1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 /*
49  * Register access functions
50  */
51 
52 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
53 		uint32_t sh_mem_config,
54 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
55 		uint32_t sh_mem_bases);
56 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
57 		unsigned int vmid);
58 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
59 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
60 			uint32_t queue_id, uint32_t __user *wptr,
61 			uint32_t wptr_shift, uint32_t wptr_mask,
62 			struct mm_struct *mm);
63 static int kgd_hqd_dump(struct kgd_dev *kgd,
64 			uint32_t pipe_id, uint32_t queue_id,
65 			uint32_t (**dump)[2], uint32_t *n_regs);
66 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
67 			     uint32_t __user *wptr, struct mm_struct *mm);
68 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
69 			     uint32_t engine_id, uint32_t queue_id,
70 			     uint32_t (**dump)[2], uint32_t *n_regs);
71 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
72 		uint32_t pipe_id, uint32_t queue_id);
73 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
74 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
75 				enum kfd_preempt_type reset_type,
76 				unsigned int utimeout, uint32_t pipe_id,
77 				uint32_t queue_id);
78 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
79 				unsigned int utimeout);
80 static int kgd_address_watch_disable(struct kgd_dev *kgd);
81 static int kgd_address_watch_execute(struct kgd_dev *kgd,
82 					unsigned int watch_point_id,
83 					uint32_t cntl_val,
84 					uint32_t addr_hi,
85 					uint32_t addr_lo);
86 static int kgd_wave_control_execute(struct kgd_dev *kgd,
87 					uint32_t gfx_index_val,
88 					uint32_t sq_cmd);
89 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
90 					unsigned int watch_point_id,
91 					unsigned int reg_offset);
92 
93 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
94 		uint8_t vmid);
95 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
96 		uint8_t vmid);
97 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
98 static void set_scratch_backing_va(struct kgd_dev *kgd,
99 					uint64_t va, uint32_t vmid);
100 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
101 		uint64_t page_table_base);
102 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
103 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
104 
105 /* Because of REG_GET_FIELD() being used, we put this function in the
106  * asic specific file.
107  */
108 static int get_tile_config(struct kgd_dev *kgd,
109 		struct tile_config *config)
110 {
111 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
112 
113 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
114 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
115 				MC_ARB_RAMCFG, NOOFBANK);
116 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
117 				MC_ARB_RAMCFG, NOOFRANKS);
118 
119 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
120 	config->num_tile_configs =
121 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
122 	config->macro_tile_config_ptr =
123 			adev->gfx.config.macrotile_mode_array;
124 	config->num_macro_tile_configs =
125 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
126 
127 	return 0;
128 }
129 
130 static const struct kfd2kgd_calls kfd2kgd = {
131 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
132 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
133 	.init_interrupts = kgd_init_interrupts,
134 	.hqd_load = kgd_hqd_load,
135 	.hqd_sdma_load = kgd_hqd_sdma_load,
136 	.hqd_dump = kgd_hqd_dump,
137 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
138 	.hqd_is_occupied = kgd_hqd_is_occupied,
139 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
140 	.hqd_destroy = kgd_hqd_destroy,
141 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
142 	.address_watch_disable = kgd_address_watch_disable,
143 	.address_watch_execute = kgd_address_watch_execute,
144 	.wave_control_execute = kgd_wave_control_execute,
145 	.address_watch_get_offset = kgd_address_watch_get_offset,
146 	.get_atc_vmid_pasid_mapping_pasid =
147 			get_atc_vmid_pasid_mapping_pasid,
148 	.get_atc_vmid_pasid_mapping_valid =
149 			get_atc_vmid_pasid_mapping_valid,
150 	.get_fw_version = get_fw_version,
151 	.set_scratch_backing_va = set_scratch_backing_va,
152 	.get_tile_config = get_tile_config,
153 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
154 	.invalidate_tlbs = invalidate_tlbs,
155 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
156 };
157 
158 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
159 {
160 	return (struct kfd2kgd_calls *)&kfd2kgd;
161 }
162 
163 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
164 {
165 	return (struct amdgpu_device *)kgd;
166 }
167 
168 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
169 			uint32_t queue, uint32_t vmid)
170 {
171 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
172 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
173 
174 	mutex_lock(&adev->srbm_mutex);
175 	WREG32(mmSRBM_GFX_CNTL, value);
176 }
177 
178 static void unlock_srbm(struct kgd_dev *kgd)
179 {
180 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
181 
182 	WREG32(mmSRBM_GFX_CNTL, 0);
183 	mutex_unlock(&adev->srbm_mutex);
184 }
185 
186 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
187 				uint32_t queue_id)
188 {
189 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
190 
191 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
192 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
193 
194 	lock_srbm(kgd, mec, pipe, queue_id, 0);
195 }
196 
197 static void release_queue(struct kgd_dev *kgd)
198 {
199 	unlock_srbm(kgd);
200 }
201 
202 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
203 					uint32_t sh_mem_config,
204 					uint32_t sh_mem_ape1_base,
205 					uint32_t sh_mem_ape1_limit,
206 					uint32_t sh_mem_bases)
207 {
208 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
209 
210 	lock_srbm(kgd, 0, 0, 0, vmid);
211 
212 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
213 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
214 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
215 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
216 
217 	unlock_srbm(kgd);
218 }
219 
220 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
221 					unsigned int vmid)
222 {
223 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
224 
225 	/*
226 	 * We have to assume that there is no outstanding mapping.
