1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gfx_v7_0.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 enum {
49 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
50 	MAX_WATCH_ADDRESSES = 4
51 };
52 
53 enum {
54 	ADDRESS_WATCH_REG_ADDR_HI = 0,
55 	ADDRESS_WATCH_REG_ADDR_LO,
56 	ADDRESS_WATCH_REG_CNTL,
57 	ADDRESS_WATCH_REG_MAX
58 };
59 
60 /*  not defined in the CI/KV reg file  */
61 enum {
62 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 	/* extend the mask to 26 bits to match the low address field */
66 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68 };
69 
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75 };
76 
77 union TCP_WATCH_CNTL_BITS {
78 	struct {
79 		uint32_t mask:24;
80 		uint32_t vmid:4;
81 		uint32_t atc:1;
82 		uint32_t mode:2;
83 		uint32_t valid:1;
84 	} bitfields, bits;
85 	uint32_t u32All;
86 	signed int i32All;
87 	float f32All;
88 };
89 
90 /*
91  * Register access functions
92  */
93 
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
96 		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97 
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99 					unsigned int vmid);
100 
101 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
102 				uint32_t hpd_size, uint64_t hpd_gpu_addr);
103 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
104 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
105 			uint32_t queue_id, uint32_t __user *wptr,
106 			uint32_t wptr_shift, uint32_t wptr_mask,
107 			struct mm_struct *mm);
108 static int kgd_hqd_dump(struct kgd_dev *kgd,
109 			uint32_t pipe_id, uint32_t queue_id,
110 			uint32_t (**dump)[2], uint32_t *n_regs);
111 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
112 			     uint32_t __user *wptr, struct mm_struct *mm);
113 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
114 			     uint32_t engine_id, uint32_t queue_id,
115 			     uint32_t (**dump)[2], uint32_t *n_regs);
116 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
117 				uint32_t pipe_id, uint32_t queue_id);
118 
119 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
120 				enum kfd_preempt_type reset_type,
121 				unsigned int utimeout, uint32_t pipe_id,
122 				uint32_t queue_id);
123 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
124 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
125 				unsigned int utimeout);
126 static int kgd_address_watch_disable(struct kgd_dev *kgd);
127 static int kgd_address_watch_execute(struct kgd_dev *kgd,
128 					unsigned int watch_point_id,
129 					uint32_t cntl_val,
130 					uint32_t addr_hi,
131 					uint32_t addr_lo);
132 static int kgd_wave_control_execute(struct kgd_dev *kgd,
133 					uint32_t gfx_index_val,
134 					uint32_t sq_cmd);
135 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
136 					unsigned int watch_point_id,
137 					unsigned int reg_offset);
138 
139 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
140 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
141 							uint8_t vmid);
142 
143 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
144 static void set_scratch_backing_va(struct kgd_dev *kgd,
145 					uint64_t va, uint32_t vmid);
146 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
147 		uint32_t page_table_base);
148 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
149 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
150 
151 /* Because of REG_GET_FIELD() being used, we put this function in the
152  * asic specific file.
153  */
154 static int get_tile_config(struct kgd_dev *kgd,
155 		struct tile_config *config)
156 {
157 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
158 
159 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
160 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
161 				MC_ARB_RAMCFG, NOOFBANK);
162 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
163 				MC_ARB_RAMCFG, NOOFRANKS);
164 
165 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
166 	config->num_tile_configs =
167 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
168 	config->macro_tile_config_ptr =
169 			adev->gfx.config.macrotile_mode_array;
170 	config->num_macro_tile_configs =
171 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
172 
173 	return 0;
174 }
175 
176 static const struct kfd2kgd_calls kfd2kgd = {
177 	.init_gtt_mem_allocation = alloc_gtt_mem,
178 	.free_gtt_mem = free_gtt_mem,
179 	.get_local_mem_info = get_local_mem_info,
180 	.get_gpu_clock_counter = get_gpu_clock_counter,
181 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
182 	.alloc_pasid = amdgpu_pasid_alloc,
183 	.free_pasid = amdgpu_pasid_free,
184 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
185 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
186 	.init_pipeline = kgd_init_pipeline,
187 	.init_interrupts = kgd_init_interrupts,
188 	.hqd_load = kgd_hqd_load,
189 	.hqd_sdma_load = kgd_hqd_sdma_load,
190 	.hqd_dump = kgd_hqd_dump,
191 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
192 	.hqd_is_occupied = kgd_hqd_is_occupied,
193 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
194 	.hqd_destroy = kgd_hqd_destroy,
195 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
196 	.address_watch_disable = kgd_address_watch_disable,
197 	.address_watch_execute = kgd_address_watch_execute,
198 	.wave_control_execute = kgd_wave_control_execute,
199 	.address_watch_get_offset = kgd_address_watch_get_offset,
200 	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
201 	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
202 	.get_fw_version = get_fw_version,
203 	.set_scratch_backing_va = set_scratch_backing_va,
