1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 struct vi_sdma_mqd;
49 
50 /*
51  * Register access functions
52  */
53 
54 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
55 		uint32_t sh_mem_config,
56 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
57 		uint32_t sh_mem_bases);
58 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
59 		unsigned int vmid);
60 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
61 		uint32_t hpd_size, uint64_t hpd_gpu_addr);
62 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
63 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
64 			uint32_t queue_id, uint32_t __user *wptr,
65 			uint32_t wptr_shift, uint32_t wptr_mask,
66 			struct mm_struct *mm);
67 static int kgd_hqd_dump(struct kgd_dev *kgd,
68 			uint32_t pipe_id, uint32_t queue_id,
69 			uint32_t (**dump)[2], uint32_t *n_regs);
70 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
71 			     uint32_t __user *wptr, struct mm_struct *mm);
72 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
73 			     uint32_t engine_id, uint32_t queue_id,
74 			     uint32_t (**dump)[2], uint32_t *n_regs);
75 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
76 		uint32_t pipe_id, uint32_t queue_id);
77 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
78 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
79 				enum kfd_preempt_type reset_type,
80 				unsigned int utimeout, uint32_t pipe_id,
81 				uint32_t queue_id);
82 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
83 				unsigned int utimeout);
84 static int kgd_address_watch_disable(struct kgd_dev *kgd);
85 static int kgd_address_watch_execute(struct kgd_dev *kgd,
86 					unsigned int watch_point_id,
87 					uint32_t cntl_val,
88 					uint32_t addr_hi,
89 					uint32_t addr_lo);
90 static int kgd_wave_control_execute(struct kgd_dev *kgd,
91 					uint32_t gfx_index_val,
92 					uint32_t sq_cmd);
93 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
94 					unsigned int watch_point_id,
95 					unsigned int reg_offset);
96 
97 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
98 		uint8_t vmid);
99 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
100 		uint8_t vmid);
101 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
102 static void set_scratch_backing_va(struct kgd_dev *kgd,
103 					uint64_t va, uint32_t vmid);
104 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
105 		uint32_t page_table_base);
106 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
107 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
108 
109 /* Because of REG_GET_FIELD() being used, we put this function in the
110  * asic specific file.
111  */
112 static int get_tile_config(struct kgd_dev *kgd,
113 		struct tile_config *config)
114 {
115 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
116 
117 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
118 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
119 				MC_ARB_RAMCFG, NOOFBANK);
120 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
121 				MC_ARB_RAMCFG, NOOFRANKS);
122 
123 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
124 	config->num_tile_configs =
125 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
126 	config->macro_tile_config_ptr =
127 			adev->gfx.config.macrotile_mode_array;
128 	config->num_macro_tile_configs =
129 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
130 
131 	return 0;
132 }
133 
134 static const struct kfd2kgd_calls kfd2kgd = {
135 	.init_gtt_mem_allocation = alloc_gtt_mem,
136 	.free_gtt_mem = free_gtt_mem,
137 	.get_local_mem_info = get_local_mem_info,
138 	.get_gpu_clock_counter = get_gpu_clock_counter,
139 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
140 	.alloc_pasid = amdgpu_pasid_alloc,
141 	.free_pasid = amdgpu_pasid_free,
142 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
143 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
144 	.init_pipeline = kgd_init_pipeline,
145 	.init_interrupts = kgd_init_interrupts,
146 	.hqd_load = kgd_hqd_load,
147 	.hqd_sdma_load = kgd_hqd_sdma_load,
148 	.hqd_dump = kgd_hqd_dump,
149 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
150 	.hqd_is_occupied = kgd_hqd_is_occupied,
151 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
152 	.hqd_destroy = kgd_hqd_destroy,
153 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
154 	.address_watch_disable = kgd_address_watch_disable,
155 	.address_watch_execute = kgd_address_watch_execute,
156 	.wave_control_execute = kgd_wave_control_execute,
157 	.address_watch_get_offset = kgd_address_watch_get_offset,
158 	.get_atc_vmid_pasid_mapping_pasid =
159 			get_atc_vmid_pasid_mapping_pasid,
160 	.get_atc_vmid_pasid_mapping_valid =
161 			get_atc_vmid_pasid_mapping_valid,
162 	.get_fw_version = get_fw_version,
163 	.set_scratch_backing_va = set_scratch_backing_va,
164 	.get_tile_config = get_tile_config,
165 	.get_cu_info = get_cu_info,
166 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
167 	.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
168 	.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
169 	.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
170 	.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
171 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
172 	.alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
173 	.free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
174 	.map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
175 	.unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
176 	.sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
