1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/fdtable.h> 25 #include <linux/uaccess.h> 26 #include <linux/mmu_context.h> 27 28 #include "amdgpu.h" 29 #include "amdgpu_amdkfd.h" 30 #include "gfx_v8_0.h" 31 #include "gca/gfx_8_0_sh_mask.h" 32 #include "gca/gfx_8_0_d.h" 33 #include "gca/gfx_8_0_enum.h" 34 #include "oss/oss_3_0_sh_mask.h" 35 #include "oss/oss_3_0_d.h" 36 #include "gmc/gmc_8_1_sh_mask.h" 37 #include "gmc/gmc_8_1_d.h" 38 #include "vi_structs.h" 39 #include "vid.h" 40 41 enum hqd_dequeue_request_type { 42 NO_ACTION = 0, 43 DRAIN_PIPE, 44 RESET_WAVES 45 }; 46 47 /* 48 * Register access functions 49 */ 50 51 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, 52 uint32_t sh_mem_config, 53 uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, 54 uint32_t sh_mem_bases); 55 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, 56 unsigned int vmid); 57 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id); 58 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, 59 uint32_t queue_id, uint32_t __user *wptr, 60 uint32_t wptr_shift, uint32_t wptr_mask, 61 struct mm_struct *mm); 62 static int kgd_hqd_dump(struct kgd_dev *kgd, 63 uint32_t pipe_id, uint32_t queue_id, 64 uint32_t (**dump)[2], uint32_t *n_regs); 65 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, 66 uint32_t __user *wptr, struct mm_struct *mm); 67 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, 68 uint32_t engine_id, uint32_t queue_id, 69 uint32_t (**dump)[2], uint32_t *n_regs); 70 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, 71 uint32_t pipe_id, uint32_t queue_id); 72 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd); 73 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, 74 enum kfd_preempt_type reset_type, 75 unsigned int utimeout, uint32_t pipe_id, 76 uint32_t queue_id); 77 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, 78 unsigned int utimeout); 79 static int kgd_address_watch_disable(struct kgd_dev *kgd); 80 static int kgd_address_watch_execute(struct kgd_dev *kgd, 81 unsigned int watch_point_id, 82 uint32_t cntl_val, 83 uint32_t addr_hi, 84 uint32_t addr_lo); 85 static int kgd_wave_control_execute(struct kgd_dev *kgd, 86 uint32_t gfx_index_val, 87 uint32_t sq_cmd); 88 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, 89 unsigned int watch_point_id, 90 unsigned int reg_offset); 91 92 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, 93 uint8_t vmid); 94 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, 95 uint8_t vmid); 96 static void set_scratch_backing_va(struct kgd_dev *kgd, 97 uint64_t va, uint32_t vmid); 98 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, 99 uint64_t page_table_base); 100 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid); 101 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid); 102 103 /* Because of REG_GET_FIELD() being used, we put this function in the 104 * asic specific file. 105 */ 106 static int get_tile_config(struct kgd_dev *kgd, 107 struct tile_config *config) 108 { 109 struct amdgpu_device *adev = (struct amdgpu_device *)kgd; 110 111 config->gb_addr_config = adev->gfx.config.gb_addr_config; 112 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg, 113 MC_ARB_RAMCFG, NOOFBANK); 114 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg, 115 MC_ARB_RAMCFG, NOOFRANKS); 116 117 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 118 config->num_tile_configs = 119 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 120 config->macro_tile_config_ptr = 121 adev->gfx.config.macrotile_mode_array; 122 config->num_macro_tile_configs = 123 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 124 125 return 0; 126 } 127 128 static const struct kfd2kgd_calls kfd2kgd = { 129 .program_sh_mem_settings = kgd_program_sh_mem_settings, 130 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, 131 .init_interrupts = kgd_init_interrupts, 132 .hqd_load = kgd_hqd_load, 133 .hqd_sdma_load = kgd_hqd_sdma_load, 134 .hqd_dump = kgd_hqd_dump, 135 .hqd_sdma_dump = kgd_hqd_sdma_dump, 136 .hqd_is_occupied = kgd_hqd_is_occupied, 137 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, 138 .hqd_destroy = kgd_hqd_destroy, 139 .hqd_sdma_destroy = kgd_hqd_sdma_destroy, 140 .address_watch_disable = kgd_address_watch_disable, 141 .address_watch_execute = kgd_address_watch_execute, 142 .wave_control_execute = kgd_wave_control_execute, 143 .address_watch_get_offset = kgd_address_watch_get_offset, 144 .get_atc_vmid_pasid_mapping_pasid = 145 get_atc_vmid_pasid_mapping_pasid, 146 .get_atc_vmid_pasid_mapping_valid = 147 get_atc_vmid_pasid_mapping_valid, 148 .set_scratch_backing_va = set_scratch_backing_va, 149 .get_tile_config = get_tile_config, 150 .set_vm_context_page_table_base = set_vm_context_page_table_base, 151 .invalidate_tlbs = invalidate_tlbs, 