1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/fdtable.h> 24 #include <linux/uaccess.h> 25 #include <linux/mmu_context.h> 26 #include <drm/drmP.h> 27 #include "amdgpu.h" 28 #include "amdgpu_amdkfd.h" 29 #include "cikd.h" 30 #include "cik_sdma.h" 31 #include "gfx_v7_0.h" 32 #include "gca/gfx_7_2_d.h" 33 #include "gca/gfx_7_2_enum.h" 34 #include "gca/gfx_7_2_sh_mask.h" 35 #include "oss/oss_2_0_d.h" 36 #include "oss/oss_2_0_sh_mask.h" 37 #include "gmc/gmc_7_1_d.h" 38 #include "gmc/gmc_7_1_sh_mask.h" 39 #include "cik_structs.h" 40 41 enum hqd_dequeue_request_type { 42 NO_ACTION = 0, 43 DRAIN_PIPE, 44 RESET_WAVES 45 }; 46 47 enum { 48 MAX_TRAPID = 8, /* 3 bits in the bitfield. */ 49 MAX_WATCH_ADDRESSES = 4 50 }; 51 52 enum { 53 ADDRESS_WATCH_REG_ADDR_HI = 0, 54 ADDRESS_WATCH_REG_ADDR_LO, 55 ADDRESS_WATCH_REG_CNTL, 56 ADDRESS_WATCH_REG_MAX 57 }; 58 59 /* not defined in the CI/KV reg file */ 60 enum { 61 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL, 62 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF, 63 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000, 64 /* extend the mask to 26 bits to match the low address field */ 65 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6, 66 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF 67 }; 68 69 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = { 70 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL, 71 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL, 72 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL, 73 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL 74 }; 75 76 union TCP_WATCH_CNTL_BITS { 77 struct { 78 uint32_t mask:24; 79 uint32_t vmid:4; 80 uint32_t atc:1; 81 uint32_t mode:2; 82 uint32_t valid:1; 83 } bitfields, bits; 84 uint32_t u32All; 85 signed int i32All; 86 float f32All; 87 }; 88 89 /* 90 * Register access functions 91 */ 92 93 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, 94 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, 95 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases); 96 97 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, 98 unsigned int vmid); 99 100 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id); 101 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, 102 uint32_t queue_id, uint32_t __user *wptr, 103 uint32_t wptr_shift, uint32_t wptr_mask, 104 struct mm_struct *mm); 105 static int kgd_hqd_dump(struct kgd_dev *kgd, 106 uint32_t pipe_id, uint32_t queue_id, 107 uint32_t (**dump)[2], uint32_t *n_regs); 108 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, 109 uint32_t __user *wptr, struct mm_struct *mm); 110 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, 111 uint32_t engine_id, uint32_t queue_id, 112 uint32_t (**dump)[2], uint32_t *n_regs); 113 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, 114 uint32_t pipe_id, uint32_t queue_id); 115 116 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, 117 enum kfd_preempt_type reset_type, 118 unsigned int utimeout, uint32_t pipe_id, 119 uint32_t queue_id); 120 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd); 121 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, 122 unsigned int utimeout); 123 static int kgd_address_watch_disable(struct kgd_dev *kgd); 124 static int kgd_address_watch_execute(struct kgd_dev *kgd, 125 unsigned int watch_point_id, 126 uint32_t cntl_val, 127 uint32_t addr_hi, 128 uint32_t addr_lo); 129 static int kgd_wave_control_execute(struct kgd_dev *kgd, 130 uint32_t gfx_index_val, 131 uint32_t sq_cmd); 132 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, 133 unsigned int watch_point_id, 134 unsigned int reg_offset); 135 136 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid); 137 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, 138 uint8_t vmid); 139 140 static void set_scratch_backing_va(struct kgd_dev *kgd, 141 uint64_t va, uint32_t vmid); 142 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, 143 uint64_t page_table_base); 144 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid); 145 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid); 146 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd); 147 148 /* Because of REG_GET_FIELD() being used, we put this function in the 149 * asic specific