204 	.get_tile_config = get_tile_config,
205 	.get_cu_info = get_cu_info,
206 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
207 	.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
208 	.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
209 	.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
210 	.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
211 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
212 	.alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
213 	.free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
214 	.map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
215 	.unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
216 	.sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
217 	.map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
218 	.restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
219 	.invalidate_tlbs = invalidate_tlbs,
220 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
221 	.submit_ib = amdgpu_amdkfd_submit_ib,
222 };
223 
224 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
225 {
226 	return (struct kfd2kgd_calls *)&kfd2kgd;
227 }
228 
229 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
230 {
231 	return (struct amdgpu_device *)kgd;
232 }
233 
234 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
235 			uint32_t queue, uint32_t vmid)
236 {
237 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
238 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
239 
240 	mutex_lock(&adev->srbm_mutex);
241 	WREG32(mmSRBM_GFX_CNTL, value);
242 }
243 
244 static void unlock_srbm(struct kgd_dev *kgd)
245 {
246 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
247 
248 	WREG32(mmSRBM_GFX_CNTL, 0);
249 	mutex_unlock(&adev->srbm_mutex);
250 }
251 
252 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
253 				uint32_t queue_id)
254 {
255 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
256 
257 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
258 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
259 
260 	lock_srbm(kgd, mec, pipe, queue_id, 0);
261 }
262 
263 static void release_queue(struct kgd_dev *kgd)
264 {
265 	unlock_srbm(kgd);
266 }
267 
268 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
269 					uint32_t sh_mem_config,
270 					uint32_t sh_mem_ape1_base,
271 					uint32_t sh_mem_ape1_limit,
272 					uint32_t sh_mem_bases)
273 {
274 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
275 
276 	lock_srbm(kgd, 0, 0, 0, vmid);
277 
278 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
279 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
280 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
281 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
282 
283 	unlock_srbm(kgd);
284 }
285 
286 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
287 					unsigned int vmid)
288 {
289 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
290 
291 	/*
292 	 * We have to assume that there is no outstanding mapping.
293 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
294 	 * a mapping is in progress or because a mapping finished and the
295 	 * SW cleared it. So the protocol is to always wait & clear.
296 	 */
297 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
298 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
299 
300 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
301 
302 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
303 		cpu_relax();
304 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
305 
306 	/* Mapping vmid to pasid also for IH block */
307 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
308 
309 	return 0;
310 }
311 
312 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
313 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
314 {
315 	/* amdgpu owns the per-pipe state */
316 	return 0;
317 }
318 
319 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
320 {
321 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
322 	uint32_t mec;
323 	uint32_t pipe;
324 
325 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
326 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
327 
328 	lock_srbm(kgd, mec, pipe, 0, 0);
329 
330 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
331 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
332 
333 	unlock_srbm(kgd);
334 
335 	return 0;
336 }
337 
338 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
339 {
340 	uint32_t retval;
341 
342 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
343 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
344 
345 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
346 
347 	return retval;
348 }
349 
350 static inline struct cik_mqd *get_mqd(void *mqd)
351 {
352 	return (struct cik_mqd *)mqd;
353 }
354 
355 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
356 {
357 	return (struct cik_sdma_rlc_registers *)mqd;
358 }
359 
360 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
361 			uint32_t queue_id, uint32_t __user *wptr,
362 			uint32_t wptr_shift, uint32_t wptr_mask,
363 			struct mm_struct *mm)
364 {
365 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
366 	struct cik_mqd *m;
367 	uint32_t *mqd_hqd;
368 	uint32_t reg, wptr_val, data;
369 	bool valid_wptr = false;
370 
371 	m = get_mqd(mqd);
372 
373 	acquire_queue(kgd, pipe_id, queue_id);
374 
375 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
376 	mqd_hqd = &m->cp_mqd_base_addr_lo;
377 
378 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
379 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
380 
381 	/* Copy userspace write pointer value to register.
