xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gca/gfx_7_2_d.h"
33 #include "gca/gfx_7_2_enum.h"
34 #include "gca/gfx_7_2_sh_mask.h"
35 #include "oss/oss_2_0_d.h"
36 #include "oss/oss_2_0_sh_mask.h"
37 #include "gmc/gmc_7_1_d.h"
38 #include "gmc/gmc_7_1_sh_mask.h"
39 #include "cik_structs.h"
40 
41 #define CIK_PIPE_PER_MEC	(4)
42 
43 enum {
44 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
45 	MAX_WATCH_ADDRESSES = 4
46 };
47 
48 enum {
49 	ADDRESS_WATCH_REG_ADDR_HI = 0,
50 	ADDRESS_WATCH_REG_ADDR_LO,
51 	ADDRESS_WATCH_REG_CNTL,
52 	ADDRESS_WATCH_REG_MAX
53 };
54 
55 /*  not defined in the CI/KV reg file  */
56 enum {
57 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
58 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
59 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
60 	/* extend the mask to 26 bits to match the low address field */
61 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
62 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
63 };
64 
65 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
66 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
67 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
68 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
69 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
70 };
71 
72 union TCP_WATCH_CNTL_BITS {
73 	struct {
74 		uint32_t mask:24;
75 		uint32_t vmid:4;
76 		uint32_t atc:1;
77 		uint32_t mode:2;
78 		uint32_t valid:1;
79 	} bitfields, bits;
80 	uint32_t u32All;
81 	signed int i32All;
82 	float f32All;
83 };
84 
85 /*
86  * Register access functions
87  */
88 
89 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
90 		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
91 		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
92 
93 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
94 					unsigned int vmid);
95 
96 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
97 				uint32_t hpd_size, uint64_t hpd_gpu_addr);
98 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
99 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
100 			uint32_t queue_id, uint32_t __user *wptr);
101 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
102 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
103 				uint32_t pipe_id, uint32_t queue_id);
104 
105 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
106 				unsigned int timeout, uint32_t pipe_id,
107 				uint32_t queue_id);
108 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
109 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
110 				unsigned int timeout);
111 static int kgd_address_watch_disable(struct kgd_dev *kgd);
112 static int kgd_address_watch_execute(struct kgd_dev *kgd,
113 					unsigned int watch_point_id,
114 					uint32_t cntl_val,
115 					uint32_t addr_hi,
116 					uint32_t addr_lo);
117 static int kgd_wave_control_execute(struct kgd_dev *kgd,
118 					uint32_t gfx_index_val,
119 					uint32_t sq_cmd);
120 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
121 					unsigned int watch_point_id,
122 					unsigned int reg_offset);
123 
124 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
125 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
126 							uint8_t vmid);
127 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
128 
129 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
130 
131 static const struct kfd2kgd_calls kfd2kgd = {
132 	.init_gtt_mem_allocation = alloc_gtt_mem,
133 	.free_gtt_mem = free_gtt_mem,
134 	.get_vmem_size = get_vmem_size,
135 	.get_gpu_clock_counter = get_gpu_clock_counter,
136 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
137 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
138 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
139 	.init_pipeline = kgd_init_pipeline,
140 	.init_interrupts = kgd_init_interrupts,
141 	.hqd_load = kgd_hqd_load,
142 	.hqd_sdma_load = kgd_hqd_sdma_load,
143 	.hqd_is_occupied = kgd_hqd_is_occupied,
144 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
145 	.hqd_destroy = kgd_hqd_destroy,
146 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
147 	.address_watch_disable = kgd_address_watch_disable,
148 	.address_watch_execute = kgd_address_watch_execute,
149 	.wave_control_execute = kgd_wave_control_execute,
150 	.address_watch_get_offset = kgd_address_watch_get_offset,
151 	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
152 	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
153 	.write_vmid_invalidate_request = write_vmid_invalidate_request,
154 	.get_fw_version = get_fw_version
155 };
156 
157 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions()
158 {
159 	return (struct kfd2kgd_calls *)&kfd2kgd;
160 }
161 
162 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
163 {
164 	return (struct amdgpu_device *)kgd;
165 }
166 
167 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
168 			uint32_t queue, uint32_t vmid)
169 {
170 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
171 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
