1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <linux/firmware.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "amdgpu_ucode.h"
31 #include "gfx_v8_0.h"
32 #include "gca/gfx_8_0_sh_mask.h"
33 #include "gca/gfx_8_0_d.h"
34 #include "gca/gfx_8_0_enum.h"
35 #include "oss/oss_3_0_sh_mask.h"
36 #include "oss/oss_3_0_d.h"
37 #include "gmc/gmc_8_1_sh_mask.h"
38 #include "gmc/gmc_8_1_d.h"
39 #include "vi_structs.h"
40 #include "vid.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 struct cik_sdma_rlc_registers;
49 
50 /*
51  * Register access functions
52  */
53 
54 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
55 		uint32_t sh_mem_config,
56 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
57 		uint32_t sh_mem_bases);
58 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
59 		unsigned int vmid);
60 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
61 		uint32_t hpd_size, uint64_t hpd_gpu_addr);
62 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
63 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
64 			uint32_t queue_id, uint32_t __user *wptr,
65 			uint32_t wptr_shift, uint32_t wptr_mask,
66 			struct mm_struct *mm);
67 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
68 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
69 		uint32_t pipe_id, uint32_t queue_id);
70 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
71 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
72 				enum kfd_preempt_type reset_type,
73 				unsigned int utimeout, uint32_t pipe_id,
74 				uint32_t queue_id);
75 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
76 				unsigned int utimeout);
77 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
78 static int kgd_address_watch_disable(struct kgd_dev *kgd);
79 static int kgd_address_watch_execute(struct kgd_dev *kgd,
80 					unsigned int watch_point_id,
81 					uint32_t cntl_val,
82 					uint32_t addr_hi,
83 					uint32_t addr_lo);
84 static int kgd_wave_control_execute(struct kgd_dev *kgd,
85 					uint32_t gfx_index_val,
86 					uint32_t sq_cmd);
87 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
88 					unsigned int watch_point_id,
89 					unsigned int reg_offset);
90 
91 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
92 		uint8_t vmid);
93 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
94 		uint8_t vmid);
95 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
96 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
97 static void set_scratch_backing_va(struct kgd_dev *kgd,
98 					uint64_t va, uint32_t vmid);
99 
100 /* Because of REG_GET_FIELD() being used, we put this function in the
101  * asic specific file.
102  */
103 static int get_tile_config(struct kgd_dev *kgd,
104 		struct tile_config *config)
105 {
106 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
107 
108 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
109 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
110 				MC_ARB_RAMCFG, NOOFBANK);
111 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
112 				MC_ARB_RAMCFG, NOOFRANKS);
113 
114 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
115 	config->num_tile_configs =
116 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
117 	config->macro_tile_config_ptr =
118 			adev->gfx.config.macrotile_mode_array;
119 	config->num_macro_tile_configs =
120 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
121 
122 	return 0;
123 }
124 
125 static const struct kfd2kgd_calls kfd2kgd = {
126 	.init_gtt_mem_allocation = alloc_gtt_mem,
127 	.free_gtt_mem = free_gtt_mem,
128 	.get_vmem_size = get_vmem_size,
129 	.get_gpu_clock_counter = get_gpu_clock_counter,
130 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
131 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
132 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
133 	.init_pipeline = kgd_init_pipeline,
134 	.init_interrupts = kgd_init_interrupts,
135 	.hqd_load = kgd_hqd_load,
136 	.hqd_sdma_load = kgd_hqd_sdma_load,
137 	.hqd_is_occupied = kgd_hqd_is_occupied,
138 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
139 	.hqd_destroy = kgd_hqd_destroy,
140 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
141 	.address_watch_disable = kgd_address_watch_disable,
142 	.address_watch_execute = kgd_address_watch_execute,
143 	.wave_control_execute = kgd_wave_control_execute,
144 	.address_watch_get_offset = kgd_address_watch_get_offset,
145 	.get_atc_vmid_pasid_mapping_pasid =
146 			get_atc_vmid_pasid_mapping_pasid,
147 	.get_atc_vmid_pasid_mapping_valid =
148 			get_atc_vmid_pasid_mapping_valid,
149 	.write_vmid_invalidate_request = write_vmid_invalidate_request,
150 	.get_fw_version = get_fw_version,
151 	.set_scratch_backing_va = set_scratch_backing_va,
152 	.get_tile_config = get_tile_config,
153 };
154 
155 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
156 {
157 	return (struct kfd2kgd_calls *)&kfd2kgd;
158 }
159 
160 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
161 {
162 	return (struct amdgpu_device *)kgd;
163 }
164 
165 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
166 			uint32_t queue, uint32_t vmid)
167 {
