1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 struct vi_sdma_mqd;
49 
50 /*
51  * Register access functions
52  */
53 
54 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
55 		uint32_t sh_mem_config,
56 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
57 		uint32_t sh_mem_bases);
58 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
59 		unsigned int vmid);
60 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
61 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
62 			uint32_t queue_id, uint32_t __user *wptr,
63 			uint32_t wptr_shift, uint32_t wptr_mask,
64 			struct mm_struct *mm);
65 static int kgd_hqd_dump(struct kgd_dev *kgd,
66 			uint32_t pipe_id, uint32_t queue_id,
67 			uint32_t (**dump)[2], uint32_t *n_regs);
68 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
69 			     uint32_t __user *wptr, struct mm_struct *mm);
70 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
71 			     uint32_t engine_id, uint32_t queue_id,
72 			     uint32_t (**dump)[2], uint32_t *n_regs);
73 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
74 		uint32_t pipe_id, uint32_t queue_id);
75 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
76 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
77 				enum kfd_preempt_type reset_type,
78 				unsigned int utimeout, uint32_t pipe_id,
79 				uint32_t queue_id);
80 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
81 				unsigned int utimeout);
82 static int kgd_address_watch_disable(struct kgd_dev *kgd);
83 static int kgd_address_watch_execute(struct kgd_dev *kgd,
84 					unsigned int watch_point_id,
85 					uint32_t cntl_val,
86 					uint32_t addr_hi,
87 					uint32_t addr_lo);
88 static int kgd_wave_control_execute(struct kgd_dev *kgd,
89 					uint32_t gfx_index_val,
90 					uint32_t sq_cmd);
91 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
92 					unsigned int watch_point_id,
93 					unsigned int reg_offset);
94 
95 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
96 		uint8_t vmid);
97 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
98 		uint8_t vmid);
99 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
100 static void set_scratch_backing_va(struct kgd_dev *kgd,
101 					uint64_t va, uint32_t vmid);
102 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
103 		uint32_t page_table_base);
104 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
105 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
106 
107 /* Because of REG_GET_FIELD() being used, we put this function in the
108  * asic specific file.
109  */
110 static int get_tile_config(struct kgd_dev *kgd,
111 		struct tile_config *config)
112 {
113 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
114 
115 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
116 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
117 				MC_ARB_RAMCFG, NOOFBANK);
118 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
119 				MC_ARB_RAMCFG, NOOFRANKS);
120 
121 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
122 	config->num_tile_configs =
123 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
124 	config->macro_tile_config_ptr =
125 			adev->gfx.config.macrotile_mode_array;
126 	config->num_macro_tile_configs =
127 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
128 
129 	return 0;
130 }
131 
132 static const struct kfd2kgd_calls kfd2kgd = {
133 	.init_gtt_mem_allocation = alloc_gtt_mem,
134 	.free_gtt_mem = free_gtt_mem,
135 	.get_local_mem_info = get_local_mem_info,
136 	.get_gpu_clock_counter = get_gpu_clock_counter,
137 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
138 	.alloc_pasid = amdgpu_pasid_alloc,
139 	.free_pasid = amdgpu_pasid_free,
140 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
141 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
142 	.init_interrupts = kgd_init_interrupts,
143 	.hqd_load = kgd_hqd_load,
144 	.hqd_sdma_load = kgd_hqd_sdma_load,
145 	.hqd_dump = kgd_hqd_dump,
146 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
147 	.hqd_is_occupied = kgd_hqd_is_occupied,
148 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
149 	.hqd_destroy = kgd_hqd_destroy,
150 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
151 	.address_watch_disable = kgd_address_watch_disable,
152 	.address_watch_execute = kgd_address_watch_execute,
153 	.wave_control_execute = kgd_wave_control_execute,
154 	.address_watch_get_offset = kgd_address_watch_get_offset,
155 	.get_atc_vmid_pasid_mapping_pasid =
156 			get_atc_vmid_pasid_mapping_pasid,
157 	.get_atc_vmid_pasid_mapping_valid =
158 			get_atc_vmid_pasid_mapping_valid,
159 	.get_fw_version = get_fw_version,
160 	.set_scratch_backing_va = set_scratch_backing_va,
161 	.get_tile_config = get_tile_config,
162 	.get_cu_info = get_cu_info,
163 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
164 	.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
165 	.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
166 	.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
167 	.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
168 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
169 	.alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
170 	.free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
171 	.map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
172 	.unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
173 	.sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
174 	.map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
175 	.restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
176 	.invalidate_tlbs = invalidate_tlbs,