152 .invalidate_tlbs_vmid = invalidate_tlbs_vmid, 153 }; 154 155 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void) 156 { 157 return (struct kfd2kgd_calls *)&kfd2kgd; 158 } 159 160 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) 161 { 162 return (struct amdgpu_device *)kgd; 163 } 164 165 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, 166 uint32_t queue, uint32_t vmid) 167 { 168 struct amdgpu_device *adev = get_amdgpu_device(kgd); 169 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue); 170 171 mutex_lock(&adev->srbm_mutex); 172 WREG32(mmSRBM_GFX_CNTL, value); 173 } 174 175 static void unlock_srbm(struct kgd_dev *kgd) 176 { 177 struct amdgpu_device *adev = get_amdgpu_device(kgd); 178 179 WREG32(mmSRBM_GFX_CNTL, 0); 180 mutex_unlock(&adev->srbm_mutex); 181 } 182 183 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, 184 uint32_t queue_id) 185 { 186 struct amdgpu_device *adev = get_amdgpu_device(kgd); 187 188 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 189 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 190 191 lock_srbm(kgd, mec, pipe, queue_id, 0); 192 } 193 194 static void release_queue(struct kgd_dev *kgd) 195 { 196 unlock_srbm(kgd); 197 } 198 199 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, 200 uint32_t sh_mem_config, 201 uint32_t sh_mem_ape1_base, 202 uint32_t sh_mem_ape1_limit, 203 uint32_t sh_mem_bases) 204 { 205 struct amdgpu_device *adev = get_amdgpu_device(kgd); 206 207 lock_srbm(kgd, 0, 0, 0, vmid); 208 209 WREG32(mmSH_MEM_CONFIG, sh_mem_config); 210 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base); 211 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit); 212 WREG32(mmSH_MEM_BASES, sh_mem_bases); 213 214 unlock_srbm(kgd); 215 } 216 217 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, 218 unsigned int vmid) 219 { 220 struct amdgpu_device *adev = get_amdgpu_device(kgd); 221 222 /* 223 * We have to assume that there is no outstanding mapping. 224 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because 225 * a mapping is in progress or because a mapping finished 226 * and the SW cleared it. 227 * So the protocol is to always wait & clear. 228 */ 229 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 230 ATC_VMID0_PASID_MAPPING__VALID_MASK; 231 232 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping); 233 234 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid))) 235 cpu_relax(); 236 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid); 237 238 /* Mapping vmid to pasid also for IH block */ 239 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping); 240 241 return 0; 242 } 243 244 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) 245 { 246 struct amdgpu_device *adev = get_amdgpu_device(kgd); 247 uint32_t mec; 248 uint32_t pipe; 249 250 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 251 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 252 253 lock_srbm(kgd, mec, pipe, 0, 0); 254 255 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | 256 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); 257 258 unlock_srbm(kgd); 259 260 return 0; 261 } 262 263 static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m) 264 { 265 uint32_t retval; 266 267 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET + 268 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET; 269 pr_debug("sdma base address: 0x%x\n", retval); 270 271 return retval; 272 } 273 274 static inline struct vi_mqd *get_mqd(void *mqd) 275 { 276 return (struct vi_mqd *)mqd; 277 } 278 279 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd) 280 { 281 return (struct vi_sdma_mqd *)mqd; 282 } 283 284 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, 285 uint32_t queue_id, uint32_t __user *wptr, 286 uint32_t wptr_shift, uint32_t wptr_mask, 287 struct mm_struct *mm) 288 { 289 struct amdgpu_device *adev = get_amdgpu_device(kgd); 290 struct vi_mqd *m; 291 uint32_t *mqd_hqd; 292 uint32_t reg, wptr_val, data; 293 bool valid_wptr = false; 294 295 m = get_mqd(mqd); 296 297 acquire_queue(kgd, pipe_id, queue_id); 298 299 /* HIQ is set during driver init period with vmid set to 0*/ 300 if (m->cp_hqd_vmid == 0) { 301 uint32_t value, mec, pipe; 302 303 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 304 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 305 306 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", 307 mec, pipe, queue_id); 308 value = RREG32(mmRLC_CP_SCHEDULERS); 309 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1, 310 ((mec << 5) | (pipe << 3) | queue_id | 0x80)); 311 WREG32(mmRLC_CP_SCHEDULERS, value); 312 } 313 314 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ 315 mqd_hqd = &m->cp_mqd_base_addr_lo; 316 317 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++) 318 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]); 319 320 /* Tonga errata: EOP RPTR/WPTR should be left unmodified. 