file. 150 */ 151 static int get_tile_config(struct kgd_dev *kgd, 152 struct tile_config *config) 153 { 154 struct amdgpu_device *adev = (struct amdgpu_device *)kgd; 155 156 config->gb_addr_config = adev->gfx.config.gb_addr_config; 157 config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg, 158 MC_ARB_RAMCFG, NOOFBANK); 159 config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg, 160 MC_ARB_RAMCFG, NOOFRANKS); 161 162 config->tile_config_ptr = adev->gfx.config.tile_mode_array; 163 config->num_tile_configs = 164 ARRAY_SIZE(adev->gfx.config.tile_mode_array); 165 config->macro_tile_config_ptr = 166 adev->gfx.config.macrotile_mode_array; 167 config->num_macro_tile_configs = 168 ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); 169 170 return 0; 171 } 172 173 static const struct kfd2kgd_calls kfd2kgd = { 174 .program_sh_mem_settings = kgd_program_sh_mem_settings, 175 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, 176 .init_interrupts = kgd_init_interrupts, 177 .hqd_load = kgd_hqd_load, 178 .hqd_sdma_load = kgd_hqd_sdma_load, 179 .hqd_dump = kgd_hqd_dump, 180 .hqd_sdma_dump = kgd_hqd_sdma_dump, 181 .hqd_is_occupied = kgd_hqd_is_occupied, 182 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, 183 .hqd_destroy = kgd_hqd_destroy, 184 .hqd_sdma_destroy = kgd_hqd_sdma_destroy, 185 .address_watch_disable = kgd_address_watch_disable, 186 .address_watch_execute = kgd_address_watch_execute, 187 .wave_control_execute = kgd_wave_control_execute, 188 .address_watch_get_offset = kgd_address_watch_get_offset, 189 .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid, 190 .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid, 191 .set_scratch_backing_va = set_scratch_backing_va, 192 .get_tile_config = get_tile_config, 193 .set_vm_context_page_table_base = set_vm_context_page_table_base, 194 .invalidate_tlbs = invalidate_tlbs, 195 .invalidate_tlbs_vmid = invalidate_tlbs_vmid, 196 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg, 197 }; 198 199 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void) 200 { 201 return (struct kfd2kgd_calls *)&kfd2kgd; 202 } 203 204 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) 205 { 206 return (struct amdgpu_device *)kgd; 207 } 208 209 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, 210 uint32_t queue, uint32_t vmid) 211 { 212 struct amdgpu_device *adev = get_amdgpu_device(kgd); 213 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue); 214 215 mutex_lock(&adev->srbm_mutex); 216 WREG32(mmSRBM_GFX_CNTL, value); 217 } 218 219 static void unlock_srbm(struct kgd_dev *kgd) 220 { 221 struct amdgpu_device *adev = get_amdgpu_device(kgd); 222 223 WREG32(mmSRBM_GFX_CNTL, 0); 224 mutex_unlock(&adev->srbm_mutex); 225 } 226 227 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, 228 uint32_t queue_id) 229 { 230 struct amdgpu_device *adev = get_amdgpu_device(kgd); 231 232 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 233 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 234 235 lock_srbm(kgd, mec, pipe, queue_id, 0); 236 } 237 238 static void release_queue(struct kgd_dev *kgd) 239 { 240 unlock_srbm(kgd); 241 } 242 243 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, 244 uint32_t sh_mem_config, 245 uint32_t sh_mem_ape1_base, 246 uint32_t sh_mem_ape1_limit, 247 uint32_t sh_mem_bases) 248 { 249 struct amdgpu_device *adev = get_amdgpu_device(kgd); 250 251 lock_srbm(kgd, 0, 0, 0, vmid); 252 253 WREG32(mmSH_MEM_CONFIG, sh_mem_config); 254 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base); 255 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit); 256 WREG32(mmSH_MEM_BASES, sh_mem_bases); 257 258 unlock_srbm(kgd); 259 } 260 261 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, 262 unsigned int vmid) 263 { 264 struct amdgpu_device *adev = get_amdgpu_device(kgd); 265 266 /* 267 * We have to assume that there is no outstanding mapping. 268 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because 269 * a mapping is in progress or because a mapping finished and the 270 * SW cleared it. So the protocol is to always wait & clear. 