1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "cikd.h"
26 #include "cik_sdma.h"
27 #include "gfx_v7_0.h"
28 #include "gca/gfx_7_2_d.h"
29 #include "gca/gfx_7_2_enum.h"
30 #include "gca/gfx_7_2_sh_mask.h"
31 #include "oss/oss_2_0_d.h"
32 #include "oss/oss_2_0_sh_mask.h"
33 #include "gmc/gmc_7_1_d.h"
34 #include "gmc/gmc_7_1_sh_mask.h"
35 #include "cik_structs.h"
36 
37 enum hqd_dequeue_request_type {
38 	NO_ACTION = 0,
39 	DRAIN_PIPE,
40 	RESET_WAVES
41 };
42 
43 enum {
44 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
45 	MAX_WATCH_ADDRESSES = 4
46 };
47 
48 enum {
49 	ADDRESS_WATCH_REG_ADDR_HI = 0,
50 	ADDRESS_WATCH_REG_ADDR_LO,
51 	ADDRESS_WATCH_REG_CNTL,
52 	ADDRESS_WATCH_REG_MAX
53 };
54 
55 /*  not defined in the CI/KV reg file  */
56 enum {
57 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
58 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
59 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
60 	/* extend the mask to 26 bits to match the low address field */
61 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
62 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
63 };
64 
65 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
66 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
67 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
68 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
69 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
70 };
71 
72 union TCP_WATCH_CNTL_BITS {
73 	struct {
74 		uint32_t mask:24;
75 		uint32_t vmid:4;
76 		uint32_t atc:1;
77 		uint32_t mode:2;
78 		uint32_t valid:1;
79 	} bitfields, bits;
80 	uint32_t u32All;
81 	signed int i32All;
82 	float f32All;
83 };
84 
85 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
86 			uint32_t queue, uint32_t vmid)
87 {
88 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
89 
90 	mutex_lock(&adev->srbm_mutex);
91 	WREG32(mmSRBM_GFX_CNTL, value);
92 }
93 
94 static void unlock_srbm(struct amdgpu_device *adev)
95 {
96 	WREG32(mmSRBM_GFX_CNTL, 0);
97 	mutex_unlock(&adev->srbm_mutex);
98 }
99 
100 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
101 				uint32_t queue_id)
102 {
103 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
104 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
105 
106 	lock_srbm(adev, mec, pipe, queue_id, 0);
107 }
108 
109 static void release_queue(struct amdgpu_device *adev)
110 {
111 	unlock_srbm(adev);
112 }
113 
114 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
115 					uint32_t sh_mem_config,
116 					uint32_t sh_mem_ape1_base,
117 					uint32_t sh_mem_ape1_limit,
118 					uint32_t sh_mem_bases)
119 {
120 	lock_srbm(adev, 0, 0, 0, vmid);
121 
122 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
123 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
124 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
125 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
126 
127 	unlock_srbm(adev);
128 }
129 
130 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
131 					unsigned int vmid)
132 {
133 	/*
134 	 * We have to assume that there is no outstanding mapping.
135 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
136 	 * a mapping is in progress or because a mapping finished and the
137 	 * SW cleared it. So the protocol is to always wait & clear.
138 	 */
139 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
140 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
141 
142 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
143 
144 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
145 		cpu_relax();
146 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
147 
148 	/* Mapping vmid to pasid also for IH block */
149 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
150 
151 	return 0;
152 }
153 
154 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id)
155 {
156 	uint32_t mec;
157 	uint32_t pipe;
158 
159 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
160 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
161 
162 	lock_srbm(adev, mec, pipe, 0, 0);
163 
164 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
165 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
166 
167 	unlock_srbm(adev);
168 
169 	return 0;
170 }
171 
172 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
173 {
174 	uint32_t retval;
175 
176 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
177 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
178 
179 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
180 			m->sdma_engine_id, m->sdma_queue_id, retval);
181 
182 	return retval;
183 }
184 
185 static inline struct cik_mqd *get_mqd(void *mqd)
186 {
187 	return (struct cik_mqd *)mqd;
188 }
189 
190 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
191 {
192 	return (struct cik_sdma_rlc_registers *)mqd;
193 }
194 
195 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
196 			uint32_t pipe_id, uint32_t queue_id,
197 			uint32_t __user *wptr, uint32_t wptr_shift,
198 			uint32_t wptr_mask, struct mm_struct *mm)
199 {
200 	struct cik_mqd *m;
201 	uint32_t *mqd_hqd;
202 	uint32_t reg, wptr_val, data;
203 	bool valid_wptr = false;
204 
205 	m = get_mqd(mqd);
206 
207 	acquire_queue(adev, pipe_id, queue_id);
208 
209 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
210 	mqd_hqd = &m->cp_mqd_base_addr_lo;
211 
212 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
213 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
214 
215 	/* Copy userspace write pointer value to register.
