xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v8.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "gfx_v8_0.h"
26 #include "gca/gfx_8_0_sh_mask.h"
27 #include "gca/gfx_8_0_d.h"
28 #include "gca/gfx_8_0_enum.h"
29 #include "oss/oss_3_0_sh_mask.h"
30 #include "oss/oss_3_0_d.h"
31 #include "gmc/gmc_8_1_sh_mask.h"
32 #include "gmc/gmc_8_1_d.h"
33 #include "vi_structs.h"
34 #include "vid.h"
35 
36 enum hqd_dequeue_request_type {
37 	NO_ACTION = 0,
38 	DRAIN_PIPE,
39 	RESET_WAVES
40 };
41 
42 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
43 {
44 	return (struct amdgpu_device *)kgd;
45 }
46 
47 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
48 			uint32_t queue, uint32_t vmid)
49 {
50 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
51 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
52 
53 	mutex_lock(&adev->srbm_mutex);
54 	WREG32(mmSRBM_GFX_CNTL, value);
55 }
56 
57 static void unlock_srbm(struct kgd_dev *kgd)
58 {
59 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
60 
61 	WREG32(mmSRBM_GFX_CNTL, 0);
62 	mutex_unlock(&adev->srbm_mutex);
63 }
64 
65 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
66 				uint32_t queue_id)
67 {
68 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
69 
70 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
71 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
72 
73 	lock_srbm(kgd, mec, pipe, queue_id, 0);
74 }
75 
76 static void release_queue(struct kgd_dev *kgd)
77 {
78 	unlock_srbm(kgd);
79 }
80 
81 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
82 					uint32_t sh_mem_config,
83 					uint32_t sh_mem_ape1_base,
84 					uint32_t sh_mem_ape1_limit,
85 					uint32_t sh_mem_bases)
86 {
87 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
88 
89 	lock_srbm(kgd, 0, 0, 0, vmid);
90 
91 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
92 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
93 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
94 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
95 
96 	unlock_srbm(kgd);
97 }
98 
99 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
100 					unsigned int vmid)
101 {
102 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
103 
104 	/*
105 	 * We have to assume that there is no outstanding mapping.
106 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
107 	 * a mapping is in progress or because a mapping finished
108 	 * and the SW cleared it.
109 	 * So the protocol is to always wait & clear.
110 	 */
111 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
112 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
113 
114 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
115 
116 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
117 		cpu_relax();
118 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
119 
120 	/* Mapping vmid to pasid also for IH block */
121 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
122 
123 	return 0;
124 }
125 
126 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
127 {
128 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
129 	uint32_t mec;
130 	uint32_t pipe;
131 
132 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
133 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
134 
135 	lock_srbm(kgd, mec, pipe, 0, 0);
136 
137 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
138 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
139 
140 	unlock_srbm(kgd);
141 
142 	return 0;
143 }
144 
145 static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
146 {
147 	uint32_t retval;
148 
149 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
150 		m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
151 
152 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
153 			m->sdma_engine_id, m->sdma_queue_id, retval);
154 
155 	return retval;
156 }
157 
158 static inline struct vi_mqd *get_mqd(void *mqd)
159 {
160 	return (struct vi_mqd *)mqd;
161 }
162 
163 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
164 {
165 	return (struct vi_sdma_mqd *)mqd;
166 }
167 
168 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
169 			uint32_t queue_id, uint32_t __user *wptr,
170 			uint32_t wptr_shift, uint32_t wptr_mask,
171 			struct mm_struct *mm)
172 {
173 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
174 	struct vi_mqd *m;
175 	uint32_t *mqd_hqd;
176 	uint32_t reg, wptr_val, data;
177 	bool valid_wptr = false;
178 
179 	m = get_mqd(mqd);
180 
181 	acquire_queue(kgd, pipe_id, queue_id);
182 
183 	/* HIQ is set during driver init period with vmid set to 0*/
184 	if (m->cp_hqd_vmid == 0) {
185 		uint32_t value, mec, pipe;
186 
187 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
188 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
189 
190 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
191 			mec, pipe, queue_id);
192 		value = RREG32(mmRLC_CP_SCHEDULERS);
193 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
194 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
195 		WREG32(mmRLC_CP_SCHEDULERS, value);
196 	}
197 
198 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
199 	mqd_hqd = &m->cp_mqd_base_addr_lo;
200 
201 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
202 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
203 
204 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
205 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
206 	 * on ASICs that do not support context-save.