227 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
228 	 * a mapping is in progress or because a mapping finished
229 	 * and the SW cleared it.
230 	 * So the protocol is to always wait & clear.
231 	 */
232 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
233 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
234 
235 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
236 
237 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
238 		cpu_relax();
239 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
240 
241 	/* Mapping vmid to pasid also for IH block */
242 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
243 
244 	return 0;
245 }
246 
247 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
248 {
249 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
250 	uint32_t mec;
251 	uint32_t pipe;
252 
253 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
254 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
255 
256 	lock_srbm(kgd, mec, pipe, 0, 0);
257 
258 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
259 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
260 
261 	unlock_srbm(kgd);
262 
263 	return 0;
264 }
265 
266 static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
267 {
268 	uint32_t retval;
269 
270 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
271 		m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
272 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
273 
274 	return retval;
275 }
276 
277 static inline struct vi_mqd *get_mqd(void *mqd)
278 {
279 	return (struct vi_mqd *)mqd;
280 }
281 
282 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
283 {
284 	return (struct vi_sdma_mqd *)mqd;
285 }
286 
287 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
288 			uint32_t queue_id, uint32_t __user *wptr,
289 			uint32_t wptr_shift, uint32_t wptr_mask,
290 			struct mm_struct *mm)
291 {
292 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
293 	struct vi_mqd *m;
294 	uint32_t *mqd_hqd;
295 	uint32_t reg, wptr_val, data;
296 	bool valid_wptr = false;
297 
298 	m = get_mqd(mqd);
299 
300 	acquire_queue(kgd, pipe_id, queue_id);
301 
302 	/* HIQ is set during driver init period with vmid set to 0*/
303 	if (m->cp_hqd_vmid == 0) {
304 		uint32_t value, mec, pipe;
305 
306 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
307 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
308 
309 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
310 			mec, pipe, queue_id);
311 		value = RREG32(mmRLC_CP_SCHEDULERS);
312 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
313 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
314 		WREG32(mmRLC_CP_SCHEDULERS, value);
315 	}
316 
317 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
318 	mqd_hqd = &m->cp_mqd_base_addr_lo;
319 
320 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
321 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
322 
323 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
324 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
325 	 * on ASICs that do not support context-save.
326 	 * EOP writes/reads can start anywhere in the ring.
327 	 */
328 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
329 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
330 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
331 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
332 	}
333 
334 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
335 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
336 
337 	/* Copy userspace write pointer value to register.
338 	 * Activate doorbell logic to monitor subsequent changes.
339 	 */
340 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
341 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
342 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
343 
344 	/* read_user_ptr may take the mm->mmap_sem.