271 */ 272 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 273 ATC_VMID0_PASID_MAPPING__VALID_MASK; 274 275 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping); 276 277 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid))) 278 cpu_relax(); 279 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid); 280 281 /* Mapping vmid to pasid also for IH block */ 282 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping); 283 284 return 0; 285 } 286 287 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) 288 { 289 struct amdgpu_device *adev = get_amdgpu_device(kgd); 290 uint32_t mec; 291 uint32_t pipe; 292 293 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 294 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 295 296 lock_srbm(kgd, mec, pipe, 0, 0); 297 298 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | 299 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); 300 301 unlock_srbm(kgd); 302 303 return 0; 304 } 305 306 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m) 307 { 308 uint32_t retval; 309 310 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET + 311 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; 312 313 pr_debug("kfd: sdma base address: 0x%x\n", retval); 314 315 return retval; 316 } 317 318 static inline struct cik_mqd *get_mqd(void *mqd) 319 { 320 return (struct cik_mqd *)mqd; 321 } 322 323 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) 324 { 325 return (struct cik_sdma_rlc_registers *)mqd; 326 } 327 328 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, 329 uint32_t queue_id, uint32_t __user *wptr, 330 uint32_t wptr_shift, uint32_t wptr_mask, 331 struct mm_struct *mm) 332 { 333 struct amdgpu_device *adev = get_amdgpu_device(kgd); 334 struct cik_mqd *m; 335 uint32_t *mqd_hqd; 336 uint32_t reg, wptr_val, data; 337 bool valid_wptr = false; 338 339 m = get_mqd(mqd); 340 341 acquire_queue(kgd, pipe_id, queue_id); 342 343 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */ 344 mqd_hqd = &m->cp_mqd_base_addr_lo; 345 346 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++) 347 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]); 348 349 /* Copy userspace write pointer value to register. 350 * Activate doorbell logic to monitor subsequent changes. 351 */ 352 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, 353 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); 354 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data); 355 356 /* read_user_ptr may take the mm->mmap_sem. 357 * release srbm_mutex to avoid circular dependency between 358 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex. 359 */ 360 release_queue(kgd); 361 valid_wptr = read_user_wptr(mm, wptr, wptr_val); 362 acquire_queue(kgd, pipe_id, queue_id); 363 if (valid_wptr) 364 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask); 365 366 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); 367 WREG32(mmCP_HQD_ACTIVE, data); 368 369 release_queue(kgd); 370 371 return 0; 372 } 373 374 static int kgd_hqd_dump(struct kgd_dev *kgd, 375 uint32_t pipe_id, uint32_t queue_id, 376 uint32_t (**dump)[2], uint32_t *n_regs) 377 { 378 struct amdgpu_device *adev = get_amdgpu_device(kgd); 379 uint32_t i = 0, reg; 380 #define HQD_N_REGS (35+4) 381 #define DUMP_REG(addr) do { \ 382 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ 383 break; \ 384 (*dump)[i][0] = (addr) << 2; \ 385 (*dump)[i++][1] = RREG32(addr); \ 386 } while (0) 387 388 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 389 if (*dump == NULL) 390 return -ENOMEM; 391 392 acquire_queue(kgd, pipe_id, queue_id); 393 394 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0); 395 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1); 396 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2); 397 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3); 398 399 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++) 400 DUMP_REG(reg); 401 402 release_queue(kgd); 403 404 WARN_ON_ONCE(i != HQD_N_REGS); 405 *n_regs = i; 406 407 return 0; 408 } 409 410 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, 411 uint32_t __user *wptr, struct mm_struct *mm) 412 { 413 struct amdgpu_device *adev = get_amdgpu_device(kgd); 414 struct cik_sdma_rlc_registers *m; 415 unsigned long end_jiffies; 416 uint32_t sdma_base_addr; 417 uint32_t data; 418 419 m = get_sdma_mqd(mqd); 420 sdma_base_addr = get_sdma_base_addr(m); 421 422 