216 	 * Activate doorbell logic to monitor subsequent changes.
217 	 */
218 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
219 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
220 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
221 
222 	/* read_user_ptr may take the mm->mmap_lock.
223 	 * release srbm_mutex to avoid circular dependency between
224 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
225 	 */
226 	release_queue(adev);
227 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
228 	acquire_queue(adev, pipe_id, queue_id);
229 	if (valid_wptr)
230 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
231 
232 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
233 	WREG32(mmCP_HQD_ACTIVE, data);
234 
235 	release_queue(adev);
236 
237 	return 0;
238 }
239 
240 static int kgd_hqd_dump(struct amdgpu_device *adev,
241 			uint32_t pipe_id, uint32_t queue_id,
242 			uint32_t (**dump)[2], uint32_t *n_regs)
243 {
244 	uint32_t i = 0, reg;
245 #define HQD_N_REGS (35+4)
246 #define DUMP_REG(addr) do {				\
247 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
248 			break;				\
249 		(*dump)[i][0] = (addr) << 2;		\
250 		(*dump)[i++][1] = RREG32(addr);		\
251 	} while (0)
252 
253 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
254 	if (*dump == NULL)
255 		return -ENOMEM;
256 
257 	acquire_queue(adev, pipe_id, queue_id);
258 
259 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
260 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
261 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
262 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
263 
264 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
265 		DUMP_REG(reg);
266 
267 	release_queue(adev);
268 
269 	WARN_ON_ONCE(i != HQD_N_REGS);
270 	*n_regs = i;
271 
272 	return 0;
273 }
274 
275 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
276 			     uint32_t __user *wptr, struct mm_struct *mm)
277 {
278 	struct cik_sdma_rlc_registers *m;
279 	unsigned long end_jiffies;
280 	uint32_t sdma_rlc_reg_offset;
281 	uint32_t data;
282 
283 	m = get_sdma_mqd(mqd);
284 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
285 
286 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
287 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
288 
289 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
290 	while (true) {
291 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
292 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
293 			break;
294 		if (time_after(jiffies, end_jiffies)) {
295 			pr_err("SDMA RLC not idle in %s\n", __func__);
296 			return -ETIME;
297 		}
298 		usleep_range(500, 1000);
299 	}
300 
301 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
302 			     ENABLE, 1);
303 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
304 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
305 				m->sdma_rlc_rb_rptr);
306 
307 	if (read_user_wptr(mm, wptr, data))
308 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
309 	else
310 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
311 		       m->sdma_rlc_rb_rptr);
312 
313 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
314 				m->sdma_rlc_virtual_addr);
315 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
316 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
317 			m->sdma_rlc_rb_base_hi);
318 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
319 			m->sdma_rlc_rb_rptr_addr_lo);
320 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
321 			m->sdma_rlc_rb_rptr_addr_hi);
322 
323 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
324 			     RB_ENABLE, 1);
325 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
326 
327 	return 0;
328 }
329 
330 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
331 			     uint32_t engine_id, uint32_t queue_id,
332 			     uint32_t (**dump)[2], uint32_t *n_regs)
333 {
334 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
335 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
336 	uint32_t i = 0, reg;
337 #undef HQD_N_REGS
338 #define HQD_N_REGS (19+4)
339 
340 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
341 	if (*dump == NULL)
342 		return -ENOMEM;
343 
344 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
345 		DUMP_REG(sdma_offset + reg);
346 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
347 	     reg++)
348 		DUMP_REG(sdma_offset + reg);
349 
350 	WARN_ON_ONCE(i != HQD_N_REGS);
351 	*n_regs = i;
352 
353 	return 0;
354 }
355 
356 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
357 				uint64_t queue_address, uint32_t pipe_id,
358 				uint32_t queue_id)
359 {
360 	uint32_t act;
361 	bool retval = false;
362 	uint32_t low, high;
363 
364 	acquire_queue(adev, pipe_id, queue_id);
365 	act = RREG32(mmCP_HQD_ACTIVE);
366 	if (act) {