345 	 * release srbm_mutex to avoid circular dependency between
346 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
347 	 */
348 	release_queue(kgd);
349 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
350 	acquire_queue(kgd, pipe_id, queue_id);
351 	if (valid_wptr)
352 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
353 
354 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
355 	WREG32(mmCP_HQD_ACTIVE, data);
356 
357 	release_queue(kgd);
358 
359 	return 0;
360 }
361 
362 static int kgd_hqd_dump(struct kgd_dev *kgd,
363 			uint32_t pipe_id, uint32_t queue_id,
364 			uint32_t (**dump)[2], uint32_t *n_regs)
365 {
366 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
367 	uint32_t i = 0, reg;
368 #define HQD_N_REGS (54+4)
369 #define DUMP_REG(addr) do {				\
370 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
371 			break;				\
372 		(*dump)[i][0] = (addr) << 2;		\
373 		(*dump)[i++][1] = RREG32(addr);		\
374 	} while (0)
375 
376 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
377 	if (*dump == NULL)
378 		return -ENOMEM;
379 
380 	acquire_queue(kgd, pipe_id, queue_id);
381 
382 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
383 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
384 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
385 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
386 
387 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
388 		DUMP_REG(reg);
389 
390 	release_queue(kgd);
391 
392 	WARN_ON_ONCE(i != HQD_N_REGS);
393 	*n_regs = i;
394 
395 	return 0;
396 }
397 
398 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
399 			     uint32_t __user *wptr, struct mm_struct *mm)
400 {
401 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
402 	struct vi_sdma_mqd *m;
403 	unsigned long end_jiffies;
404 	uint32_t sdma_base_addr;
405 	uint32_t data;
406 
407 	m = get_sdma_mqd(mqd);
408 	sdma_base_addr = get_sdma_base_addr(m);
409 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
410 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
411 
412 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
413 	while (true) {
414 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
415 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
416 			break;
417 		if (time_after(jiffies, end_jiffies))
418 			return -ETIME;
419 		usleep_range(500, 1000);
420 	}
421 	if (m->sdma_engine_id) {
422 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
423 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
424 				RESUME_CTX, 0);
425 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
426 	} else {
427 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
428 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
429 				RESUME_CTX, 0);
430 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
431 	}
432 
433 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
434 			     ENABLE, 1);
435 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
436 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
437 
438 	if (read_user_wptr(mm, wptr, data))
439 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
440 	else
441 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
442 		       m->sdmax_rlcx_rb_rptr);
443 
444 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
445 				m->sdmax_rlcx_virtual_addr);
446 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
447 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
448 			m->sdmax_rlcx_rb_base_hi);
449 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
450 			m->sdmax_rlcx_rb_rptr_addr_lo);
451 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
452 			m->sdmax_rlcx_rb_rptr_addr_hi);
453 
454 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
455 			     RB_ENABLE, 1);
456 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
457 
458 	return 0;
459 }
460 
461 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
462 			     uint32_t engine_id, uint32_t queue_id,
463 			     uint32_t (**dump)[2], uint32_t *n_regs)
464 {
465 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
466 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
467 		queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
468 	uint32_t i = 0, reg;
469 #undef HQD_N_REGS
470 #define HQD_N_REGS (19+4+2+3+7)
471 
472 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
473 	if (*dump == NULL)
474 		return -ENOMEM;
475 
476 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
477 		DUMP_REG(sdma_offset + reg);
478 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
479 	     reg++)
480 		DUMP_REG(sdma_offset + reg);
481 	for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
482 	     reg++)
483 		DUMP_REG(sdma_offset + reg);
484 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
485 	     reg++)
486 		DUMP_REG(sdma_offset + reg);
487 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
488 	     reg++)
489 		DUMP_REG(sdma_offset + reg);
490 
491 	WARN_ON_ONCE(i != HQD_N_REGS);
492 	*n_regs = i;
493 
494 	return 0;
495 }
496 
497 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