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, 423 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); 424 425 end_jiffies = msecs_to_jiffies(2000) + jiffies; 426 while (true) { 427 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); 428 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 429 break; 430 if (time_after(jiffies, end_jiffies)) 431 return -ETIME; 432 usleep_range(500, 1000); 433 } 434 if (m->sdma_engine_id) { 435 data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL); 436 data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL, 437 RESUME_CTX, 0); 438 WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data); 439 } else { 440 data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL); 441 data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL, 442 RESUME_CTX, 0); 443 WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data); 444 } 445 446 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL, 447 ENABLE, 1); 448 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data); 449 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr); 450 451 if (read_user_wptr(mm, wptr, data)) 452 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data); 453 else 454 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 455 m->sdma_rlc_rb_rptr); 456 457 WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR, 458 m->sdma_rlc_virtual_addr); 459 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base); 460 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI, 461 m->sdma_rlc_rb_base_hi); 462 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 463 m->sdma_rlc_rb_rptr_addr_lo); 464 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, 465 m->sdma_rlc_rb_rptr_addr_hi); 466 467 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL, 468 RB_ENABLE, 1); 469 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data); 470 471 return 0; 472 } 473 474 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, 475 uint32_t engine_id, uint32_t queue_id, 476 uint32_t (**dump)[2], uint32_t *n_regs) 477 { 478 struct amdgpu_device *adev = get_amdgpu_device(kgd); 479 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET + 480 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; 481 uint32_t i = 0, reg; 482 #undef HQD_N_REGS 483 #define HQD_N_REGS (19+4) 484 485 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 486 if (*dump == NULL) 487 return -ENOMEM; 488 489 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) 490 DUMP_REG(sdma_offset + reg); 491 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK; 492 reg++) 493 DUMP_REG(sdma_offset + reg); 494 495 WARN_ON_ONCE(i != HQD_N_REGS); 496 *n_regs = i; 497 498 return 0; 499 } 500 501 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, 502 uint32_t pipe_id, uint32_t queue_id) 503 { 504 struct amdgpu_device *adev = get_amdgpu_device(kgd); 505 uint32_t act; 506 bool retval = false; 507 uint32_t low, high; 508 509 acquire_queue(kgd, pipe_id, queue_id); 510 act = RREG32(mmCP_HQD_ACTIVE); 511 if (act) { 512 low = lower_32_bits(queue_address >> 8); 513 high = upper_32_bits(queue_address >> 8); 514 515 if (low == RREG32(mmCP_HQD_PQ_BASE) && 516 high == RREG32(mmCP_HQD_PQ_BASE_HI)) 517 retval = true; 518 } 519 release_queue(kgd); 520 return retval; 521 } 522 523 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) 524 { 525 struct amdgpu_device *adev = get_amdgpu_device(kgd); 526 struct cik_sdma_rlc_registers *m; 527 uint32_t sdma_base_addr; 528 uint32_t sdma_rlc_rb_cntl; 529 530 m = get_sdma_mqd(mqd); 531 sdma_base_addr = get_sdma_base_addr(m); 532 533 sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); 534 535 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) 536 return true; 537 538 return false; 539 } 540 541 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, 542 enum kfd_preempt_type reset_type, 543 unsigned int utimeout, uint32_t pipe_id, 544 uint32_t queue_id) 545 { 546 struct amdgpu_device *adev = get_amdgpu_device(kgd); 547 uint32_t temp; 548 enum hqd_dequeue_request_type type; 549 unsigned long flags, end_jiffies; 550 int retry; 551 552 if (adev->in_gpu_reset) 553 return -EIO; 554 555 acquire_queue(kgd, pipe_id, queue_id); 556 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0); 557 558 switch (reset_type) { 559 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: 560 type = DRAIN_PIPE; 561 break; 562 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: 563 type = RESET_WAVES; 564 break; 565 default: 566 type = DRAIN_PIPE; 567 break; 568 } 569 570 /* Workaround: If IQ timer is active and the wait time is close to or 571 * equal to 0, dequeueing is not safe. Wait until either the wait time 572 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is 573 * cleared before continuing. Also, ensure wait times are set to at 574 * least 0x3. 