177 	.map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
178 	.restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
179 	.invalidate_tlbs = invalidate_tlbs,
180 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
181 	.submit_ib = amdgpu_amdkfd_submit_ib,
182 };
183 
184 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
185 {
186 	return (struct kfd2kgd_calls *)&kfd2kgd;
187 }
188 
189 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
190 {
191 	return (struct amdgpu_device *)kgd;
192 }
193 
194 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
195 			uint32_t queue, uint32_t vmid)
196 {
197 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
198 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
199 
200 	mutex_lock(&adev->srbm_mutex);
201 	WREG32(mmSRBM_GFX_CNTL, value);
202 }
203 
204 static void unlock_srbm(struct kgd_dev *kgd)
205 {
206 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
207 
208 	WREG32(mmSRBM_GFX_CNTL, 0);
209 	mutex_unlock(&adev->srbm_mutex);
210 }
211 
212 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
213 				uint32_t queue_id)
214 {
215 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
216 
217 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
218 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
219 
220 	lock_srbm(kgd, mec, pipe, queue_id, 0);
221 }
222 
223 static void release_queue(struct kgd_dev *kgd)
224 {
225 	unlock_srbm(kgd);
226 }
227 
228 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
229 					uint32_t sh_mem_config,
230 					uint32_t sh_mem_ape1_base,
231 					uint32_t sh_mem_ape1_limit,
232 					uint32_t sh_mem_bases)
233 {
234 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
235 
236 	lock_srbm(kgd, 0, 0, 0, vmid);
237 
238 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
239 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
240 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
241 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
242 
243 	unlock_srbm(kgd);
244 }
245 
246 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
247 					unsigned int vmid)
248 {
249 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
250 
251 	/*
252 	 * We have to assume that there is no outstanding mapping.
253 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
254 	 * a mapping is in progress or because a mapping finished
255 	 * and the SW cleared it.
256 	 * So the protocol is to always wait & clear.
257 	 */
258 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
259 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
260 
261 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
262 
263 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
264 		cpu_relax();
265 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
266 
267 	/* Mapping vmid to pasid also for IH block */
268 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
269 
270 	return 0;
271 }
272 
273 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
274 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
275 {
276 	/* amdgpu owns the per-pipe state */
277 	return 0;
278 }
279 
280 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
281 {
282 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
283 	uint32_t mec;
284 	uint32_t pipe;
285 
286 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
287 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
288 
289 	lock_srbm(kgd, mec, pipe, 0, 0);
290 
291 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
292 
293 	unlock_srbm(kgd);
294 
295 	return 0;
296 }
297 
298 static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
299 {
300 	uint32_t retval;
301 
302 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
303 		m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
304 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
305 
306 	return retval;
307 }
308 
309 static inline struct vi_mqd *get_mqd(void *mqd)
310 {
311 	return (struct vi_mqd *)mqd;
312 }
313 
314 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
315 {
316 	return (struct vi_sdma_mqd *)mqd;
317 }
318 
319 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
320 			uint32_t queue_id, uint32_t __user *wptr,
321 			uint32_t wptr_shift, uint32_t wptr_mask,
322 			struct mm_struct *mm)
323 {
324 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
325 	struct vi_mqd *m;
326 	uint32_t *mqd_hqd;
327 	uint32_t reg, wptr_val, data;
328 	bool valid_wptr = false;
329 
330 	m = get_mqd(mqd);
331 
332 	acquire_queue(kgd, pipe_id, queue_id);
333 
334 	/* HIQ is set during driver init period with vmid set to 0*/
335 	if (m->cp_hqd_vmid == 0) {
336 		uint32_t value, mec, pipe;
337 
338 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
339 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
340 
341 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
342 			mec, pipe, queue_id);
343 		value = RREG32(mmRLC_CP_SCHEDULERS);
344 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
345 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
346 		WREG32(mmRLC_CP_SCHEDULERS, value);
347 	}
348 
349 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
350 	mqd_hqd = &m->cp_mqd_base_addr_lo;
351 
352 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
353 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
354 
355 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
356 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
357 	 * on ASICs that do not support context-save.
358 	 * EOP writes/reads can start anywhere in the ring.