367 		low = lower_32_bits(queue_address >> 8);
368 		high = upper_32_bits(queue_address >> 8);
369 
370 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
371 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
372 			retval = true;
373 	}
374 	release_queue(adev);
375 	return retval;
376 }
377 
378 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
379 {
380 	struct cik_sdma_rlc_registers *m;
381 	uint32_t sdma_rlc_reg_offset;
382 	uint32_t sdma_rlc_rb_cntl;
383 
384 	m = get_sdma_mqd(mqd);
385 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
386 
387 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
388 
389 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
390 		return true;
391 
392 	return false;
393 }
394 
395 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
396 				enum kfd_preempt_type reset_type,
397 				unsigned int utimeout, uint32_t pipe_id,
398 				uint32_t queue_id)
399 {
400 	uint32_t temp;
401 	enum hqd_dequeue_request_type type;
402 	unsigned long flags, end_jiffies;
403 	int retry;
404 
405 	if (amdgpu_in_reset(adev))
406 		return -EIO;
407 
408 	acquire_queue(adev, pipe_id, queue_id);
409 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
410 
411 	switch (reset_type) {
412 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
413 		type = DRAIN_PIPE;
414 		break;
415 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
416 		type = RESET_WAVES;
417 		break;
418 	default:
419 		type = DRAIN_PIPE;
420 		break;
421 	}
422 
423 	/* Workaround: If IQ timer is active and the wait time is close to or
424 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
425 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
426 	 * cleared before continuing. Also, ensure wait times are set to at
427 	 * least 0x3.
428 	 */
429 	local_irq_save(flags);
430 	preempt_disable();
431 	retry = 5000; /* wait for 500 usecs at maximum */
432 	while (true) {
433 		temp = RREG32(mmCP_HQD_IQ_TIMER);
434 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
435 			pr_debug("HW is processing IQ\n");
436 			goto loop;
437 		}
438 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
439 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
440 					== 3) /* SEM-rearm is safe */
441 				break;
442 			/* Wait time 3 is safe for CP, but our MMIO read/write
443 			 * time is close to 1 microsecond, so check for 10 to
444 			 * leave more buffer room
445 			 */
446 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
447 					>= 10)
448 				break;
449 			pr_debug("IQ timer is active\n");
450 		} else
451 			break;
452 loop:
453 		if (!retry) {
454 			pr_err("CP HQD IQ timer status time out\n");
455 			break;
456 		}
457 		ndelay(100);
458 		--retry;
459 	}
460 	retry = 1000;
461 	while (true) {
462 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
463 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
464 			break;
465 		pr_debug("Dequeue request is pending\n");
466 
467 		if (!retry) {
468 			pr_err("CP HQD dequeue request time out\n");
469 			break;
470 		}
471 		ndelay(100);
472 		--retry;
473 	}
474 	local_irq_restore(flags);
475 	preempt_enable();
476 
477 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
478 
479 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
480 	while (true) {
481 		temp = RREG32(mmCP_HQD_ACTIVE);
482 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
483 			break;
484 		if (time_after(jiffies, end_jiffies)) {
485 			pr_err("cp queue preemption time out\n");
486 			release_queue(adev);
487 			return -ETIME;
488 		}
489 		usleep_range(500, 1000);
490 	}
491 
492 	release_queue(adev);
493 	return 0;
494 }
495 
496 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
497 				unsigned int utimeout)
498 {
499 	struct cik_sdma_rlc_registers *m;
500 	uint32_t sdma_rlc_reg_offset;
501 	uint32_t temp;
502 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
503 
504 	m = get_sdma_mqd(mqd);
505 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
506 
507 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
508 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
509 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
510 
511 	while (true) {
512 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
513 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
514 			break;
515 		if (time_after(jiffies, end_jiffies)) {
516 			pr_err("SDMA RLC not idle in %s\n", __func__);
517 			return -ETIME;
518 		}
519 		usleep_range(500, 1000);
520 	}
521 
522 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
523 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
524 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
525 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
526 
527 	m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
528 
529 	return 0;