321 * This is safe since EOP RPTR==WPTR for any inactive HQD 322 * on ASICs that do not support context-save. 323 * EOP writes/reads can start anywhere in the ring. 324 */ 325 if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) { 326 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr); 327 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr); 328 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem); 329 } 330 331 for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++) 332 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]); 333 334 /* Copy userspace write pointer value to register. 335 * Activate doorbell logic to monitor subsequent changes. 336 */ 337 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, 338 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); 339 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data); 340 341 /* read_user_ptr may take the mm->mmap_sem. 342 * release srbm_mutex to avoid circular dependency between 343 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex. 344 */ 345 release_queue(kgd); 346 valid_wptr = read_user_wptr(mm, wptr, wptr_val); 347 acquire_queue(kgd, pipe_id, queue_id); 348 if (valid_wptr) 349 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask); 350 351 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); 352 WREG32(mmCP_HQD_ACTIVE, data); 353 354 release_queue(kgd); 355 356 return 0; 357 } 358 359 static int kgd_hqd_dump(struct kgd_dev *kgd, 360 uint32_t pipe_id, uint32_t queue_id, 361 uint32_t (**dump)[2], uint32_t *n_regs) 362 { 363 struct amdgpu_device *adev = get_amdgpu_device(kgd); 364 uint32_t i = 0, reg; 365 #define HQD_N_REGS (54+4) 366 #define DUMP_REG(addr) do { \ 367 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ 368 break; \ 369 (*dump)[i][0] = (addr) << 2; \ 370 (*dump)[i++][1] = RREG32(addr); \ 371 } while (0) 372 373 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 374 if (*dump == NULL) 375 return -ENOMEM; 376 377 acquire_queue(kgd, pipe_id, queue_id); 378 379 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0); 380 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1); 381 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2); 382 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3); 383 384 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++) 385 DUMP_REG(reg); 386 387 release_queue(kgd); 388 389 WARN_ON_ONCE(i != HQD_N_REGS); 390 *n_regs = i; 391 392 return 0; 393 } 394 395 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, 396 uint32_t __user *wptr, struct mm_struct *mm) 397 { 398 struct amdgpu_device *adev = get_amdgpu_device(kgd); 399 struct vi_sdma_mqd *m; 400 unsigned long end_jiffies; 401 uint32_t sdma_base_addr; 402 uint32_t data; 403 404 m = get_sdma_mqd(mqd); 405 sdma_base_addr = get_sdma_base_addr(m); 406 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, 407 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); 408 409 end_jiffies = msecs_to_jiffies(2000) + jiffies; 410 while (true) { 411 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); 412 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 413 break; 414 if (time_after(jiffies, end_jiffies)) 415 return -ETIME; 416 usleep_range(500, 1000); 417 } 418 if (m->sdma_engine_id) { 419 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL); 420 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL, 421 RESUME_CTX, 0); 422 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data); 423 } else { 424 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL); 425 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL, 426 RESUME_CTX, 0); 427 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data); 428 } 429 430 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, 431 ENABLE, 1); 432 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data); 433 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr); 434 435 if (read_user_wptr(mm, wptr, data)) 436 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data); 437 else 438 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 439 m->sdmax_rlcx_rb_rptr); 440 441 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR, 442 m->sdmax_rlcx_virtual_addr); 443 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); 444 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI, 445 m->sdmax_rlcx_rb_base_hi); 446 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 447 m->sdmax_rlcx_rb_rptr_addr_lo); 448 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, 449 m->sdmax_rlcx_rb_rptr_addr_hi); 450 451 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, 452 RB_ENABLE, 1); 453 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data); 454 455 return 0; 456 } 457 458 