168 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
169 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
170 
171 	mutex_lock(&adev->srbm_mutex);
172 	WREG32(mmSRBM_GFX_CNTL, value);
173 }
174 
175 static void unlock_srbm(struct kgd_dev *kgd)
176 {
177 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
178 
179 	WREG32(mmSRBM_GFX_CNTL, 0);
180 	mutex_unlock(&adev->srbm_mutex);
181 }
182 
183 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
184 				uint32_t queue_id)
185 {
186 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
187 
188 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
189 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
190 
191 	lock_srbm(kgd, mec, pipe, queue_id, 0);
192 }
193 
194 static void release_queue(struct kgd_dev *kgd)
195 {
196 	unlock_srbm(kgd);
197 }
198 
199 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
200 					uint32_t sh_mem_config,
201 					uint32_t sh_mem_ape1_base,
202 					uint32_t sh_mem_ape1_limit,
203 					uint32_t sh_mem_bases)
204 {
205 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
206 
207 	lock_srbm(kgd, 0, 0, 0, vmid);
208 
209 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
210 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
211 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
212 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
213 
214 	unlock_srbm(kgd);
215 }
216 
217 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
218 					unsigned int vmid)
219 {
220 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
221 
222 	/*
223 	 * We have to assume that there is no outstanding mapping.
224 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
225 	 * a mapping is in progress or because a mapping finished
226 	 * and the SW cleared it.
227 	 * So the protocol is to always wait & clear.
228 	 */
229 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
230 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
231 
232 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
233 
234 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
235 		cpu_relax();
236 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
237 
238 	/* Mapping vmid to pasid also for IH block */
239 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
240 
241 	return 0;
242 }
243 
244 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
245 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
246 {
247 	/* amdgpu owns the per-pipe state */
248 	return 0;
249 }
250 
251 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
252 {
253 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
254 	uint32_t mec;
255 	uint32_t pipe;
256 
257 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
258 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
259 
260 	lock_srbm(kgd, mec, pipe, 0, 0);
261 
262 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK);
263 
264 	unlock_srbm(kgd);
265 
266 	return 0;
267 }
268 
269 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
270 {
271 	return 0;
272 }
273 
274 static inline struct vi_mqd *get_mqd(void *mqd)
275 {
276 	return (struct vi_mqd *)mqd;
277 }
278 
279 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
280 {
281 	return (struct cik_sdma_rlc_registers *)mqd;
282 }
283 
284 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
285 			uint32_t queue_id, uint32_t __user *wptr,
286 			uint32_t wptr_shift, uint32_t wptr_mask,
287 			struct mm_struct *mm)
288 {
289 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
290 	struct vi_mqd *m;
291 	uint32_t *mqd_hqd;
292 	uint32_t reg, wptr_val, data;
293 
294 	m = get_mqd(mqd);
295 
296 	acquire_queue(kgd, pipe_id, queue_id);
297 
298 	/* HIQ is set during driver init period with vmid set to 0*/
299 	if (m->cp_hqd_vmid == 0) {
300 		uint32_t value, mec, pipe;
301 
302 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
303 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
304 
305 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
306 			mec, pipe, queue_id);
307 		value = RREG32(mmRLC_CP_SCHEDULERS);
308 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
309 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
310 		WREG32(mmRLC_CP_SCHEDULERS, value);
311 	}
312 
313 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
314 	mqd_hqd = &m->cp_mqd_base_addr_lo;
315 
316 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
317 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
318 
319 	/* Tonga errata: EOP RPTR/WPTR should be left unmodified.
320 	 * This is safe since EOP RPTR==WPTR for any inactive HQD
321 	 * on ASICs that do not support context-save.
322 	 * EOP writes/reads can start anywhere in the ring.
323 	 */
324 	if (get_amdgpu_device(kgd)->asic_type != CHIP_TONGA) {
325 		WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
326 		WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
327 		WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
328 	}
329 
330 	for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
331 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
332 
333 	/* Copy userspace write pointer value to register.