359 	 */
360 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
361 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
362 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
363 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
364 	}
365 
366 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
367 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
368 
369 	/* Copy userspace write pointer value to register.
370 	 * Activate doorbell logic to monitor subsequent changes.
371 	 */
372 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
373 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
374 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
375 
376 	/* read_user_ptr may take the mm->mmap_sem.
377 	 * release srbm_mutex to avoid circular dependency between
378 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
379 	 */
380 	release_queue(kgd);
381 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
382 	acquire_queue(kgd, pipe_id, queue_id);
383 	if (valid_wptr)
384 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
385 
386 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
387 	WREG32(mmCP_HQD_ACTIVE, data);
388 
389 	release_queue(kgd);
390 
391 	return 0;
392 }
393 
394 static int kgd_hqd_dump(struct kgd_dev *kgd,
395 			uint32_t pipe_id, uint32_t queue_id,
396 			uint32_t (**dump)[2], uint32_t *n_regs)
397 {
398 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
399 	uint32_t i = 0, reg;
400 #define HQD_N_REGS (54+4)
401 #define DUMP_REG(addr) do {				\
402 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
403 			break;				\
404 		(*dump)[i][0] = (addr) << 2;		\
405 		(*dump)[i++][1] = RREG32(addr);		\
406 	} while (0)
407 
408 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
409 	if (*dump == NULL)
410 		return -ENOMEM;
411 
412 	acquire_queue(kgd, pipe_id, queue_id);
413 
414 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
415 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
416 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
417 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
418 
419 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
420 		DUMP_REG(reg);
421 
422 	release_queue(kgd);
423 
424 	WARN_ON_ONCE(i != HQD_N_REGS);
425 	*n_regs = i;
426 
427 	return 0;
428 }
429 
430 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
431 			     uint32_t __user *wptr, struct mm_struct *mm)
432 {
433 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
434 	struct vi_sdma_mqd *m;
435 	unsigned long end_jiffies;
436 	uint32_t sdma_base_addr;
437 	uint32_t data;
438 
439 	m = get_sdma_mqd(mqd);
440 	sdma_base_addr = get_sdma_base_addr(m);
441 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
442 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
443 
444 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
445 	while (true) {
446 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
447 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
448 			break;
449 		if (time_after(jiffies, end_jiffies))
450 			return -ETIME;
451 		usleep_range(500, 1000);
452 	}
453 	if (m->sdma_engine_id) {
454 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
455 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
456 				RESUME_CTX, 0);
457 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
458 	} else {
459 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
460 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
461 				RESUME_CTX, 0);
462 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
463 	}
464 
465 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
466 			     ENABLE, 1);
467 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
468 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
469 
470 	if (read_user_wptr(mm, wptr, data))
471 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
472 	else
473 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
474 		       m->sdmax_rlcx_rb_rptr);
475 
476 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
477 				m->sdmax_rlcx_virtual_addr);
478 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
479 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
480 			m->sdmax_rlcx_rb_base_hi);
481 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
482 			m->sdmax_rlcx_rb_rptr_addr_lo);
483 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
484 			m->sdmax_rlcx_rb_rptr_addr_hi);
485 
486 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
487 			     RB_ENABLE, 1);
488 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
489 
490 	return 0;
491 }
492 
493 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
494 			     uint32_t engine_id, uint32_t queue_id,
495 			     uint32_t (**dump)[2], uint32_t *n_regs)
496 {
497 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
498 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
499 		queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
500 	uint32_t i = 0, reg;
501 #undef HQD_N_REGS
502 #define HQD_N_REGS (19+4+2+3+7)
503 
504 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
505 	if (*dump == NULL)
506 		return -ENOMEM;
507 
508 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
509 		DUMP_REG(sdma_offset + reg);
510 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