207 	 * EOP writes/reads can start anywhere in the ring.
208 	 */
209 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
210 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
211 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
212 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
213 	}
214 
215 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
216 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
217 
218 	/* Copy userspace write pointer value to register.
219 	 * Activate doorbell logic to monitor subsequent changes.
220 	 */
221 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
222 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
223 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
224 
225 	/* read_user_ptr may take the mm->mmap_lock.
226 	 * release srbm_mutex to avoid circular dependency between
227 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
228 	 */
229 	release_queue(kgd);
230 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
231 	acquire_queue(kgd, pipe_id, queue_id);
232 	if (valid_wptr)
233 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
234 
235 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
236 	WREG32(mmCP_HQD_ACTIVE, data);
237 
238 	release_queue(kgd);
239 
240 	return 0;
241 }
242 
243 static int kgd_hqd_dump(struct kgd_dev *kgd,
244 			uint32_t pipe_id, uint32_t queue_id,
245 			uint32_t (**dump)[2], uint32_t *n_regs)
246 {
247 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
248 	uint32_t i = 0, reg;
249 #define HQD_N_REGS (54+4)
250 #define DUMP_REG(addr) do {				\
251 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
252 			break;				\
253 		(*dump)[i][0] = (addr) << 2;		\
254 		(*dump)[i++][1] = RREG32(addr);		\
255 	} while (0)
256 
257 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
258 	if (*dump == NULL)
259 		return -ENOMEM;
260 
261 	acquire_queue(kgd, pipe_id, queue_id);
262 
263 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
264 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
265 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
266 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
267 
268 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
269 		DUMP_REG(reg);
270 
271 	release_queue(kgd);
272 
273 	WARN_ON_ONCE(i != HQD_N_REGS);
274 	*n_regs = i;
275 
276 	return 0;
277 }
278 
279 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
280 			     uint32_t __user *wptr, struct mm_struct *mm)
281 {
282 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
283 	struct vi_sdma_mqd *m;
284 	unsigned long end_jiffies;
285 	uint32_t sdma_rlc_reg_offset;
286 	uint32_t data;
287 
288 	m = get_sdma_mqd(mqd);
289 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
290 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
291 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
292 
293 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
294 	while (true) {
295 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
296 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
297 			break;
298 		if (time_after(jiffies, end_jiffies)) {
299 			pr_err("SDMA RLC not idle in %s\n", __func__);
300 			return -ETIME;
301 		}
302 		usleep_range(500, 1000);
303 	}
304 
305 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
306 			     ENABLE, 1);
307 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
308 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
309 				m->sdmax_rlcx_rb_rptr);
310 
311 	if (read_user_wptr(mm, wptr, data))
312 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
313 	else
314 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
315 		       m->sdmax_rlcx_rb_rptr);
316 
317 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
318 				m->sdmax_rlcx_virtual_addr);
319 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
320 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
321 			m->sdmax_rlcx_rb_base_hi);
322 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
323 			m->sdmax_rlcx_rb_rptr_addr_lo);
324 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
325 			m->sdmax_rlcx_rb_rptr_addr_hi);
326 
327 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
328 			     RB_ENABLE, 1);
329 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
330 
331 	return 0;
332 }
333 
334 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
335 			     uint32_t engine_id, uint32_t queue_id,
336 			     uint32_t (**dump)[2], uint32_t *n_regs)
337 {
338 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
339 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
340 		queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
341 	uint32_t i = 0, reg;
342 #undef HQD_N_REGS
343 #define HQD_N_REGS (19+4+2+3+7)