575 */ 576 local_irq_save(flags); 577 preempt_disable(); 578 retry = 5000; /* wait for 500 usecs at maximum */ 579 while (true) { 580 temp = RREG32(mmCP_HQD_IQ_TIMER); 581 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { 582 pr_debug("HW is processing IQ\n"); 583 goto loop; 584 } 585 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { 586 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) 587 == 3) /* SEM-rearm is safe */ 588 break; 589 /* Wait time 3 is safe for CP, but our MMIO read/write 590 * time is close to 1 microsecond, so check for 10 to 591 * leave more buffer room 592 */ 593 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) 594 >= 10) 595 break; 596 pr_debug("IQ timer is active\n"); 597 } else 598 break; 599 loop: 600 if (!retry) { 601 pr_err("CP HQD IQ timer status time out\n"); 602 break; 603 } 604 ndelay(100); 605 --retry; 606 } 607 retry = 1000; 608 while (true) { 609 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); 610 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) 611 break; 612 pr_debug("Dequeue request is pending\n"); 613 614 if (!retry) { 615 pr_err("CP HQD dequeue request time out\n"); 616 break; 617 } 618 ndelay(100); 619 --retry; 620 } 621 local_irq_restore(flags); 622 preempt_enable(); 623 624 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type); 625 626 end_jiffies = (utimeout * HZ / 1000) + jiffies; 627 while (true) { 628 temp = RREG32(mmCP_HQD_ACTIVE); 629 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) 630 break; 631 if (time_after(jiffies, end_jiffies)) { 632 pr_err("cp queue preemption time out\n"); 633 release_queue(kgd); 634 return -ETIME; 635 } 636 usleep_range(500, 1000); 637 } 638 639 release_queue(kgd); 640 return 0; 641 } 642 643 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, 644 unsigned int utimeout) 645 { 646 struct amdgpu_device *adev = get_amdgpu_device(kgd); 647 struct cik_sdma_rlc_registers *m; 648 uint32_t sdma_base_addr; 649 uint32_t temp; 650 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; 651 652 m = get_sdma_mqd(mqd); 653 sdma_base_addr = get_sdma_base_addr(m); 654 655 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); 656 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; 657 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp); 658 659 while (true) { 660 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); 661 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 662 break; 663 if (time_after(jiffies, end_jiffies)) 664 return -ETIME; 665 usleep_range(500, 1000); 666 } 667 668 WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0); 669 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, 670 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) | 671 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); 672 673 m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR); 674 675 return 0; 676 } 677 678 static int kgd_address_watch_disable(struct kgd_dev *kgd) 679 { 680 struct amdgpu_device *adev = get_amdgpu_device(kgd); 681 union TCP_WATCH_CNTL_BITS cntl; 682 unsigned int i; 683 684 cntl.u32All = 0; 685 686 cntl.bitfields.valid = 0; 687 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK; 688 cntl.bitfields.atc = 1; 689 690 /* Turning off this address until we set all the registers */ 691 for (i = 0; i < MAX_WATCH_ADDRESSES; i++) 692 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX + 693 ADDRESS_WATCH_REG_CNTL], cntl.u32All); 694 695 return 0; 696 } 697 698 static int kgd_address_watch_execute(struct kgd_dev *kgd, 699 unsigned int watch_point_id, 700 uint32_t cntl_val, 701 uint32_t addr_hi, 702 uint32_t addr_lo) 703 { 704 struct amdgpu_device *adev = get_amdgpu_device(kgd); 705 union TCP_WATCH_CNTL_BITS cntl; 706 707 