177 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
178 	.submit_ib = amdgpu_amdkfd_submit_ib,
179 };
180 
181 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
182 {
183 	return (struct kfd2kgd_calls *)&kfd2kgd;
184 }
185 
186 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
187 {
188 	return (struct amdgpu_device *)kgd;
189 }
190 
191 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
192 			uint32_t queue, uint32_t vmid)
193 {
194 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
195 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
196 
197 	mutex_lock(&adev->srbm_mutex);
198 	WREG32(mmSRBM_GFX_CNTL, value);
199 }
200 
201 static void unlock_srbm(struct kgd_dev *kgd)
202 {
203 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
204 
205 	WREG32(mmSRBM_GFX_CNTL, 0);
206 	mutex_unlock(&adev->srbm_mutex);
207 }
208 
209 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
210 				uint32_t queue_id)
211 {
212 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
213 
214 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
215 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
216 
217 	lock_srbm(kgd, mec, pipe, queue_id, 0);
218 }
219 
220 static void release_queue(struct kgd_dev *kgd)
221 {
222 	unlock_srbm(kgd);
223 }
224 
225 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
226 					uint32_t sh_mem_config,
227 					uint32_t sh_mem_ape1_base,
228 					uint32_t sh_mem_ape1_limit,
229 					uint32_t sh_mem_bases)
230 {
231 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
232 
233 	lock_srbm(kgd, 0, 0, 0, vmid);
234 
235 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
236 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
237 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
238 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
239 
240 	unlock_srbm(kgd);
241 }
242 
243 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
244 					unsigned int vmid)
245 {
246 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
247 
248 	/*
249 	 * We have to assume that there is no outstanding mapping.
250 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
251 	 * a mapping is in progress or because a mapping finished
252 	 * and the SW cleared it.
253 	 * So the protocol is to always wait & clear.
254 	 */
255 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
256 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
257 
258 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
259 
260 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
261 		cpu_relax();
262 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
263 
264 	/* Mapping vmid to pasid also for IH block */
265 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
266 
267 	return 0;
268 }
269 
270 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
271 {
272 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
273 	uint32_t mec;
274 	uint32_t pipe;
275 
276 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
277 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
278 
279 	lock_srbm(kgd, mec, pipe, 0, 0);
280 
281 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
282 
283 	unlock_srbm(kgd);
284 
285 	return 0;
286 }
287 
288 static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
289 {
290 	uint32_t retval;
291 
292 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
293 		m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
294 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
295 
296 	return retval;
297 }
298 
299 static inline struct vi_mqd *get_mqd(void *mqd)
300 {
301 	return (struct vi_mqd *)mqd;
302 }
303 
304 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
305 {
306 	return (struct vi_sdma_mqd *)mqd;
307 }
308 
309 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
310 			uint32_t queue_id, uint32_t __user *wptr,
311 			uint32_t wptr_shift, uint32_t wptr_mask,
312 			struct mm_struct *mm)
313 {
314 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
315 	struct vi_mqd *m;
316 	uint32_t *mqd_hqd;
317 	uint32_t reg, wptr_val, data;
318 	bool valid_wptr = false;
319 
320 	m = get_mqd(mqd);
321 
322 	acquire_queue(kgd, pipe_id, queue_id);
323 
324 	/* HIQ is set during driver init period with vmid set to 0*/
325 	if (m->cp_hqd_vmid == 0) {
326 		uint32_t value, mec, pipe;
327 
328 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
329 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
330 
331 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
332 			mec, pipe, queue_id);
333 		value = RREG32(mmRLC_CP_SCHEDULERS);
334 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
335 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
336 		WREG32(mmRLC_CP_SCHEDULERS, value);
337 	}
338 
339 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
340 	mqd_hqd = &m->cp_mqd_base_addr_lo;
341 
342 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
343 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
344 
345 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
346 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
347 	 * on ASICs that do not support context-save.
348 	 * EOP writes/reads can start anywhere in the ring.
349 	 */
350 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
351 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
352 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
353 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
354 	}
355 
356 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
357 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
358 
359 	/* Copy userspace write pointer value to register.
360 	 * Activate doorbell logic to monitor subsequent changes.