511 	     reg++)
512 		DUMP_REG(sdma_offset + reg);
513 	for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
514 	     reg++)
515 		DUMP_REG(sdma_offset + reg);
516 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
517 	     reg++)
518 		DUMP_REG(sdma_offset + reg);
519 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
520 	     reg++)
521 		DUMP_REG(sdma_offset + reg);
522 
523 	WARN_ON_ONCE(i != HQD_N_REGS);
524 	*n_regs = i;
525 
526 	return 0;
527 }
528 
529 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
530 				uint32_t pipe_id, uint32_t queue_id)
531 {
532 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
533 	uint32_t act;
534 	bool retval = false;
535 	uint32_t low, high;
536 
537 	acquire_queue(kgd, pipe_id, queue_id);
538 	act = RREG32(mmCP_HQD_ACTIVE);
539 	if (act) {
540 		low = lower_32_bits(queue_address >> 8);
541 		high = upper_32_bits(queue_address >> 8);
542 
543 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
544 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
545 			retval = true;
546 	}
547 	release_queue(kgd);
548 	return retval;
549 }
550 
551 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
552 {
553 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
554 	struct vi_sdma_mqd *m;
555 	uint32_t sdma_base_addr;
556 	uint32_t sdma_rlc_rb_cntl;
557 
558 	m = get_sdma_mqd(mqd);
559 	sdma_base_addr = get_sdma_base_addr(m);
560 
561 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
562 
563 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
564 		return true;
565 
566 	return false;
567 }
568 
569 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
570 				enum kfd_preempt_type reset_type,
571 				unsigned int utimeout, uint32_t pipe_id,
572 				uint32_t queue_id)
573 {
574 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
575 	uint32_t temp;
576 	enum hqd_dequeue_request_type type;
577 	unsigned long flags, end_jiffies;
578 	int retry;
579 	struct vi_mqd *m = get_mqd(mqd);
580 
581 	acquire_queue(kgd, pipe_id, queue_id);
582 
583 	if (m->cp_hqd_vmid == 0)
584 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
585 
586 	switch (reset_type) {
587 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
588 		type = DRAIN_PIPE;
589 		break;
590 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
591 		type = RESET_WAVES;
592 		break;
593 	default:
594 		type = DRAIN_PIPE;
595 		break;
596 	}
597 
598 	/* Workaround: If IQ timer is active and the wait time is close to or
599 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
600 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
601 	 * cleared before continuing. Also, ensure wait times are set to at
602 	 * least 0x3.
603 	 */
604 	local_irq_save(flags);
605 	preempt_disable();
606 	retry = 5000; /* wait for 500 usecs at maximum */
607 	while (true) {
608 		temp = RREG32(mmCP_HQD_IQ_TIMER);
609 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
610 			pr_debug("HW is processing IQ\n");
611 			goto loop;
612 		}
613 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
614 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
615 					== 3) /* SEM-rearm is safe */
616 				break;
617 			/* Wait time 3 is safe for CP, but our MMIO read/write
618 			 * time is close to 1 microsecond, so check for 10 to
619 			 * leave more buffer room
620 			 */
621 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
622 					>= 10)
623 				break;
624 			pr_debug("IQ timer is active\n");
625 		} else
626 			break;
627 loop:
628 		if (!retry) {
629 			pr_err("CP HQD IQ timer status time out\n");
630 			break;
631 		}
632 		ndelay(100);
633 		--retry;
634 	}
635 	retry = 1000;
636 	while (true) {
637 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
638 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
639 			break;
640 		pr_debug("Dequeue request is pending\n");
641 
642 		if (!retry) {
643 			pr_err("CP HQD dequeue request time out\n");
644 			break;
645 		}
646 		ndelay(100);
647 		--retry;
648 	}
649 	local_irq_restore(flags);
650 	preempt_enable();
651 
652 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
653 
654 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
655 	while (true) {
656 		temp = RREG32(mmCP_HQD_ACTIVE);
657 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
658 			break;
659 		if (time_after(jiffies, end_jiffies)) {
660 			pr_err("cp queue preemption time out.\n");
661 			release_queue(kgd);
662 			return -ETIME;
663 		}
664 		usleep_range(500, 1000);
665 	}
666 
667 	release_queue(kgd);
668 	return 0;
669 }
670 
671 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
672 				unsigned int utimeout)
673 {
674 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
675 	struct vi_sdma_mqd *m;
676 	uint32_t sdma_base_addr;
677 	uint32_t temp;
678 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
679 
680 	m = get_sdma_mqd(mqd);
681 	sdma_base_addr = get_sdma_base_addr(m);
682 
683 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
684 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
685 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
686 
687 	while (true) {
688 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
689 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
690 			break;
691 		if (time_after(jiffies, end_jiffies))