cntl.u32All = cntl_val; 708 709 /* Turning off this watch point until we set all the registers */ 710 cntl.bitfields.valid = 0; 711 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 712 ADDRESS_WATCH_REG_CNTL], cntl.u32All); 713 714 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 715 ADDRESS_WATCH_REG_ADDR_HI], addr_hi); 716 717 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 718 ADDRESS_WATCH_REG_ADDR_LO], addr_lo); 719 720 /* Enable the watch point */ 721 cntl.bitfields.valid = 1; 722 723 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 724 ADDRESS_WATCH_REG_CNTL], cntl.u32All); 725 726 return 0; 727 } 728 729 static int kgd_wave_control_execute(struct kgd_dev *kgd, 730 uint32_t gfx_index_val, 731 uint32_t sq_cmd) 732 { 733 struct amdgpu_device *adev = get_amdgpu_device(kgd); 734 uint32_t data; 735 736 mutex_lock(&adev->grbm_idx_mutex); 737 738 WREG32(mmGRBM_GFX_INDEX, gfx_index_val); 739 WREG32(mmSQ_CMD, sq_cmd); 740 741 /* Restore the GRBM_GFX_INDEX register */ 742 743 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK | 744 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK | 745 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK; 746 747 WREG32(mmGRBM_GFX_INDEX, data); 748 749 mutex_unlock(&adev->grbm_idx_mutex); 750 751 return 0; 752 } 753 754 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, 755 unsigned int watch_point_id, 756 unsigned int reg_offset) 757 { 758 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset]; 759 } 760 761 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, 762 uint8_t vmid) 763 { 764 uint32_t reg; 765 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 766 767 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); 768 return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK; 769 } 770 771 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, 772 uint8_t vmid) 773 { 774 uint32_t reg; 775 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 776 777 reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); 778 return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK; 779 } 780 781 static void set_scratch_backing_va(struct kgd_dev *kgd, 782 uint64_t va, uint32_t vmid) 783 { 784 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 785 786 lock_srbm(kgd, 0, 0, 0, vmid); 787 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va); 788 unlock_srbm(kgd); 789 } 790 791 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, 792 uint64_t page_table_base) 793 { 794 struct amdgpu_device *adev = get_amdgpu_device(kgd); 795 796 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 797 pr_err("trying to set page table base for wrong VMID\n"); 798 return; 799 } 800 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, 801 lower_32_bits(page_table_base)); 802 } 803 804 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid) 805 { 806 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 807 int vmid; 808 unsigned int tmp; 809 810 if (adev->in_gpu_reset) 811 return -EIO; 812 813 for (vmid = 0; vmid < 16; vmid++) { 814 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) 815 continue; 816 817 tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); 818 if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) && 819 (tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) { 820 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); 821 RREG32(mmVM_INVALIDATE_RESPONSE); 822 break; 823 } 824 } 825 826 return 0; 827 } 828 829 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid) 830 { 831 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 832 833 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 834 pr_err("non kfd vmid\n"); 835 return 0; 836 } 837 838 WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); 839 RREG32(mmVM_INVALIDATE_RESPONSE); 840 return 0; 841 } 842 843 /** 844 * read_vmid_from_vmfault_reg - read vmid from register 845 * 846 * adev: amdgpu_device pointer 847 * @vmid: vmid pointer 848 * read vmid from register (CIK). 849 */ 850 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd) 851 { 852 struct amdgpu_device *adev = get_amdgpu_device(kgd); 853 854 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS); 855 856 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID); 857 } 858