1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gfx_v7_0.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 enum {
49 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
50 	MAX_WATCH_ADDRESSES = 4
51 };
52 
53 enum {
54 	ADDRESS_WATCH_REG_ADDR_HI = 0,
55 	ADDRESS_WATCH_REG_ADDR_LO,
56 	ADDRESS_WATCH_REG_CNTL,
57 	ADDRESS_WATCH_REG_MAX
58 };
59 
60 /*  not defined in the CI/KV reg file  */
61 enum {
62 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 	/* extend the mask to 26 bits to match the low address field */
66 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68 };
69 
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75 };
76 
77 union TCP_WATCH_CNTL_BITS {
78 	struct {
79 		uint32_t mask:24;
80 		uint32_t vmid:4;
81 		uint32_t atc:1;
82 		uint32_t mode:2;
83 		uint32_t valid:1;
84 	} bitfields, bits;
85 	uint32_t u32All;
86 	signed int i32All;
87 	float f32All;
88 };
89 
90 /*
91  * Register access functions
92  */
93 
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
96 		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97 
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99 					unsigned int vmid);
100 
101 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
102 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
103 			uint32_t queue_id, uint32_t __user *wptr,
104 			uint32_t wptr_shift, uint32_t wptr_mask,
105 			struct mm_struct *mm);
106 static int kgd_hqd_dump(struct kgd_dev *kgd,
107 			uint32_t pipe_id, uint32_t queue_id,
108 			uint32_t (**dump)[2], uint32_t *n_regs);
109 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
110 			     uint32_t __user *wptr, struct mm_struct *mm);
111 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
112 			     uint32_t engine_id, uint32_t queue_id,
113 			     uint32_t (**dump)[2], uint32_t *n_regs);
114 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
115 				uint32_t pipe_id, uint32_t queue_id);
116 
117 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
118 				enum kfd_preempt_type reset_type,
119 				unsigned int utimeout, uint32_t pipe_id,
120 				uint32_t queue_id);
121 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
122 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
123 				unsigned int utimeout);
124 static int kgd_address_watch_disable(struct kgd_dev *kgd);
125 static int kgd_address_watch_execute(struct kgd_dev *kgd,
126 					unsigned int watch_point_id,
127 					uint32_t cntl_val,
128 					uint32_t addr_hi,
129 					uint32_t addr_lo);
130 static int kgd_wave_control_execute(struct kgd_dev *kgd,
131 					uint32_t gfx_index_val,
132 					uint32_t sq_cmd);
133 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
134 					unsigned int watch_point_id,
135 					unsigned int reg_offset);
136 
137 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
138 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
139 							uint8_t vmid);
140 
141 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
142 static void set_scratch_backing_va(struct kgd_dev *kgd,
143 					uint64_t va, uint32_t vmid);
144 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
145 		uint32_t page_table_base);
146 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
147 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
148 
149 /* Because of REG_GET_FIELD() being used, we put this function in the
150  * asic specific file.
151  */
152 static int get_tile_config(struct kgd_dev *kgd,
153 		struct tile_config *config)
154 {
155 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
156 
157 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
158 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
159 				MC_ARB_RAMCFG, NOOFBANK);
160 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
161 				MC_ARB_RAMCFG, NOOFRANKS);
162 
163 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
164 	config->num_tile_configs =
165 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
166 	config->macro_tile_config_ptr =
167 			adev->gfx.config.macrotile_mode_array;
168 	config->num_macro_tile_configs =
169 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
170 
171 	return 0;
172 }
173 
174 static const struct kfd2kgd_calls kfd2kgd = {
175 	.init_gtt_mem_allocation = alloc_gtt_mem,
176 	.free_gtt_mem = free_gtt_mem,
177 	.get_local_mem_info = get_local_mem_info,
178 	.get_gpu_clock_counter = get_gpu_clock_counter,
179 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
180 	.alloc_pasid = amdgpu_pasid_alloc,
181 	.free_pasid = amdgpu_pasid_free,
182 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
183 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
184 	.init_interrupts = kgd_init_interrupts,
185 	.hqd_load = kgd_hqd_load,
186 	.hqd_sdma_load = kgd_hqd_sdma_load,
187 	.hqd_dump = kgd_hqd_dump,
188 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
189 	.hqd_is_occupied = kgd_hqd_is_occupied,
190 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
191 	.hqd_destroy = kgd_hqd_destroy,
192 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
193 	.address_watch_disable = kgd_address_watch_disable,
194 	.address_watch_execute = kgd_address_watch_execute,
195 	.wave_control_execute = kgd_wave_control_execute,
196 	.address_watch_get_offset = kgd_address_watch_get_offset,
197 	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
198 	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
199 	.get_fw_version = get_fw_version,
200 	.set_scratch_backing_va = set_scratch_backing_va,
201 	.get_tile_config = get_tile_config,
202 	.get_cu_info = get_cu_info,
203 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
204 	.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
205 	.acquire_process_vm = amdgpu_amdkfd_gpuvm_acquire_process_vm,
206 	.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
207 	.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
208 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
209 	.alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
210 	.free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
211 	.map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
212 	.unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
213 	.sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
214 	.map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
215 	.restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
216 	.invalidate_tlbs = invalidate_tlbs,
217 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
218 	.submit_ib = amdgpu_amdkfd_submit_ib,
219 };
220 
221 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
222 {
223 	return (struct kfd2kgd_calls *)&kfd2kgd;
224 }
225 
226 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
227 {
228 	return (struct amdgpu_device *)kgd;
229 }
230 
231 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
232 			uint32_t queue, uint32_t vmid)
233 {
234 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
235 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
236 
237 	mutex_lock(&adev->srbm_mutex);
238 	WREG32(mmSRBM_GFX_CNTL, value);
239 }
240 
241 static void unlock_srbm(struct kgd_dev *kgd)
242 {
243 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
244 
245 	WREG32(mmSRBM_GFX_CNTL, 0);
246 	mutex_unlock(&adev->srbm_mutex);
247 }
248 
249 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
250 				uint32_t queue_id)
251 {
252 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
253 
254 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
255 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
256 
257 	lock_srbm(kgd, mec, pipe, queue_id, 0);
258 }
259 
260 static void release_queue(struct kgd_dev *kgd)
261 {
262 	unlock_srbm(kgd);
263 }
264 
265 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
266 					uint32_t sh_mem_config,
267 					uint32_t sh_mem_ape1_base,
268 					uint32_t sh_mem_ape1_limit,
269 					uint32_t sh_mem_bases)
270 {
271 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
272 
273 	lock_srbm(kgd, 0, 0, 0, vmid);
274 
275 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
276 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
277 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
278 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
279 
280 	unlock_srbm(kgd);
281 }
282 
283 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
284 					unsigned int vmid)
285 {
286 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
287 
288 	/*
289 	 * We have to assume that there is no outstanding mapping.