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, 459 uint32_t engine_id, uint32_t queue_id, 460 uint32_t (**dump)[2], uint32_t *n_regs) 461 { 462 struct amdgpu_device *adev = get_amdgpu_device(kgd); 463 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET + 464 queue_id * KFD_VI_SDMA_QUEUE_OFFSET; 465 uint32_t i = 0, reg; 466 #undef HQD_N_REGS 467 #define HQD_N_REGS (19+4+2+3+7) 468 469 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 470 if (*dump == NULL) 471 return -ENOMEM; 472 473 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) 474 DUMP_REG(sdma_offset + reg); 475 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK; 476 reg++) 477 DUMP_REG(sdma_offset + reg); 478 for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; 479 reg++) 480 DUMP_REG(sdma_offset + reg); 481 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG; 482 reg++) 483 DUMP_REG(sdma_offset + reg); 484 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL; 485 reg++) 486 DUMP_REG(sdma_offset + reg); 487 488 WARN_ON_ONCE(i != HQD_N_REGS); 489 *n_regs = i; 490 491 return 0; 492 } 493 494 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, 495 uint32_t pipe_id, uint32_t queue_id) 496 { 497 struct amdgpu_device *adev = get_amdgpu_device(kgd); 498 uint32_t act; 499 bool retval = false; 500 uint32_t low, high; 501 502 acquire_queue(kgd, pipe_id, queue_id); 503 act = RREG32(mmCP_HQD_ACTIVE); 504 if (act) { 505 low = lower_32_bits(queue_address >> 8); 506 high = upper_32_bits(queue_address >> 8); 507 508 if (low == RREG32(mmCP_HQD_PQ_BASE) && 509 high == RREG32(mmCP_HQD_PQ_BASE_HI)) 510 retval = true; 511 } 512 release_queue(kgd); 513 return retval; 514 } 515 516 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) 517 { 518 struct amdgpu_device *adev = get_amdgpu_device(kgd); 519 struct vi_sdma_mqd *m; 520 uint32_t sdma_base_addr; 521 uint32_t sdma_rlc_rb_cntl; 522 523 m = get_sdma_mqd(mqd); 524 sdma_base_addr = get_sdma_base_addr(m); 525 526 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); 527 528 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) 529 return true; 530 531 return false; 532 } 533 534 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, 535 enum kfd_preempt_type reset_type, 536 unsigned int utimeout, uint32_t pipe_id, 537 uint32_t queue_id) 538 { 539 struct amdgpu_device *adev = get_amdgpu_device(kgd); 540 uint32_t temp; 541 enum hqd_dequeue_request_type type; 542 unsigned long flags, end_jiffies; 543 int retry; 544 struct vi_mqd *m = get_mqd(mqd); 545 546 if (adev->in_gpu_reset) 547 return -EIO; 548 549 acquire_queue(kgd, pipe_id, queue_id); 550 551 if (m->cp_hqd_vmid == 0) 552 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0); 553 554 switch (reset_type) { 555 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: 556 type = DRAIN_PIPE; 557 break; 558 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: 559 type = RESET_WAVES; 560 break; 561 default: 562 type = DRAIN_PIPE; 563 break; 564 } 565 566 /* Workaround: If IQ timer is active and the wait time is close to or 567 * equal to 0, dequeueing is not safe. Wait until either the wait time 568 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is 569 * cleared before continuing. Also, ensure wait times are set to at 570 * least 0x3. 571 */ 572 local_irq_save(flags); 573 preempt_disable(); 574 retry = 5000; /* wait for 500 usecs at maximum */ 575 while (true) { 576 temp = RREG32(mmCP_HQD_IQ_TIMER); 577 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { 578 pr_debug("HW is processing IQ\n"); 579 goto loop; 580 } 581 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { 582 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) 583 == 3) /* SEM-rearm is safe */ 584 break; 585 /* Wait time 3 is safe for CP, but our MMIO read/write 586 * time is close to 1 microsecond, so check for 10 to 587 * leave more buffer room 588 */ 589 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) 590 >= 10) 591 break; 592 pr_debug("IQ timer is active\n"); 593 } else 594 break; 595 loop: 596 if (!retry) { 597 pr_err("CP HQD IQ timer status time out\n"); 598 break; 599 } 600 ndelay(100); 601 --retry; 602 } 603 retry = 1000; 604 while (true) { 605 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); 606 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) 607 break; 608 pr_debug("Dequeue request is pending\n"); 609 610 if (!retry) { 611 pr_err("CP HQD dequeue request time out\n"); 612 break; 613 } 614 ndelay(100); 615 --retry; 616 } 617 local_irq_restore(flags); 618 preempt_enable(); 619 620 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type); 621 622 end_jiffies = (utimeout * HZ / 1000) + jiffies; 623 while (true) { 624 temp = RREG32(mmCP_HQD_ACTIVE); 625 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) 626 break; 627 if (time_after(jiffies, end_jiffies)) { 628 pr_err("cp queue preemption time out.