344 
345 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
346 	if (*dump == NULL)
347 		return -ENOMEM;
348 
349 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
350 		DUMP_REG(sdma_offset + reg);
351 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
352 	     reg++)
353 		DUMP_REG(sdma_offset + reg);
354 	for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
355 	     reg++)
356 		DUMP_REG(sdma_offset + reg);
357 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
358 	     reg++)
359 		DUMP_REG(sdma_offset + reg);
360 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
361 	     reg++)
362 		DUMP_REG(sdma_offset + reg);
363 
364 	WARN_ON_ONCE(i != HQD_N_REGS);
365 	*n_regs = i;
366 
367 	return 0;
368 }
369 
370 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
371 				uint32_t pipe_id, uint32_t queue_id)
372 {
373 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
374 	uint32_t act;
375 	bool retval = false;
376 	uint32_t low, high;
377 
378 	acquire_queue(kgd, pipe_id, queue_id);
379 	act = RREG32(mmCP_HQD_ACTIVE);
380 	if (act) {
381 		low = lower_32_bits(queue_address >> 8);
382 		high = upper_32_bits(queue_address >> 8);
383 
384 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
385 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
386 			retval = true;
387 	}
388 	release_queue(kgd);
389 	return retval;
390 }
391 
392 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
393 {
394 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
395 	struct vi_sdma_mqd *m;
396 	uint32_t sdma_rlc_reg_offset;
397 	uint32_t sdma_rlc_rb_cntl;
398 
399 	m = get_sdma_mqd(mqd);
400 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
401 
402 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
403 
404 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
405 		return true;
406 
407 	return false;
408 }
409 
410 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
411 				enum kfd_preempt_type reset_type,
412 				unsigned int utimeout, uint32_t pipe_id,
413 				uint32_t queue_id)
414 {
415 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
416 	uint32_t temp;
417 	enum hqd_dequeue_request_type type;
418 	unsigned long flags, end_jiffies;
419 	int retry;
420 	struct vi_mqd *m = get_mqd(mqd);
421 
422 	if (amdgpu_in_reset(adev))
423 		return -EIO;
424 
425 	acquire_queue(kgd, pipe_id, queue_id);
426 
427 	if (m->cp_hqd_vmid == 0)
428 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
429 
430 	switch (reset_type) {
431 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
432 		type = DRAIN_PIPE;
433 		break;
434 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
435 		type = RESET_WAVES;
436 		break;
437 	default:
438 		type = DRAIN_PIPE;
439 		break;
440 	}
441 
442 	/* Workaround: If IQ timer is active and the wait time is close to or
443 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
444 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
445 	 * cleared before continuing. Also, ensure wait times are set to at
446 	 * least 0x3.
447 	 */
448 	local_irq_save(flags);
449 	preempt_disable();
450 	retry = 5000; /* wait for 500 usecs at maximum */
451 	while (true) {
452 		temp = RREG32(mmCP_HQD_IQ_TIMER);
453 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
454 			pr_debug("HW is processing IQ\n");
455 			goto loop;
456 		}
457 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
458 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
459 					== 3) /* SEM-rearm is safe */
460 				break;
461 			/* Wait time 3 is safe for CP, but our MMIO read/write
462 			 * time is close to 1 microsecond, so check for 10 to
463 			 * leave more buffer room
464 			 */
465 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
466 					>= 10)
467 				break;
468 			pr_debug("IQ timer is active\n");
469 		} else
470 			break;
471 loop:
472 		if (!retry) {
473 			pr_err("CP HQD IQ timer status time out\n");
474 			break;
475 		}
476 		ndelay(100);
477 		--retry;
478 	}
479 	retry = 1000;
480 	while (true) {
481 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
482 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
483 			break;
484 		pr_debug("Dequeue request is pending\n");
485 
486 		if (!retry) {
487 			pr_err("CP HQD dequeue request time out\n");
488 			break;
489 		}
490 		ndelay(100);
491 		--retry;
492 	}
493 	local_irq_restore(flags);
494 	preempt_enable();
495 
496 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
497 
498 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
499 	while (true) {
500 		temp = RREG32(mmCP_HQD_ACTIVE);
501 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
502 			break;
503 		if (time_after(jiffies, end_jiffies)) {