382 	 * Activate doorbell logic to monitor subsequent changes.
383 	 */
384 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
385 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
386 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
387 
388 	/* read_user_ptr may take the mm->mmap_sem.
389 	 * release srbm_mutex to avoid circular dependency between
390 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
391 	 */
392 	release_queue(kgd);
393 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
394 	acquire_queue(kgd, pipe_id, queue_id);
395 	if (valid_wptr)
396 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
397 
398 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
399 	WREG32(mmCP_HQD_ACTIVE, data);
400 
401 	release_queue(kgd);
402 
403 	return 0;
404 }
405 
406 static int kgd_hqd_dump(struct kgd_dev *kgd,
407 			uint32_t pipe_id, uint32_t queue_id,
408 			uint32_t (**dump)[2], uint32_t *n_regs)
409 {
410 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
411 	uint32_t i = 0, reg;
412 #define HQD_N_REGS (35+4)
413 #define DUMP_REG(addr) do {				\
414 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
415 			break;				\
416 		(*dump)[i][0] = (addr) << 2;		\
417 		(*dump)[i++][1] = RREG32(addr);		\
418 	} while (0)
419 
420 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
421 	if (*dump == NULL)
422 		return -ENOMEM;
423 
424 	acquire_queue(kgd, pipe_id, queue_id);
425 
426 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
427 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
428 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
429 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
430 
431 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
432 		DUMP_REG(reg);
433 
434 	release_queue(kgd);
435 
436 	WARN_ON_ONCE(i != HQD_N_REGS);
437 	*n_regs = i;
438 
439 	return 0;
440 }
441 
442 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
443 			     uint32_t __user *wptr, struct mm_struct *mm)
444 {
445 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
446 	struct cik_sdma_rlc_registers *m;
447 	unsigned long end_jiffies;
448 	uint32_t sdma_base_addr;
449 	uint32_t data;
450 
451 	m = get_sdma_mqd(mqd);
452 	sdma_base_addr = get_sdma_base_addr(m);
453 
454 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
455 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
456 
457 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
458 	while (true) {
459 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
460 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
461 			break;
462 		if (time_after(jiffies, end_jiffies))
463 			return -ETIME;
464 		usleep_range(500, 1000);
465 	}
466 	if (m->sdma_engine_id) {
467 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
468 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
469 				RESUME_CTX, 0);
470 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
471 	} else {
472 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
473 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
474 				RESUME_CTX, 0);
475 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
476 	}
477 
478 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
479 			     ENABLE, 1);
480 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
481 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
482 
483 	if (read_user_wptr(mm, wptr, data))
484 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
485 	else
486 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
487 		       m->sdma_rlc_rb_rptr);
488 
489 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
490 				m->sdma_rlc_virtual_addr);
491 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
492 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
493 			m->sdma_rlc_rb_base_hi);
494 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
495 			m->sdma_rlc_rb_rptr_addr_lo);
496 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
497 			m->sdma_rlc_rb_rptr_addr_hi);
498 
499 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
500 			     RB_ENABLE, 1);
501 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
502 
503 	return 0;
504 }
505 
506 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
507 			     uint32_t engine_id, uint32_t queue_id,
508 			     uint32_t (**dump)[2], uint32_t *n_regs)
509 {
510 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
511 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
512 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
513 	uint32_t i = 0, reg;
514 #undef HQD_N_REGS
515 #define HQD_N_REGS (19+4)
516 
517 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
518 	if (*dump == NULL)
519 		return -ENOMEM;
520 
521 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
522 		DUMP_REG(sdma_offset + reg);
523 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
524 	     reg++)
525 		DUMP_REG(sdma_offset + reg);
526 
527 	WARN_ON_ONCE(i != HQD_N_REGS);
528 	*n_regs = i;
529 
530 	return 0;
531 }
532 
533 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
534 				uint32_t pipe_id, uint32_t queue_id)
535 {
536 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
537 	uint32_t act;
538 	bool retval = false;
539 	uint32_t low, high;
540 
541 	acquire_queue(kgd, pipe_id, queue_id);
542 	act = RREG32(mmCP_HQD_ACTIVE);
543 	if (act) {
544 		low = lower_32_bits(queue_address >> 8);
545 		high = upper_32_bits(queue_address >> 8);
546 
547 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
548 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
549 			retval = true;
550 	}
551 	release_queue(kgd);
552 	return retval;
553 }
554 
555 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
556 {
557 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
558 	struct cik_sdma_rlc_registers *m;
559 	uint32_t sdma_base_addr;
560 	uint32_t sdma_rlc_rb_cntl;
561 
562 	m = get_sdma_mqd(mqd);
563 	sdma_base_addr = get_sdma_base_addr(m);
564 
565 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
566 
567 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
568 		return true;
569 
570 	return false;
571 }
572 
573 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
574 				enum kfd_preempt_type reset_type,
575 				unsigned int utimeout, uint32_t pipe_id,
576 				uint32_t queue_id)
577 {
578 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
579 	uint32_t temp;
580 	enum hqd_dequeue_request_type type;
581 	unsigned long flags, end_jiffies;
582 	int retry;
583 
584 	acquire_queue(kgd, pipe_id, queue_id);
585 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
586 
587 	switch (reset_type) {
588 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
589 		type = DRAIN_PIPE;
590 		break;
591 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
592 		type = RESET_WAVES;
593 		break;
594 	default:
595 		type = DRAIN_PIPE;
596 		break;
597 	}
598 
599 	/* Workaround: If IQ timer is active and the wait time is close to or
600 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
601 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
602 	 * cleared before continuing. Also, ensure wait times are set to at
603 	 * least 0x3.
