true;
402 
403 	return false;
404 }
405 
406 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
407 				enum kfd_preempt_type reset_type,
408 				unsigned int utimeout, uint32_t pipe_id,
409 				uint32_t queue_id)
410 {
411 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
412 	uint32_t temp;
413 	enum hqd_dequeue_request_type type;
414 	unsigned long flags, end_jiffies;
415 	int retry;
416 	struct vi_mqd *m = get_mqd(mqd);
417 
418 	acquire_queue(kgd, pipe_id, queue_id);
419 
420 	if (m->cp_hqd_vmid == 0)
421 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
422 
423 	switch (reset_type) {
424 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
425 		type = DRAIN_PIPE;
426 		break;
427 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
428 		type = RESET_WAVES;
429 		break;
430 	default:
431 		type = DRAIN_PIPE;
432 		break;
433 	}
434 
435 	/* Workaround: If IQ timer is active and the wait time is close to or
436 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
437 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
438 	 * cleared before continuing. Also, ensure wait times are set to at
439 	 * least 0x3.
440 	 */
441 	local_irq_save(flags);
442 	preempt_disable();
443 	retry = 5000; /* wait for 500 usecs at maximum */
444 	while (true) {
445 		temp = RREG32(mmCP_HQD_IQ_TIMER);
446 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
447 			pr_debug("HW is processing IQ\n");
448 			goto loop;
449 		}
450 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
451 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
452 					== 3) /* SEM-rearm is safe */
453 				break;
454 			/* Wait time 3 is safe for CP, but our MMIO read/write
455 			 * time is close to 1 microsecond, so check for 10 to
456 			 * leave more buffer room
457 			 */
458 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
459 					>= 10)
460 				break;
461 			pr_debug("IQ timer is active\n");
462 		} else
463 			break;
464 loop:
465 		if (!retry) {
466 			pr_err("CP HQD IQ timer status time out\n");
467 			break;
468 		}
469 		ndelay(100);
470 		--retry;
471 	}
472 	retry = 1000;
473 	while (true) {
474 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
475 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
476 			break;
477 		pr_debug("Dequeue request is pending\n");
478 
479 		if (!retry) {
480 			pr_err("CP HQD dequeue request time out\n");
481 			break;
482 		}
483 		ndelay(100);
484 		--retry;
485 	}
486 	local_irq_restore(flags);
487 	preempt_enable();
488 
489 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
490 
491 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
492 	while (true) {
493 		temp = RREG32(mmCP_HQD_ACTIVE);
494 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
495 			break;
496 		if (time_after(jiffies, end_jiffies)) {
497 			pr_err("cp queue preemption time out.\n");
498 			release_queue(kgd);
499 			return -ETIME;
500 		}
501 		usleep_range(500, 1000);
502 	}
503 
504 	release_queue(kgd);
505 	return 0;
506 }
507 
508 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
509 				unsigned int utimeout)
510 {
511 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
512 	struct cik_sdma_rlc_registers *m;
513 	uint32_t sdma_base_addr;
514 	uint32_t temp;
515 	int timeout = utimeout;
516 
517 	m = get_sdma_mqd(mqd);
518 	sdma_base_addr = get_sdma_base_addr(m);
519 
520 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
521 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
522 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
523 
524 	while (true) {
525 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
526 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
527 			break;
528 		if (timeout <= 0)
529 			return -ETIME;
530 		msleep(20);
531 		timeout -= 20;
532 	}
533 
534 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
535 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
536 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
537 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
538 
539 	return 0;
540 }
541 
542 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
543 							uint8_t vmid)
544 {
545 	uint32_t reg;
546 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
547 
548 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
549 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
550 }
551 
552 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
553 								uint8_t vmid)
554 {
555 	uint32_t reg;
556 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
557 
558 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
559 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
560 }
561 
562 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
563 {
564 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
565 
566 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
567 }
568 
569 static int kgd_address_watch_disable(struct kgd_dev *kgd)
570 {
571 	return 0;
572 }
573 
574 static int kgd_address_watch_execute(struct kgd_dev *kgd,
575 					unsigned int watch_point_id,
576 					uint32_t cntl_val,
577 					uint32_t addr_hi,
578 					uint32_t addr_lo)
579 {
580 	return 0;
581 }
582 
583 static int kgd_wave_control_execute(struct kgd_dev *kgd,
584 					uint32_t gfx_index_val,
585 					uint32_t sq_cmd)
586 {
587 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
588 	uint32_t data = 0;
589 
590 	mutex_lock(&adev->grbm_idx_mutex);
591 
592 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
593 	WREG32(mmSQ_CMD, sq_cmd);
594 
595 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
596 		INSTANCE_BROADCAST_WRITES, 1);
597 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
598 		SH_BROADCAST_WRITES, 1);
599 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
600 		SE_BROADCAST_WRITES, 1);
601 
602 	WREG32(mmGRBM_GFX_INDEX, data);
603 	mutex_unlock(&adev->grbm_idx_mutex);
604 
605 	return 0;
606 }
607 
608 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
609 					unsigned int watch_point_id,
610 					unsigned int reg_offset)
611 {
612 	return 0;
613 }
614 
615 static void set_scratch_backing_va(struct kgd_dev *kgd,
616 					uint64_t va, uint32_t vmid)
617 {
618 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
619 
620 	lock_srbm(kgd, 0, 0, 0, vmid);
621 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
622 	unlock_srbm(kgd);
623 }
624 
625 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
626 {
627 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
628 	const union amdgpu_firmware_header *hdr;
629 
630 	BUG_ON(kgd == NULL);
631 
632 	switch (type) {
633 	case KGD_ENGINE_PFP:
634 		hdr = (const union amdgpu_firmware_header *)
635 						adev->gfx.pfp_fw->data;
636 		break;
637 
638 	case KGD_ENGINE_ME:
639 		hdr = (const union amdgpu_firmware_header *)
640 						adev->gfx.me_fw->data;
641 		break;
642 
643 	case KGD_ENGINE_CE:
644 		hdr = (const union amdgpu_firmware_header *)
645 						adev->gfx.ce_fw->data;
646 		break;
647 
648 	case KGD_ENGINE_MEC1:
649 		hdr = (const union amdgpu_firmware_header *)
650 						adev->gfx.mec_fw->data;
651 		break;
652 
653 	case KGD_ENGINE_MEC2:
654 		hdr = (const union amdgpu_firmware_header *)
655 						adev->gfx.mec2_fw->data;
656 		break;
657 
658 	case KGD_ENGINE_RLC:
659 		hdr = (const union amdgpu_firmware_header *)
660 						adev->gfx.rlc_fw->data;
661 		break;
662 
663 	case KGD_ENGINE_SDMA1:
664 		hdr = (const union amdgpu_firmware_header *)
665 						adev->sdma.instance[0].fw->data;
666 		break;
667 
668 	case KGD_ENGINE_SDMA2:
669 		hdr = (const union amdgpu_firmware_header *)
670 						adev->sdma.instance[1].fw->data;
671 		break;
672 
673 	default:
674 		return 0;
675 	}
676 
677 	if (hdr == NULL)
678 		return 0;
679 
680 	/* Only 12 bit in use*/
681 	return hdr->common.ucode_version;
682 }
683