\n"); 629 release_queue(kgd); 630 return -ETIME; 631 } 632 usleep_range(500, 1000); 633 } 634 635 release_queue(kgd); 636 return 0; 637 } 638 639 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, 640 unsigned int utimeout) 641 { 642 struct amdgpu_device *adev = get_amdgpu_device(kgd); 643 struct vi_sdma_mqd *m; 644 uint32_t sdma_base_addr; 645 uint32_t temp; 646 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; 647 648 m = get_sdma_mqd(mqd); 649 sdma_base_addr = get_sdma_base_addr(m); 650 651 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); 652 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; 653 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp); 654 655 while (true) { 656 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); 657 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 658 break; 659 if (time_after(jiffies, end_jiffies)) 660 return -ETIME; 661 usleep_range(500, 1000); 662 } 663 664 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0); 665 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, 666 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) | 667 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); 668 669 m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR); 670 671 return 0; 672 } 673 674 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, 675 uint8_t vmid) 676 { 677 uint32_t reg; 678 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 679 680 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); 681 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK; 682 } 683 684 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, 685 uint8_t vmid) 686 { 687 uint32_t reg; 688 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 689 690 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); 691 return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK; 692 } 693 694 static int kgd_address_watch_disable(struct kgd_dev *kgd) 695 { 696 return 0; 697 } 698 699 static int kgd_address_watch_execute(struct kgd_dev *kgd, 700 unsigned int watch_point_id, 701 uint32_t cntl_val, 702 uint32_t addr_hi, 703 uint32_t addr_lo) 704 { 705 return 0; 706 } 707 708 static int kgd_wave_control_execute(struct kgd_dev *kgd, 709 uint32_t gfx_index_val, 710 uint32_t sq_cmd) 711 { 712 struct amdgpu_device *adev = get_amdgpu_device(kgd); 713 uint32_t data = 0; 714 715 mutex_lock(&adev->grbm_idx_mutex); 716 717 WREG32(mmGRBM_GFX_INDEX, gfx_index_val); 718 WREG32(mmSQ_CMD, sq_cmd); 719 720 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 721 INSTANCE_BROADCAST_WRITES, 1); 722 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 723 SH_BROADCAST_WRITES, 1); 724 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 725 SE_BROADCAST_WRITES, 1); 726 727 WREG32(mmGRBM_GFX_INDEX, data); 728 mutex_unlock(&adev->grbm_idx_mutex); 729 730 return 0; 731 } 732 733 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, 734 unsigned int watch_point_id, 735 unsigned int reg_offset) 736 { 737 return 0; 738 } 739 740 static void set_scratch_backing_va(struct kgd_dev *kgd, 741 uint64_t va, uint32_t vmid) 742 { 743 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 744 745 lock_srbm(kgd, 0, 0, 0, vmid); 746 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va); 747 unlock_srbm(kgd); 748 } 749 750 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, 751 uint64_t page_table_base) 752 { 753 struct amdgpu_device *adev = get_amdgpu_device(kgd); 754 755 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 756 pr_err("trying to set page table base for wrong VMID\n"); 757 return; 758 } 759 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, 760 lower_32_bits(page_table_base)); 761 } 762 763 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid) 764 { 765 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 766 int vmid; 767 unsigned int tmp; 768 769 if (adev->in_gpu_reset) 770 return -EIO; 771 772 for (vmid = 0; vmid < 16; vmid++) { 773 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) 774 continue; 775 776 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); 777 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) && 778 (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) { 779 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); 780 RREG32(mmVM_INVALIDATE_RESPONSE); 781 break; 782 } 783 } 784 785 return 0; 786 } 787 788 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid) 789 { 790 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 791 792 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 793 pr_err("non kfd vmid %d\n", vmid); 794 return -EINVAL; 795 } 796 797 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); 798 RREG32(mmVM_INVALIDATE_RESPONSE); 799 return 0; 800 } 801