604 	 */
605 	local_irq_save(flags);
606 	preempt_disable();
607 	retry = 5000; /* wait for 500 usecs at maximum */
608 	while (true) {
609 		temp = RREG32(mmCP_HQD_IQ_TIMER);
610 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
611 			pr_debug("HW is processing IQ\n");
612 			goto loop;
613 		}
614 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
615 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
616 					== 3) /* SEM-rearm is safe */
617 				break;
618 			/* Wait time 3 is safe for CP, but our MMIO read/write
619 			 * time is close to 1 microsecond, so check for 10 to
620 			 * leave more buffer room
621 			 */
622 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
623 					>= 10)
624 				break;
625 			pr_debug("IQ timer is active\n");
626 		} else
627 			break;
628 loop:
629 		if (!retry) {
630 			pr_err("CP HQD IQ timer status time out\n");
631 			break;
632 		}
633 		ndelay(100);
634 		--retry;
635 	}
636 	retry = 1000;
637 	while (true) {
638 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
639 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
640 			break;
641 		pr_debug("Dequeue request is pending\n");
642 
643 		if (!retry) {
644 			pr_err("CP HQD dequeue request time out\n");
645 			break;
646 		}
647 		ndelay(100);
648 		--retry;
649 	}
650 	local_irq_restore(flags);
651 	preempt_enable();
652 
653 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
654 
655 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
656 	while (true) {
657 		temp = RREG32(mmCP_HQD_ACTIVE);
658 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
659 			break;
660 		if (time_after(jiffies, end_jiffies)) {
661 			pr_err("cp queue preemption time out\n");
662 			release_queue(kgd);
663 			return -ETIME;
664 		}
665 		usleep_range(500, 1000);
666 	}
667 
668 	release_queue(kgd);
669 	return 0;
670 }
671 
672 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
673 				unsigned int utimeout)
674 {
675 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
676 	struct cik_sdma_rlc_registers *m;
677 	uint32_t sdma_base_addr;
678 	uint32_t temp;
679 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
680 
681 	m = get_sdma_mqd(mqd);
682 	sdma_base_addr = get_sdma_base_addr(m);
683 
684 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
685 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
686 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
687 
688 	while (true) {
689 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
690 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
691 			break;
692 		if (time_after(jiffies, end_jiffies))
693 			return -ETIME;
694 		usleep_range(500, 1000);
695 	}
696 
697 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
698 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
699 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
700 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
701 
702 	m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
703 
704 	return 0;
705 }
706 
707 static int kgd_address_watch_disable(struct kgd_dev *kgd)
708 {
709 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
710 	union TCP_WATCH_CNTL_BITS cntl;
711 	unsigned int i;
712 
713 	cntl.u32All = 0;
714 
715 	cntl.bitfields.valid = 0;
716 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
717 	cntl.bitfields.atc = 1;
718 
719 	/* Turning off this address until we set all the registers */
720 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
721 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
722 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
723 
724 	return 0;
725 }
726 
727 static int kgd_address_watch_execute(struct kgd_dev *kgd,
728 					unsigned int watch_point_id,
729 					uint32_t cntl_val,
730 					uint32_t addr_hi,
731 					uint32_t addr_lo)
732 {
733 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
734 	union TCP_WATCH_CNTL_BITS cntl;
735 
736 	cntl.u32All = cntl_val;
737 
738 	/* Turning off this watch point until we set all the registers */
739 	cntl.bitfields.valid = 0;
740 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
741 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
742 
743 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
744 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
745 
746 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
747 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
748 
749 	/* Enable the watch point */
750 	cntl.bitfields.valid = 1;
751 
752 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
753 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