504 			pr_err("cp queue preemption time out.\n");
505 			release_queue(kgd);
506 			return -ETIME;
507 		}
508 		usleep_range(500, 1000);
509 	}
510 
511 	release_queue(kgd);
512 	return 0;
513 }
514 
515 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
516 				unsigned int utimeout)
517 {
518 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
519 	struct vi_sdma_mqd *m;
520 	uint32_t sdma_rlc_reg_offset;
521 	uint32_t temp;
522 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
523 
524 	m = get_sdma_mqd(mqd);
525 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
526 
527 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
528 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
529 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
530 
531 	while (true) {
532 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
533 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
534 			break;
535 		if (time_after(jiffies, end_jiffies)) {
536 			pr_err("SDMA RLC not idle in %s\n", __func__);
537 			return -ETIME;
538 		}
539 		usleep_range(500, 1000);
540 	}
541 
542 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
543 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
544 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
545 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
546 
547 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
548 
549 	return 0;
550 }
551 
552 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
553 					uint8_t vmid, uint16_t *p_pasid)
554 {
555 	uint32_t value;
556 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
557 
558 	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
559 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
560 
561 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
562 }
563 
564 static int kgd_address_watch_disable(struct kgd_dev *kgd)
565 {
566 	return 0;
567 }
568 
569 static int kgd_address_watch_execute(struct kgd_dev *kgd,
570 					unsigned int watch_point_id,
571 					uint32_t cntl_val,
572 					uint32_t addr_hi,
573 					uint32_t addr_lo)
574 {
575 	return 0;
576 }
577 
578 static int kgd_wave_control_execute(struct kgd_dev *kgd,
579 					uint32_t gfx_index_val,
580 					uint32_t sq_cmd)
581 {
582 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
583 	uint32_t data = 0;
584 
585 	mutex_lock(&adev->grbm_idx_mutex);
586 
587 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
588 	WREG32(mmSQ_CMD, sq_cmd);
589 
590 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
591 		INSTANCE_BROADCAST_WRITES, 1);
592 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
593 		SH_BROADCAST_WRITES, 1);
594 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
595 		SE_BROADCAST_WRITES, 1);
596 
597 	WREG32(mmGRBM_GFX_INDEX, data);
598 	mutex_unlock(&adev->grbm_idx_mutex);
599 
600 	return 0;
601 }
602 
603 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
604 					unsigned int watch_point_id,
605 					unsigned int reg_offset)
606 {
607 	return 0;
608 }
609 
610 static void set_scratch_backing_va(struct kgd_dev *kgd,
611 					uint64_t va, uint32_t vmid)
612 {
613 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
614 
615 	lock_srbm(kgd, 0, 0, 0, vmid);
616 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
617 	unlock_srbm(kgd);
618 }
619 
620 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
621 		uint64_t page_table_base)
622 {
623 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
624 
625 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
626 		pr_err("trying to set page table base for wrong VMID\n");
627 		return;
628 	}
629 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
630 			lower_32_bits(page_table_base));
631 }
632 
633 const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
634 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
635 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
636 	.init_interrupts = kgd_init_interrupts,
637 	.hqd_load = kgd_hqd_load,
638 	.hqd_sdma_load = kgd_hqd_sdma_load,
639 	.hqd_dump = kgd_hqd_dump,
640 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
641 	.hqd_is_occupied = kgd_hqd_is_occupied,
642 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
643 	.hqd_destroy = kgd_hqd_destroy,
644 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
645 	.address_watch_disable = kgd_address_watch_disable,
646 	.address_watch_execute = kgd_address_watch_execute,
647 	.wave_control_execute = kgd_wave_control_execute,
648 	.address_watch_get_offset = kgd_address_watch_get_offset,
649 	.get_atc_vmid_pasid_mapping_info =
650 			get_atc_vmid_pasid_mapping_info,
651 	.set_scratch_backing_va = set_scratch_backing_va,
652 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
653 };
654