692 			return -ETIME;
693 		usleep_range(500, 1000);
694 	}
695 
696 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
697 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
698 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
699 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
700 
701 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
702 
703 	return 0;
704 }
705 
706 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
707 							uint8_t vmid)
708 {
709 	uint32_t reg;
710 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
711 
712 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
713 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
714 }
715 
716 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
717 								uint8_t vmid)
718 {
719 	uint32_t reg;
720 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
721 
722 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
723 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
724 }
725 
726 static int kgd_address_watch_disable(struct kgd_dev *kgd)
727 {
728 	return 0;
729 }
730 
731 static int kgd_address_watch_execute(struct kgd_dev *kgd,
732 					unsigned int watch_point_id,
733 					uint32_t cntl_val,
734 					uint32_t addr_hi,
735 					uint32_t addr_lo)
736 {
737 	return 0;
738 }
739 
740 static int kgd_wave_control_execute(struct kgd_dev *kgd,
741 					uint32_t gfx_index_val,
742 					uint32_t sq_cmd)
743 {
744 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
745 	uint32_t data = 0;
746 
747 	mutex_lock(&adev->grbm_idx_mutex);
748 
749 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
750 	WREG32(mmSQ_CMD, sq_cmd);
751 
752 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
753 		INSTANCE_BROADCAST_WRITES, 1);
754 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
755 		SH_BROADCAST_WRITES, 1);
756 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
757 		SE_BROADCAST_WRITES, 1);
758 
759 	WREG32(mmGRBM_GFX_INDEX, data);
760 	mutex_unlock(&adev->grbm_idx_mutex);
761 
762 	return 0;
763 }
764 
765 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
766 					unsigned int watch_point_id,
767 					unsigned int reg_offset)
768 {
769 	return 0;
770 }
771 
772 static void set_scratch_backing_va(struct kgd_dev *kgd,
773 					uint64_t va, uint32_t vmid)
774 {
775 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
776 
777 	lock_srbm(kgd, 0, 0, 0, vmid);
778 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
779 	unlock_srbm(kgd);
780 }
781 
782 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
783 {
784 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
785 	const union amdgpu_firmware_header *hdr;
786 
787 	switch (type) {
788 	case KGD_ENGINE_PFP:
789 		hdr = (const union amdgpu_firmware_header *)
790 						adev->gfx.pfp_fw->data;
791 		break;
792 
793 	case KGD_ENGINE_ME:
794 		hdr = (const union amdgpu_firmware_header *)
795 						adev->gfx.me_fw->data;
796 		break;
797 
798 	case KGD_ENGINE_CE:
799 		hdr = (const union amdgpu_firmware_header *)
800 						adev->gfx.ce_fw->data;
801 		break;
802 
803 	case KGD_ENGINE_MEC1:
804 		hdr = (const union amdgpu_firmware_header *)
805 						adev->gfx.mec_fw->data;
806 		break;
807 
808 	case KGD_ENGINE_MEC2:
809 		hdr = (const union amdgpu_firmware_header *)
810 						adev->gfx.mec2_fw->data;
811 		break;
812 
813 	case KGD_ENGINE_RLC:
814 		hdr = (const union amdgpu_firmware_header *)
815 						adev->gfx.rlc_fw->data;
816 		break;
817 
818 	case KGD_ENGINE_SDMA1:
819 		hdr = (const union amdgpu_firmware_header *)
820 						adev->sdma.instance[0].fw->data;
821 		break;
822 
823 	case KGD_ENGINE_SDMA2:
824 		hdr = (const union amdgpu_firmware_header *)
825 						adev->sdma.instance[1].fw->data;
826 		break;
827 
828 	default:
829 		return 0;
830 	}
831 
832 	if (hdr == NULL)
833 		return 0;
834 
835 	/* Only 12 bit in use*/
836 	return hdr->common.ucode_version;
837 }
838 
839 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
840 		uint32_t page_table_base)
841 {
842 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
843 
844 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
845 		pr_err("trying to set page table base for wrong VMID\n");
846 		return;
847 	}
848 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
849 }
850 
851 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
852 {
853 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
854 	int vmid;
855 	unsigned int tmp;
856 
857 	for (vmid = 0; vmid < 16; vmid++) {
858 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
859 			continue;
860 
861 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
862 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
863 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
864 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
865 			RREG32(mmVM_INVALIDATE_RESPONSE);
866 			break;
867 		}
868 	}
869 
870 	return 0;
871 }
872 
873 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
874 {
875 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
876 
877 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
878 		pr_err("non kfd vmid %d\n", vmid);
879 		return -EINVAL;
880 	}
881 
882 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
883 	RREG32(mmVM_INVALIDATE_RESPONSE);
884 	return 0;
885 }
886