530 }
531 
532 static int kgd_address_watch_disable(struct amdgpu_device *adev)
533 {
534 	union TCP_WATCH_CNTL_BITS cntl;
535 	unsigned int i;
536 
537 	cntl.u32All = 0;
538 
539 	cntl.bitfields.valid = 0;
540 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
541 	cntl.bitfields.atc = 1;
542 
543 	/* Turning off this address until we set all the registers */
544 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
545 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
546 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
547 
548 	return 0;
549 }
550 
551 static int kgd_address_watch_execute(struct amdgpu_device *adev,
552 					unsigned int watch_point_id,
553 					uint32_t cntl_val,
554 					uint32_t addr_hi,
555 					uint32_t addr_lo)
556 {
557 	union TCP_WATCH_CNTL_BITS cntl;
558 
559 	cntl.u32All = cntl_val;
560 
561 	/* Turning off this watch point until we set all the registers */
562 	cntl.bitfields.valid = 0;
563 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
564 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
565 
566 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
567 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
568 
569 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
570 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
571 
572 	/* Enable the watch point */
573 	cntl.bitfields.valid = 1;
574 
575 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
576 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
577 
578 	return 0;
579 }
580 
581 static int kgd_wave_control_execute(struct amdgpu_device *adev,
582 					uint32_t gfx_index_val,
583 					uint32_t sq_cmd)
584 {
585 	uint32_t data;
586 
587 	mutex_lock(&adev->grbm_idx_mutex);
588 
589 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
590 	WREG32(mmSQ_CMD, sq_cmd);
591 
592 	/*  Restore the GRBM_GFX_INDEX register  */
593 
594 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
595 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
596 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
597 
598 	WREG32(mmGRBM_GFX_INDEX, data);
599 
600 	mutex_unlock(&adev->grbm_idx_mutex);
601 
602 	return 0;
603 }
604 
605 static uint32_t kgd_address_watch_get_offset(struct amdgpu_device *adev,
606 					unsigned int watch_point_id,
607 					unsigned int reg_offset)
608 {
609 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
610 }
611 
612 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
613 					uint8_t vmid, uint16_t *p_pasid)
614 {
615 	uint32_t value;
616 
617 	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
618 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
619 
620 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
621 }
622 
623 static void set_scratch_backing_va(struct amdgpu_device *adev,
624 					uint64_t va, uint32_t vmid)
625 {
626 	lock_srbm(adev, 0, 0, 0, vmid);
627 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
628 	unlock_srbm(adev);
629 }
630 
631 static void set_vm_context_page_table_base(struct amdgpu_device *adev,
632 			uint32_t vmid, uint64_t page_table_base)
633 {
634 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
635 		pr_err("trying to set page table base for wrong VMID\n");
636 		return;
637 	}
638 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
639 		lower_32_bits(page_table_base));
640 }
641 
642  /**
643   * read_vmid_from_vmfault_reg - read vmid from register
644   *
645   * adev: amdgpu_device pointer
646   * @vmid: vmid pointer
647   * read vmid from register (CIK).
648   */
649 static uint32_t read_vmid_from_vmfault_reg(struct amdgpu_device *adev)
650 {
651 	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
652 
653 	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
654 }
655 
656 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
657 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
658 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
659 	.init_interrupts = kgd_init_interrupts,
660 	.hqd_load = kgd_hqd_load,
661 	.hqd_sdma_load = kgd_hqd_sdma_load,
662 	.hqd_dump = kgd_hqd_dump,
663 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
664 	.hqd_is_occupied = kgd_hqd_is_occupied,
665 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
666 	.hqd_destroy = kgd_hqd_destroy,
667 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
668 	.address_watch_disable = kgd_address_watch_disable,
669 	.address_watch_execute = kgd_address_watch_execute,
670 	.wave_control_execute = kgd_wave_control_execute,
671 	.address_watch_get_offset = kgd_address_watch_get_offset,
672 	.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
673 	.set_scratch_backing_va = set_scratch_backing_va,
674 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
675 	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
676 };
677