172 
173 	mutex_lock(&adev->srbm_mutex);
174 	WREG32(mmSRBM_GFX_CNTL, value);
175 }
176 
177 static void unlock_srbm(struct kgd_dev *kgd)
178 {
179 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
180 
181 	WREG32(mmSRBM_GFX_CNTL, 0);
182 	mutex_unlock(&adev->srbm_mutex);
183 }
184 
185 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
186 				uint32_t queue_id)
187 {
188 	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
189 	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
190 
191 	lock_srbm(kgd, mec, pipe, queue_id, 0);
192 }
193 
194 static void release_queue(struct kgd_dev *kgd)
195 {
196 	unlock_srbm(kgd);
197 }
198 
199 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
200 					uint32_t sh_mem_config,
201 					uint32_t sh_mem_ape1_base,
202 					uint32_t sh_mem_ape1_limit,
203 					uint32_t sh_mem_bases)
204 {
205 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
206 
207 	lock_srbm(kgd, 0, 0, 0, vmid);
208 
209 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
210 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
211 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
212 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
213 
214 	unlock_srbm(kgd);
215 }
216 
217 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
218 					unsigned int vmid)
219 {
220 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
221 
222 	/*
223 	 * We have to assume that there is no outstanding mapping.
224 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
225 	 * a mapping is in progress or because a mapping finished and the
226 	 * SW cleared it. So the protocol is to always wait & clear.
227 	 */
228 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
229 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
230 
231 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
232 
233 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
234 		cpu_relax();
235 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
236 
237 	/* Mapping vmid to pasid also for IH block */
238 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
239 
240 	return 0;
241 }
242 
243 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
244 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
245 {
246 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
247 
248 	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
249 	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
250 
251 	lock_srbm(kgd, mec, pipe, 0, 0);
252 	WREG32(mmCP_HPD_EOP_BASE_ADDR, lower_32_bits(hpd_gpu_addr >> 8));
253 	WREG32(mmCP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(hpd_gpu_addr >> 8));
254 	WREG32(mmCP_HPD_EOP_VMID, 0);
255 	WREG32(mmCP_HPD_EOP_CONTROL, hpd_size);
256 	unlock_srbm(kgd);
257 
258 	return 0;
259 }
260 
261 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
262 {
263 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
264 	uint32_t mec;
265 	uint32_t pipe;
266 
267 	mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
268 	pipe = (pipe_id % CIK_PIPE_PER_MEC);
269 
270 	lock_srbm(kgd, mec, pipe, 0, 0);
271 
272 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
273 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
274 
275 	unlock_srbm(kgd);
276 
277 	return 0;
278 }
279 
280 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
281 {
282 	uint32_t retval;
283 
284 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
285 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
286 
287 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
288 
289 	return retval;
290 }
291 
292 static inline struct cik_mqd *get_mqd(void *mqd)
293 {
294 	return (struct cik_mqd *)mqd;
295 }
296 
297 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
298 {
299 	return (struct cik_sdma_rlc_registers *)mqd;
300 }
301 
302 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
303 			uint32_t queue_id, uint32_t __user *wptr)
304 {
305 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
306 	uint32_t wptr_shadow, is_wptr_shadow_valid;
307 	struct cik_mqd *m;
308 
309 	m = get_mqd(mqd);
310 
311 	is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
312 
313 	acquire_queue(kgd, pipe_id, queue_id);
314 	WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
315 	WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
316 	WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control);
317 
318 	WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
319 	WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
320 	WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
321 
322 	WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
323 	WREG32(mmCP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
324 	WREG32(mmCP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
325 
326 	WREG32(mmCP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
327 
328 	WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state);
329 	WREG32(mmCP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