334 	 * Activate doorbell logic to monitor subsequent changes.
335 	 */
336 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
337 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
338 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
339 
340 	if (read_user_wptr(mm, wptr, wptr_val))
341 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
342 
343 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
344 	WREG32(mmCP_HQD_ACTIVE, data);
345 
346 	release_queue(kgd);
347 
348 	return 0;
349 }
350 
351 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
352 {
353 	return 0;
354 }
355 
356 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
357 				uint32_t pipe_id, uint32_t queue_id)
358 {
359 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
360 	uint32_t act;
361 	bool retval = false;
362 	uint32_t low, high;
363 
364 	acquire_queue(kgd, pipe_id, queue_id);
365 	act = RREG32(mmCP_HQD_ACTIVE);
366 	if (act) {
367 		low = lower_32_bits(queue_address >> 8);
368 		high = upper_32_bits(queue_address >> 8);
369 
370 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
371 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
372 			retval = true;
373 	}
374 	release_queue(kgd);
375 	return retval;
376 }
377 
378 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
379 {
380 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
381 	struct cik_sdma_rlc_registers *m;
382 	uint32_t sdma_base_addr;
383 	uint32_t sdma_rlc_rb_cntl;
384 
385 	m = get_sdma_mqd(mqd);
386 	sdma_base_addr = get_sdma_base_addr(m);
387 
388 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
389 
390 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
391 		return true;
392 
393 	return false;
394 }
395 
396 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
397 				enum kfd_preempt_type reset_type,
398 				unsigned int utimeout, uint32_t pipe_id,
399 				uint32_t queue_id)
400 {
401 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
402 	uint32_t temp;
403 	enum hqd_dequeue_request_type type;
404 	unsigned long flags, end_jiffies;
405 	int retry;
406 	struct vi_mqd *m = get_mqd(mqd);
407 
408 	acquire_queue(kgd, pipe_id, queue_id);
409 
410 	if (m->cp_hqd_vmid == 0)
411 		WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
412 
413 	switch (reset_type) {
414 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
415 		type = DRAIN_PIPE;
416 		break;
417 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
418 		type = RESET_WAVES;
419 		break;
420 	default:
421 		type = DRAIN_PIPE;
422 		break;
423 	}
424 
425 	/* Workaround: If IQ timer is active and the wait time is close to or
426 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
427 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
428 	 * cleared before continuing. Also, ensure wait times are set to at
429 	 * least 0x3.
430 	 */
431 	local_irq_save(flags);
432 	preempt_disable();
433 	retry = 5000; /* wait for 500 usecs at maximum */
434 	while (true) {
435 		temp = RREG32(mmCP_HQD_IQ_TIMER);
436 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
437 			pr_debug("HW is processing IQ\n");
438 			goto loop;
439 		}
440 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
441 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
442 					== 3) /* SEM-rearm is safe */
443 				break;
444 			/* Wait time 3 is safe for CP, but our MMIO read/write
445 			 * time is close to 1 microsecond, so check for 10 to
446 			 * leave more buffer room
447 			 */
448 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
449 					>= 10)
450 				break;
451 			pr_debug("IQ timer is active\n");
452 		} else
453 			break;
454 loop:
455 		if (!retry) {
456 			pr_err("CP HQD IQ timer status time out\n");
457 			break;
458 		}
459 		ndelay(100);
460 		--retry;
461 	}
462 	retry = 1000;
463 	while (true) {
464 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
465 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
466 			break;
467 		pr_debug("Dequeue request is pending\n");
468 
469 		if (!retry) {
470 			pr_err("CP HQD dequeue request time out\n");
471 			break;
472 		}
473 		ndelay(100);
474 		--retry;
475 	}
476 	local_irq_restore(flags);
477 	preempt_enable();
478 
479 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
480 
481 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
482 	while (true) {
483 		temp = RREG32(mmCP_HQD_ACTIVE);
484 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
485 			break;
486 		if (time_after(jiffies, end_jiffies)) {
487 			pr_err("cp queue preemption time out.\n");
488 			release_queue(kgd);
489 			return -ETIME;
490 		}
491 		usleep_range(500, 1000);
492 	}
493 
494 	release_queue(kgd);
495 	return 0;
496 }
497 
498 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