361 	 */
362 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
363 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
364 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
365 
366 	/* read_user_ptr may take the mm->mmap_sem.
367 	 * release srbm_mutex to avoid circular dependency between
368 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
369 	 */
370 	release_queue(kgd);
371 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
372 	acquire_queue(kgd, pipe_id, queue_id);
373 	if (valid_wptr)
374 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
375 
376 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
377 	WREG32(mmCP_HQD_ACTIVE, data);
378 
379 	release_queue(kgd);
380 
381 	return 0;
382 }
383 
384 static int kgd_hqd_dump(struct kgd_dev *kgd,
385 			uint32_t pipe_id, uint32_t queue_id,
386 			uint32_t (**dump)[2], uint32_t *n_regs)
387 {
388 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
389 	uint32_t i = 0, reg;
390 #define HQD_N_REGS (54+4)
391 #define DUMP_REG(addr) do {				\
392 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
393 			break;				\
394 		(*dump)[i][0] = (addr) << 2;		\
395 		(*dump)[i++][1] = RREG32(addr);		\
396 	} while (0)
397 
398 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
399 	if (*dump == NULL)
400 		return -ENOMEM;
401 
402 	acquire_queue(kgd, pipe_id, queue_id);
403 
404 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
405 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
406 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
407 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
408 
409 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
410 		DUMP_REG(reg);
411 
412 	release_queue(kgd);
413 
414 	WARN_ON_ONCE(i != HQD_N_REGS);
415 	*n_regs = i;
416 
417 	return 0;
418 }
419 
420 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
421 			     uint32_t __user *wptr, struct mm_struct *mm)
422 {
423 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
424 	struct vi_sdma_mqd *m;
425 	unsigned long end_jiffies;
426 	uint32_t sdma_base_addr;
427 	uint32_t data;
428 
429 	m = get_sdma_mqd(mqd);
430 	sdma_base_addr = get_sdma_base_addr(m);
431 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
432 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
433 
434 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
435 	while (true) {
436 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
437 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
438 			break;
439 		if (time_after(jiffies, end_jiffies))
440 			return -ETIME;
441 		usleep_range(500, 1000);
442 	}
443 	if (m->sdma_engine_id) {
444 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
445 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
446 				RESUME_CTX, 0);
447 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
448 	} else {
449 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
450 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
451 				RESUME_CTX, 0);
452 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
453 	}
454 
455 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
456 			     ENABLE, 1);
457 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
458 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
459 
460 	if (read_user_wptr(mm, wptr, data))
461 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
462 	else
463 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
464 		       m->sdmax_rlcx_rb_rptr);
465 
466 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
467 				m->sdmax_rlcx_virtual_addr);
468 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
469 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
470 			m->sdmax_rlcx_rb_base_hi);
471 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
472 			m->sdmax_rlcx_rb_rptr_addr_lo);
473 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
474 			m->sdmax_rlcx_rb_rptr_addr_hi);
475 
476 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
477 			     RB_ENABLE, 1);
478 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
479 
480 	return 0;
481 }
482 
483 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
484 			     uint32_t engine_id, uint32_t queue_id,
485 			     uint32_t (**dump)[2], uint32_t *n_regs)
486 {
487 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
488 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
489 		queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
490 	uint32_t i = 0, reg;
491 #undef HQD_N_REGS
492 #define HQD_N_REGS (19+4+2+3+7)
493 
494 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
495 	if (*dump == NULL)
496 		return -ENOMEM;
497 
498 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
499 		DUMP_REG(sdma_offset + reg);
500 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
501 	     reg++)
502 		DUMP_REG(sdma_offset + reg);
503 	for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
504 	     reg++)
505 		DUMP_REG(sdma_offset + reg);
506 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
507 	     reg++)
508 		DUMP_REG(sdma_offset + reg);
509 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