330 	WREG32(mmCP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
331 
332 	WREG32(mmCP_HQD_ATOMIC0_PREOP_LO, m->cp_hqd_atomic0_preop_lo);
333 	WREG32(mmCP_HQD_ATOMIC0_PREOP_HI, m->cp_hqd_atomic0_preop_hi);
334 	WREG32(mmCP_HQD_ATOMIC1_PREOP_LO, m->cp_hqd_atomic1_preop_lo);
335 	WREG32(mmCP_HQD_ATOMIC1_PREOP_HI, m->cp_hqd_atomic1_preop_hi);
336 
337 	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo);
338 	WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI,
339 			m->cp_hqd_pq_rptr_report_addr_hi);
340 
341 	WREG32(mmCP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
342 
343 	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR, m->cp_hqd_pq_wptr_poll_addr_lo);
344 	WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, m->cp_hqd_pq_wptr_poll_addr_hi);
345 
346 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control);
347 
348 	WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid);
349 
350 	WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum);
351 
352 	WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
353 	WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
354 
355 	WREG32(mmCP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
356 
357 	if (is_wptr_shadow_valid)
358 		WREG32(mmCP_HQD_PQ_WPTR, wptr_shadow);
359 
360 	WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active);
361 	release_queue(kgd);
362 
363 	return 0;
364 }
365 
366 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
367 {
368 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
369 	struct cik_sdma_rlc_registers *m;
370 	uint32_t sdma_base_addr;
371 
372 	m = get_sdma_mqd(mqd);
373 	sdma_base_addr = get_sdma_base_addr(m);
374 
375 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
376 			m->sdma_rlc_virtual_addr);
377 
378 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE,
379 			m->sdma_rlc_rb_base);
380 
381 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
382 			m->sdma_rlc_rb_base_hi);
383 
384 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
385 			m->sdma_rlc_rb_rptr_addr_lo);
386 
387 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
388 			m->sdma_rlc_rb_rptr_addr_hi);
389 
390 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL,
391 			m->sdma_rlc_doorbell);
392 
393 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
394 			m->sdma_rlc_rb_cntl);
395 
396 	return 0;
397 }
398 
399 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
400 				uint32_t pipe_id, uint32_t queue_id)
401 {
402 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
403 	uint32_t act;
404 	bool retval = false;
405 	uint32_t low, high;
406 
407 	acquire_queue(kgd, pipe_id, queue_id);
408 	act = RREG32(mmCP_HQD_ACTIVE);
409 	if (act) {
410 		low = lower_32_bits(queue_address >> 8);
411 		high = upper_32_bits(queue_address >> 8);
412 
413 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
414 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
415 			retval = true;
416 	}
417 	release_queue(kgd);
418 	return retval;
419 }
420 
421 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
422 {
423 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
424 	struct cik_sdma_rlc_registers *m;
425 	uint32_t sdma_base_addr;
426 	uint32_t sdma_rlc_rb_cntl;
427 
428 	m = get_sdma_mqd(mqd);
429 	sdma_base_addr = get_sdma_base_addr(m);
430 
431 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
432 
433 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
434 		return true;
435 
436 	return false;
437 }
438 
439 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
440 				unsigned int timeout, uint32_t pipe_id,
441 				uint32_t queue_id)
442 {
443 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
444 	uint32_t temp;
445 
446 	acquire_queue(kgd, pipe_id, queue_id);
447 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
448 
449 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type);
450 
451 	while (true) {
452 		temp = RREG32(mmCP_HQD_ACTIVE);
453 		if (temp & CP_HQD_ACTIVE__ACTIVE_MASK)
454 			break;
455 		if (timeout == 0) {
456 			pr_err("kfd: cp queue preemption time out (%dms)\n",
457 				temp);
458 			release_queue(kgd);
459 			return -ETIME;
460 		}
461 		msleep(20);
462 		timeout -= 20;
463 	}
464 
465 	release_queue(kgd);
466 	return 0;
467 }
468 
469 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
470 				unsigned int timeout)
471 {
472 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
473 	struct cik_sdma_rlc_registers *m;
474 	uint32_t sdma_base_addr;
475 	uint32_t temp;
476 
477 	m = get_sdma_mqd(mqd);
478 	sdma_base_addr = get_sdma_base_addr(m);
479 
480 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
481 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
482 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
483 
484 	while (true) {
485 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
486 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
487 			break;
488 		if (timeout == 0)
489 			return -ETIME;
490 		msleep(20);
491 		timeout -= 20;
492 	}
493 