498 				uint32_t pipe_id, uint32_t queue_id)
499 {
500 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
501 	uint32_t act;
502 	bool retval = false;
503 	uint32_t low, high;
504 
505 	acquire_queue(kgd, pipe_id, queue_id);
506 	act = RREG32(mmCP_HQD_ACTIVE);
507 	if (act) {
508 		low = lower_32_bits(queue_address >> 8);
509 		high = upper_32_bits(queue_address >> 8);
510 
511 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
512 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
513 			retval = true;
514 	}
515 	release_queue(kgd);
516 	return retval;
517 }
518 
519 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
520 {
521 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
522 	struct vi_sdma_mqd *m;
523 	uint32_t sdma_base_addr;
524 	uint32_t sdma_rlc_rb_cntl;
525 
526 	m = get_sdma_mqd(mqd);
527 	sdma_base_addr = get_sdma_base_addr(m);
528 
529 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
530 
531 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
532 		return true;
533 
534 	return false;
535 }
536 
537 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
538 				enum kfd_preempt_type reset_type,
539 				unsigned int utimeout, uint32_t pipe_id,
540 				uint32_t queue_id)
541 {
542 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
543 	uint32_t temp;
544 	enum hqd_dequeue_request_type type;
545 	unsigned long flags, end_jiffies;
546 	int retry;
547 	struct vi_mqd *m = get_mqd(mqd);
548 
549 	if (adev->in_gpu_reset)
550 		return -EIO;
551 
552 	acquire_queue(kgd, pipe_id, queue_id);
553 
554 	if (m->cp_hqd_vmid == 0)
555 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
556 
557 	switch (reset_type) {
558 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
559 		type = DRAIN_PIPE;
560 		break;
561 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
562 		type = RESET_WAVES;
563 		break;
564 	default:
565 		type = DRAIN_PIPE;
566 		break;
567 	}
568 
569 	/* Workaround: If IQ timer is active and the wait time is close to or
570 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
571 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
572 	 * cleared before continuing. Also, ensure wait times are set to at
573 	 * least 0x3.
574 	 */
575 	local_irq_save(flags);
576 	preempt_disable();
577 	retry = 5000; /* wait for 500 usecs at maximum */
578 	while (true) {
579 		temp = RREG32(mmCP_HQD_IQ_TIMER);
580 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
581 			pr_debug("HW is processing IQ\n");
582 			goto loop;
583 		}
584 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
585 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
586 					== 3) /* SEM-rearm is safe */
587 				break;
588 			/* Wait time 3 is safe for CP, but our MMIO read/write
589 			 * time is close to 1 microsecond, so check for 10 to
590 			 * leave more buffer room
591 			 */
592 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
593 					>= 10)
594 				break;
595 			pr_debug("IQ timer is active\n");
596 		} else
597 			break;
598 loop:
599 		if (!retry) {
600 			pr_err("CP HQD IQ timer status time out\n");
601 			break;
602 		}
603 		ndelay(100);
604 		--retry;
605 	}
606 	retry = 1000;
607 	while (true) {
608 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
609 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
610 			break;
611 		pr_debug("Dequeue request is pending\n");
612 
613 		if (!retry) {
614 			pr_err("CP HQD dequeue request time out\n");
615 			break;
616 		}
617 		ndelay(100);
618 		--retry;
619 	}
620 	local_irq_restore(flags);
621 	preempt_enable();
622 
623 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
624 
625 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
626 	while (true) {
627 		temp = RREG32(mmCP_HQD_ACTIVE);
628 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
629 			break;
630 		if (time_after(jiffies, end_jiffies)) {
631 			pr_err("cp queue preemption time out.\n");
632 			release_queue(kgd);
633 			return -ETIME;
634 		}
635 		usleep_range(500, 1000);
636 	}
637 
638 	release_queue(kgd);
639 	return 0;
640 }
641 
642 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
643 				unsigned int utimeout)
644 {
645 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
646 	struct vi_sdma_mqd *m;
647 	uint32_t sdma_base_addr;
648 	uint32_t temp;
649 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
650 
651 	m = get_sdma_mqd(mqd);
652 	sdma_base_addr = get_sdma_base_addr(m);
653 
654 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
655 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
656 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
657 
658 	while (true) {
659 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
660 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
661 			break;
662 		if (time_after(jiffies, end_jiffies))
663 			return -ETIME;
664 		usleep_range(500, 1000);
665 	}
666 
667 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
668 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
669 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
670 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