510 	     reg++)
511 		DUMP_REG(sdma_offset + reg);
512 
513 	WARN_ON_ONCE(i != HQD_N_REGS);
514 	*n_regs = i;
515 
516 	return 0;
517 }
518 
519 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
520 				uint32_t pipe_id, uint32_t queue_id)
521 {
522 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
523 	uint32_t act;
524 	bool retval = false;
525 	uint32_t low, high;
526 
527 	acquire_queue(kgd, pipe_id, queue_id);
528 	act = RREG32(mmCP_HQD_ACTIVE);
529 	if (act) {
530 		low = lower_32_bits(queue_address >> 8);
531 		high = upper_32_bits(queue_address >> 8);
532 
533 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
534 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
535 			retval = true;
536 	}
537 	release_queue(kgd);
538 	return retval;
539 }
540 
541 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
542 {
543 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
544 	struct vi_sdma_mqd *m;
545 	uint32_t sdma_base_addr;
546 	uint32_t sdma_rlc_rb_cntl;
547 
548 	m = get_sdma_mqd(mqd);
549 	sdma_base_addr = get_sdma_base_addr(m);
550 
551 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
552 
553 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
554 		return true;
555 
556 	return false;
557 }
558 
559 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
560 				enum kfd_preempt_type reset_type,
561 				unsigned int utimeout, uint32_t pipe_id,
562 				uint32_t queue_id)
563 {
564 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
565 	uint32_t temp;
566 	enum hqd_dequeue_request_type type;
567 	unsigned long flags, end_jiffies;
568 	int retry;
569 	struct vi_mqd *m = get_mqd(mqd);
570 
571 	acquire_queue(kgd, pipe_id, queue_id);
572 
573 	if (m->cp_hqd_vmid == 0)
574 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
575 
576 	switch (reset_type) {
577 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
578 		type = DRAIN_PIPE;
579 		break;
580 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
581 		type = RESET_WAVES;
582 		break;
583 	default:
584 		type = DRAIN_PIPE;
585 		break;
586 	}
587 
588 	/* Workaround: If IQ timer is active and the wait time is close to or
589 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
590 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
591 	 * cleared before continuing. Also, ensure wait times are set to at
592 	 * least 0x3.
593 	 */
594 	local_irq_save(flags);
595 	preempt_disable();
596 	retry = 5000; /* wait for 500 usecs at maximum */
597 	while (true) {
598 		temp = RREG32(mmCP_HQD_IQ_TIMER);
599 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
600 			pr_debug("HW is processing IQ\n");
601 			goto loop;
602 		}
603 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
604 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
605 					== 3) /* SEM-rearm is safe */
606 				break;
607 			/* Wait time 3 is safe for CP, but our MMIO read/write
608 			 * time is close to 1 microsecond, so check for 10 to
609 			 * leave more buffer room
610 			 */
611 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
612 					>= 10)
613 				break;
614 			pr_debug("IQ timer is active\n");
615 		} else
616 			break;
617 loop:
618 		if (!retry) {
619 			pr_err("CP HQD IQ timer status time out\n");
620 			break;
621 		}
622 		ndelay(100);
623 		--retry;
624 	}
625 	retry = 1000;
626 	while (true) {
627 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
628 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
629 			break;
630 		pr_debug("Dequeue request is pending\n");
631 
632 		if (!retry) {
633 			pr_err("CP HQD dequeue request time out\n");
634 			break;
635 		}
636 		ndelay(100);
637 		--retry;
638 	}
639 	local_irq_restore(flags);
640 	preempt_enable();
641 
642 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
643 
644 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
645 	while (true) {
646 		temp = RREG32(mmCP_HQD_ACTIVE);
647 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
648 			break;
649 		if (time_after(jiffies, end_jiffies)) {
650 			pr_err("cp queue preemption time out.\n");
651 			release_queue(kgd);
652 			return -ETIME;
653 		}
654 		usleep_range(500, 1000);
655 	}
656 
657 	release_queue(kgd);
658 	return 0;
659 }
660 
661 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
662 				unsigned int utimeout)
663 {
664 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
665 	struct vi_sdma_mqd *m;
666 	uint32_t sdma_base_addr;
667 	uint32_t temp;
668 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
669 
670 	m = get_sdma_mqd(mqd);
671 	sdma_base_addr = get_sdma_base_addr(m);
672 
673 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
674 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
675 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
676 
677 	while (true) {
678 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
679 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
680 			break;
681 		if (time_after(jiffies, end_jiffies))
682 			return -ETIME;
683 		usleep_range(500, 1000);
684 	}
685 
686 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
687 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