494 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
495 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0);
496 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0);
497 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0);
498 
499 	return 0;
500 }
501 
502 static int kgd_address_watch_disable(struct kgd_dev *kgd)
503 {
504 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
505 	union TCP_WATCH_CNTL_BITS cntl;
506 	unsigned int i;
507 
508 	cntl.u32All = 0;
509 
510 	cntl.bitfields.valid = 0;
511 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
512 	cntl.bitfields.atc = 1;
513 
514 	/* Turning off this address until we set all the registers */
515 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
516 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
517 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
518 
519 	return 0;
520 }
521 
522 static int kgd_address_watch_execute(struct kgd_dev *kgd,
523 					unsigned int watch_point_id,
524 					uint32_t cntl_val,
525 					uint32_t addr_hi,
526 					uint32_t addr_lo)
527 {
528 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
529 	union TCP_WATCH_CNTL_BITS cntl;
530 
531 	cntl.u32All = cntl_val;
532 
533 	/* Turning off this watch point until we set all the registers */
534 	cntl.bitfields.valid = 0;
535 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
536 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
537 
538 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
539 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
540 
541 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
542 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
543 
544 	/* Enable the watch point */
545 	cntl.bitfields.valid = 1;
546 
547 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
548 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
549 
550 	return 0;
551 }
552 
553 static int kgd_wave_control_execute(struct kgd_dev *kgd,
554 					uint32_t gfx_index_val,
555 					uint32_t sq_cmd)
556 {
557 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
558 	uint32_t data;
559 
560 	mutex_lock(&adev->grbm_idx_mutex);
561 
562 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
563 	WREG32(mmSQ_CMD, sq_cmd);
564 
565 	/*  Restore the GRBM_GFX_INDEX register  */
566 
567 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
568 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
569 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
570 
571 	WREG32(mmGRBM_GFX_INDEX, data);
572 
573 	mutex_unlock(&adev->grbm_idx_mutex);
574 
575 	return 0;
576 }
577 
578 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
579 					unsigned int watch_point_id,
580 					unsigned int reg_offset)
581 {
582 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
583 }
584 
585 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
586 							uint8_t vmid)
587 {
588 	uint32_t reg;
589 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
590 
591 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
592 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
593 }
594 
595 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
596 								uint8_t vmid)
597 {
598 	uint32_t reg;
599 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
600 
601 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
602 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
603 }
604 
605 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
606 {
607 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
608 
609 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
610 }
611 
612 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
613 {
614 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
615 	const union amdgpu_firmware_header *hdr;
616 
617 	BUG_ON(kgd == NULL);
618 
619 	switch (type) {
620 	case KGD_ENGINE_PFP:
621 		hdr = (const union amdgpu_firmware_header *)
622 							adev->gfx.pfp_fw->data;
623 		break;
624 
625 	case KGD_ENGINE_ME:
626 		hdr = (const union amdgpu_firmware_header *)
627 							adev->gfx.me_fw->data;
628 		break;
629 
630 	case KGD_ENGINE_CE:
631 		hdr = (const union amdgpu_firmware_header *)
632 							adev->gfx.ce_fw->data;
633 		break;
634 
635 	case KGD_ENGINE_MEC1:
636 		hdr = (const union amdgpu_firmware_header *)
637 							adev->gfx.mec_fw->data;
638 		break;
639 
640 	case KGD_ENGINE_MEC2:
641 		hdr = (const union amdgpu_firmware_header *)
642 							adev->gfx.mec2_fw->data;
643 		break;
644 
645 	case KGD_ENGINE_RLC:
646 		hdr = (const union amdgpu_firmware_header *)
647 							adev->gfx.rlc_fw->data;
648 		break;
649 
650 	case KGD_ENGINE_SDMA1:
651 		hdr = (const union amdgpu_firmware_header *)
652 							adev->sdma[0].fw->data;
653 		break;
654 
655 	case KGD_ENGINE_SDMA2:
656 		hdr = (const union amdgpu_firmware_header *)
657 							adev->sdma[1].fw->data;
658 		break;
659 
660 	default:
661 		return 0;
662 	}
663 
664 	if (hdr == NULL)
665 		return 0;
666 
667 	/* Only 12 bit in use*/
668 	return hdr->common.ucode_version;
669 }
670 
671