671 
672 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
673 
674 	return 0;
675 }
676 
677 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
678 							uint8_t vmid)
679 {
680 	uint32_t reg;
681 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
682 
683 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
684 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
685 }
686 
687 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
688 								uint8_t vmid)
689 {
690 	uint32_t reg;
691 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
692 
693 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
694 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
695 }
696 
697 static int kgd_address_watch_disable(struct kgd_dev *kgd)
698 {
699 	return 0;
700 }
701 
702 static int kgd_address_watch_execute(struct kgd_dev *kgd,
703 					unsigned int watch_point_id,
704 					uint32_t cntl_val,
705 					uint32_t addr_hi,
706 					uint32_t addr_lo)
707 {
708 	return 0;
709 }
710 
711 static int kgd_wave_control_execute(struct kgd_dev *kgd,
712 					uint32_t gfx_index_val,
713 					uint32_t sq_cmd)
714 {
715 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
716 	uint32_t data = 0;
717 
718 	mutex_lock(&adev->grbm_idx_mutex);
719 
720 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
721 	WREG32(mmSQ_CMD, sq_cmd);
722 
723 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
724 		INSTANCE_BROADCAST_WRITES, 1);
725 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
726 		SH_BROADCAST_WRITES, 1);
727 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
728 		SE_BROADCAST_WRITES, 1);
729 
730 	WREG32(mmGRBM_GFX_INDEX, data);
731 	mutex_unlock(&adev->grbm_idx_mutex);
732 
733 	return 0;
734 }
735 
736 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
737 					unsigned int watch_point_id,
738 					unsigned int reg_offset)
739 {
740 	return 0;
741 }
742 
743 static void set_scratch_backing_va(struct kgd_dev *kgd,
744 					uint64_t va, uint32_t vmid)
745 {
746 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
747 
748 	lock_srbm(kgd, 0, 0, 0, vmid);
749 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
750 	unlock_srbm(kgd);
751 }
752 
753 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
754 {
755 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
756 	const union amdgpu_firmware_header *hdr;
757 
758 	switch (type) {
759 	case KGD_ENGINE_PFP:
760 		hdr = (const union amdgpu_firmware_header *)
761 						adev->gfx.pfp_fw->data;
762 		break;
763 
764 	case KGD_ENGINE_ME:
765 		hdr = (const union amdgpu_firmware_header *)
766 						adev->gfx.me_fw->data;
767 		break;
768 
769 	case KGD_ENGINE_CE:
770 		hdr = (const union amdgpu_firmware_header *)
771 						adev->gfx.ce_fw->data;
772 		break;
773 
774 	case KGD_ENGINE_MEC1:
775 		hdr = (const union amdgpu_firmware_header *)
776 						adev->gfx.mec_fw->data;
777 		break;
778 
779 	case KGD_ENGINE_MEC2:
780 		hdr = (const union amdgpu_firmware_header *)
781 						adev->gfx.mec2_fw->data;
782 		break;
783 
784 	case KGD_ENGINE_RLC:
785 		hdr = (const union amdgpu_firmware_header *)
786 						adev->gfx.rlc_fw->data;
787 		break;
788 
789 	case KGD_ENGINE_SDMA1:
790 		hdr = (const union amdgpu_firmware_header *)
791 						adev->sdma.instance[0].fw->data;
792 		break;
793 
794 	case KGD_ENGINE_SDMA2:
795 		hdr = (const union amdgpu_firmware_header *)
796 						adev->sdma.instance[1].fw->data;
797 		break;
798 
799 	default:
800 		return 0;
801 	}
802 
803 	if (hdr == NULL)
804 		return 0;
805 
806 	/* Only 12 bit in use*/
807 	return hdr->common.ucode_version;
808 }
809 
810 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
811 		uint64_t page_table_base)
812 {
813 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
814 
815 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
816 		pr_err("trying to set page table base for wrong VMID\n");
817 		return;
818 	}
819 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
820 			lower_32_bits(page_table_base));
821 }
822 
823 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
824 {
825 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
826 	int vmid;
827 	unsigned int tmp;
828 
829 	if (adev->in_gpu_reset)
830 		return -EIO;
831 
832 	for (vmid = 0; vmid < 16; vmid++) {
833 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
834 			continue;
835 
836 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
837 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
838 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
839 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
840 			RREG32(mmVM_INVALIDATE_RESPONSE);
841 			break;
842 		}
843 	}
844 
845 	return 0;
846 }
847 
848 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
849 {
850 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
851 
852 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
853 		pr_err("non kfd vmid %d\n", vmid);
854 		return -EINVAL;
855 	}
856 
857 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
858 	RREG32(mmVM_INVALIDATE_RESPONSE);
859 	return 0;
860 }
861