688 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
689 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
690 
691 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
692 
693 	return 0;
694 }
695 
696 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
697 							uint8_t vmid)
698 {
699 	uint32_t reg;
700 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
701 
702 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
703 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
704 }
705 
706 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
707 								uint8_t vmid)
708 {
709 	uint32_t reg;
710 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
711 
712 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
713 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
714 }
715 
716 static int kgd_address_watch_disable(struct kgd_dev *kgd)
717 {
718 	return 0;
719 }
720 
721 static int kgd_address_watch_execute(struct kgd_dev *kgd,
722 					unsigned int watch_point_id,
723 					uint32_t cntl_val,
724 					uint32_t addr_hi,
725 					uint32_t addr_lo)
726 {
727 	return 0;
728 }
729 
730 static int kgd_wave_control_execute(struct kgd_dev *kgd,
731 					uint32_t gfx_index_val,
732 					uint32_t sq_cmd)
733 {
734 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
735 	uint32_t data = 0;
736 
737 	mutex_lock(&adev->grbm_idx_mutex);
738 
739 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
740 	WREG32(mmSQ_CMD, sq_cmd);
741 
742 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
743 		INSTANCE_BROADCAST_WRITES, 1);
744 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
745 		SH_BROADCAST_WRITES, 1);
746 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
747 		SE_BROADCAST_WRITES, 1);
748 
749 	WREG32(mmGRBM_GFX_INDEX, data);
750 	mutex_unlock(&adev->grbm_idx_mutex);
751 
752 	return 0;
753 }
754 
755 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
756 					unsigned int watch_point_id,
757 					unsigned int reg_offset)
758 {
759 	return 0;
760 }
761 
762 static void set_scratch_backing_va(struct kgd_dev *kgd,
763 					uint64_t va, uint32_t vmid)
764 {
765 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
766 
767 	lock_srbm(kgd, 0, 0, 0, vmid);
768 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
769 	unlock_srbm(kgd);
770 }
771 
772 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
773 {
774 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
775 	const union amdgpu_firmware_header *hdr;
776 
777 	switch (type) {
778 	case KGD_ENGINE_PFP:
779 		hdr = (const union amdgpu_firmware_header *)
780 						adev->gfx.pfp_fw->data;
781 		break;
782 
783 	case KGD_ENGINE_ME:
784 		hdr = (const union amdgpu_firmware_header *)
785 						adev->gfx.me_fw->data;
786 		break;
787 
788 	case KGD_ENGINE_CE:
789 		hdr = (const union amdgpu_firmware_header *)
790 						adev->gfx.ce_fw->data;
791 		break;
792 
793 	case KGD_ENGINE_MEC1:
794 		hdr = (const union amdgpu_firmware_header *)
795 						adev->gfx.mec_fw->data;
796 		break;
797 
798 	case KGD_ENGINE_MEC2:
799 		hdr = (const union amdgpu_firmware_header *)
800 						adev->gfx.mec2_fw->data;
801 		break;
802 
803 	case KGD_ENGINE_RLC:
804 		hdr = (const union amdgpu_firmware_header *)
805 						adev->gfx.rlc_fw->data;
806 		break;
807 
808 	case KGD_ENGINE_SDMA1:
809 		hdr = (const union amdgpu_firmware_header *)
810 						adev->sdma.instance[0].fw->data;
811 		break;
812 
813 	case KGD_ENGINE_SDMA2:
814 		hdr = (const union amdgpu_firmware_header *)
815 						adev->sdma.instance[1].fw->data;
816 		break;
817 
818 	default:
819 		return 0;
820 	}
821 
822 	if (hdr == NULL)
823 		return 0;
824 
825 	/* Only 12 bit in use*/
826 	return hdr->common.ucode_version;
827 }
828 
829 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
830 		uint32_t page_table_base)
831 {
832 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
833 
834 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
835 		pr_err("trying to set page table base for wrong VMID\n");
836 		return;
837 	}
838 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
839 }
840 
841 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
842 {
843 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
844 	int vmid;
845 	unsigned int tmp;
846 
847 	for (vmid = 0; vmid < 16; vmid++) {
848 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
849 			continue;
850 
851 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
852 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
853 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
854 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
855 			RREG32(mmVM_INVALIDATE_RESPONSE);
856 			break;
857 		}
858 	}
859 
860 	return 0;
861 }
862 
863 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
864 {
865 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
866 
867 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
868 		pr_err("non kfd vmid %d\n", vmid);
869 		return -EINVAL;
870 	}
871 
872 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
873 	RREG32(mmVM_INVALIDATE_RESPONSE);
874 	return 0;
875 }
876