754 
755 	return 0;
756 }
757 
758 static int kgd_wave_control_execute(struct kgd_dev *kgd,
759 					uint32_t gfx_index_val,
760 					uint32_t sq_cmd)
761 {
762 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
763 	uint32_t data;
764 
765 	mutex_lock(&adev->grbm_idx_mutex);
766 
767 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
768 	WREG32(mmSQ_CMD, sq_cmd);
769 
770 	/*  Restore the GRBM_GFX_INDEX register  */
771 
772 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
773 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
774 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
775 
776 	WREG32(mmGRBM_GFX_INDEX, data);
777 
778 	mutex_unlock(&adev->grbm_idx_mutex);
779 
780 	return 0;
781 }
782 
783 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
784 					unsigned int watch_point_id,
785 					unsigned int reg_offset)
786 {
787 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
788 }
789 
790 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
791 							uint8_t vmid)
792 {
793 	uint32_t reg;
794 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
795 
796 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
797 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
798 }
799 
800 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
801 								uint8_t vmid)
802 {
803 	uint32_t reg;
804 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
805 
806 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
807 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
808 }
809 
810 static void set_scratch_backing_va(struct kgd_dev *kgd,
811 					uint64_t va, uint32_t vmid)
812 {
813 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
814 
815 	lock_srbm(kgd, 0, 0, 0, vmid);
816 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
817 	unlock_srbm(kgd);
818 }
819 
820 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
821 {
822 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
823 	const union amdgpu_firmware_header *hdr;
824 
825 	switch (type) {
826 	case KGD_ENGINE_PFP:
827 		hdr = (const union amdgpu_firmware_header *)
828 						adev->gfx.pfp_fw->data;
829 		break;
830 
831 	case KGD_ENGINE_ME:
832 		hdr = (const union amdgpu_firmware_header *)
833 						adev->gfx.me_fw->data;
834 		break;
835 
836 	case KGD_ENGINE_CE:
837 		hdr = (const union amdgpu_firmware_header *)
838 						adev->gfx.ce_fw->data;
839 		break;
840 
841 	case KGD_ENGINE_MEC1:
842 		hdr = (const union amdgpu_firmware_header *)
843 						adev->gfx.mec_fw->data;
844 		break;
845 
846 	case KGD_ENGINE_MEC2:
847 		hdr = (const union amdgpu_firmware_header *)
848 						adev->gfx.mec2_fw->data;
849 		break;
850 
851 	case KGD_ENGINE_RLC:
852 		hdr = (const union amdgpu_firmware_header *)
853 						adev->gfx.rlc_fw->data;
854 		break;
855 
856 	case KGD_ENGINE_SDMA1:
857 		hdr = (const union amdgpu_firmware_header *)
858 						adev->sdma.instance[0].fw->data;
859 		break;
860 
861 	case KGD_ENGINE_SDMA2:
862 		hdr = (const union amdgpu_firmware_header *)
863 						adev->sdma.instance[1].fw->data;
864 		break;
865 
866 	default:
867 		return 0;
868 	}
869 
870 	if (hdr == NULL)
871 		return 0;
872 
873 	/* Only 12 bit in use*/
874 	return hdr->common.ucode_version;
875 }
876 
877 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
878 			uint32_t page_table_base)
879 {
880 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
881 
882 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
883 		pr_err("trying to set page table base for wrong VMID\n");
884 		return;
885 	}
886 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
887 }
888 
889 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
890 {
891 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
892 	int vmid;
893 	unsigned int tmp;
894 
895 	for (vmid = 0; vmid < 16; vmid++) {
896 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
897 			continue;
898 
899 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
900 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
901 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
902 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
903 			RREG32(mmVM_INVALIDATE_RESPONSE);
904 			break;
905 		}
906 	}
907 
908 	return 0;
909 }
910 
911 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
912 {
913 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
914 
915 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
916 		pr_err("non kfd vmid\n");
917 		return 0;
918 	}
919 
920 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
921 	RREG32(mmVM_INVALIDATE_RESPONSE);
922 	return 0;
923 }
924