499 				unsigned int utimeout)
500 {
501 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
502 	struct cik_sdma_rlc_registers *m;
503 	uint32_t sdma_base_addr;
504 	uint32_t temp;
505 	int timeout = utimeout;
506 
507 	m = get_sdma_mqd(mqd);
508 	sdma_base_addr = get_sdma_base_addr(m);
509 
510 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
511 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
512 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
513 
514 	while (true) {
515 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
516 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
517 			break;
518 		if (timeout <= 0)
519 			return -ETIME;
520 		msleep(20);
521 		timeout -= 20;
522 	}
523 
524 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
525 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
526 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
527 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
528 
529 	return 0;
530 }
531 
532 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
533 							uint8_t vmid)
534 {
535 	uint32_t reg;
536 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
537 
538 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
539 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
540 }
541 
542 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
543 								uint8_t vmid)
544 {
545 	uint32_t reg;
546 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
547 
548 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
549 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
550 }
551 
552 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
553 {
554 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
555 
556 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
557 }
558 
559 static int kgd_address_watch_disable(struct kgd_dev *kgd)
560 {
561 	return 0;
562 }
563 
564 static int kgd_address_watch_execute(struct kgd_dev *kgd,
565 					unsigned int watch_point_id,
566 					uint32_t cntl_val,
567 					uint32_t addr_hi,
568 					uint32_t addr_lo)
569 {
570 	return 0;
571 }
572 
573 static int kgd_wave_control_execute(struct kgd_dev *kgd,
574 					uint32_t gfx_index_val,
575 					uint32_t sq_cmd)
576 {
577 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
578 	uint32_t data = 0;
579 
580 	mutex_lock(&adev->grbm_idx_mutex);
581 
582 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
583 	WREG32(mmSQ_CMD, sq_cmd);
584 
585 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
586 		INSTANCE_BROADCAST_WRITES, 1);
587 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
588 		SH_BROADCAST_WRITES, 1);
589 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
590 		SE_BROADCAST_WRITES, 1);
591 
592 	WREG32(mmGRBM_GFX_INDEX, data);
593 	mutex_unlock(&adev->grbm_idx_mutex);
594 
595 	return 0;
596 }
597 
598 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
599 					unsigned int watch_point_id,
600 					unsigned int reg_offset)
601 {
602 	return 0;
603 }
604 
605 static void set_scratch_backing_va(struct kgd_dev *kgd,
606 					uint64_t va, uint32_t vmid)
607 {
608 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
609 
610 	lock_srbm(kgd, 0, 0, 0, vmid);
611 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
612 	unlock_srbm(kgd);
613 }
614 
615 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
616 {
617 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
618 	const union amdgpu_firmware_header *hdr;
619 
620 	BUG_ON(kgd == NULL);
621 
622 	switch (type) {
623 	case KGD_ENGINE_PFP:
624 		hdr = (const union amdgpu_firmware_header *)
625 						adev->gfx.pfp_fw->data;
626 		break;
627 
628 	case KGD_ENGINE_ME:
629 		hdr = (const union amdgpu_firmware_header *)
630 						adev->gfx.me_fw->data;
631 		break;
632 
633 	case KGD_ENGINE_CE:
634 		hdr = (const union amdgpu_firmware_header *)
635 						adev->gfx.ce_fw->data;
636 		break;
637 
638 	case KGD_ENGINE_MEC1:
639 		hdr = (const union amdgpu_firmware_header *)
640 						adev->gfx.mec_fw->data;
641 		break;
642 
643 	case KGD_ENGINE_MEC2:
644 		hdr = (const union amdgpu_firmware_header *)
645 						adev->gfx.mec2_fw->data;
646 		break;
647 
648 	case KGD_ENGINE_RLC:
649 		hdr = (const union amdgpu_firmware_header *)
650 						adev->gfx.rlc_fw->data;
651 		break;
652 
653 	case KGD_ENGINE_SDMA1:
654 		hdr = (const union amdgpu_firmware_header *)
655 						adev->sdma.instance[0].fw->data;
656 		break;
657 
658 	case KGD_ENGINE_SDMA2:
659 		hdr = (const union amdgpu_firmware_header *)
660 						adev->sdma.instance[1].fw->data;
661 		break;
662 
663 	default:
664 		return 0;
665 	}
666 
667 	if (hdr == NULL)
668 		return 0;
669 
670 	/* Only 12 bit in use*/
671 	return hdr->common.ucode_version;
672 }
673