290 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
291 	 * a mapping is in progress or because a mapping finished and the
292 	 * SW cleared it. So the protocol is to always wait & clear.
293 	 */
294 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
295 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
296 
297 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
298 
299 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
300 		cpu_relax();
301 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
302 
303 	/* Mapping vmid to pasid also for IH block */
304 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
305 
306 	return 0;
307 }
308 
309 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
310 {
311 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
312 	uint32_t mec;
313 	uint32_t pipe;
314 
315 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
316 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
317 
318 	lock_srbm(kgd, mec, pipe, 0, 0);
319 
320 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
321 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
322 
323 	unlock_srbm(kgd);
324 
325 	return 0;
326 }
327 
328 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
329 {
330 	uint32_t retval;
331 
332 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
333 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
334 
335 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
336 
337 	return retval;
338 }
339 
340 static inline struct cik_mqd *get_mqd(void *mqd)
341 {
342 	return (struct cik_mqd *)mqd;
343 }
344 
345 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
346 {
347 	return (struct cik_sdma_rlc_registers *)mqd;
348 }
349 
350 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
351 			uint32_t queue_id, uint32_t __user *wptr,
352 			uint32_t wptr_shift, uint32_t wptr_mask,
353 			struct mm_struct *mm)
354 {
355 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
356 	struct cik_mqd *m;
357 	uint32_t *mqd_hqd;
358 	uint32_t reg, wptr_val, data;
359 	bool valid_wptr = false;
360 
361 	m = get_mqd(mqd);
362 
363 	acquire_queue(kgd, pipe_id, queue_id);
364 
365 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
366 	mqd_hqd = &m->cp_mqd_base_addr_lo;
367 
368 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
369 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
370 
371 	/* Copy userspace write pointer value to register.
372 	 * Activate doorbell logic to monitor subsequent changes.
373 	 */
374 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
375 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
376 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
377 
378 	/* read_user_ptr may take the mm->mmap_sem.
379 	 * release srbm_mutex to avoid circular dependency between
380 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
381 	 */
382 	release_queue(kgd);
383 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
384 	acquire_queue(kgd, pipe_id, queue_id);
385 	if (valid_wptr)
386 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
387 
388 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
389 	WREG32(mmCP_HQD_ACTIVE, data);
390 
391 	release_queue(kgd);
392 
393 	return 0;
394 }
395 
396 static int kgd_hqd_dump(struct kgd_dev *kgd,
397 			uint32_t pipe_id, uint32_t queue_id,
398 			uint32_t (**dump)[2], uint32_t *n_regs)
399 {
400 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
401 	uint32_t i = 0, reg;
402 #define HQD_N_REGS (35+4)
403 #define DUMP_REG(addr) do {				\
404 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
405 			break;				\
406 		(*dump)[i][0] = (addr) << 2;		\
407 		(*dump)[i++][1] = RREG32(addr);		\
408 	} while (0)
409 
410 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
411 	if (*dump == NULL)
412 		return -ENOMEM;
413 
414 	acquire_queue(kgd, pipe_id, queue_id);
415 
416 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
417 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
418 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
419 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
420 
421 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
422 		DUMP_REG(reg);
423 
424 	release_queue(kgd);
425 
426 	WARN_ON_ONCE(i != HQD_N_REGS);
427 	*n_regs = i;
428 
429 	return 0;
430 }
431 
432 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
433 			     uint32_t __user *wptr, struct mm_struct *mm)
434 {
435 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
436 	struct cik_sdma_rlc_registers *m;
437 	unsigned long end_jiffies;
438 	uint32_t sdma_base_addr;
439 	uint32_t data;
440 
441 	m = get_sdma_mqd(mqd);
442 	sdma_base_addr = get_sdma_base_addr(m);
443 
444 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
445 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
446 
447 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
448 	while (true) {
449 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
450 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
451 			break;
452 		if (time_after(jiffies, end_jiffies))
453 			return -ETIME;
454 		usleep_range(500, 1000);
455 	}
456 	if (m->sdma_engine_id) {
457 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
458 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
459 				RESUME_CTX, 0);
460 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
461 	} else {
462 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
463 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
464 				RESUME_CTX, 0);
465 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
466 	}
467 
468 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
469 			     ENABLE, 1);
470 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
471 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
472 
473 	if (read_user_wptr(mm, wptr, data))
474 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
475 	else
476 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
477 		       m->sdma_rlc_rb_rptr);
478 
479 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
480 				m->sdma_rlc_virtual_addr);
481 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
482 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
483 			m->sdma_rlc_rb_base_hi);
484 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
485 			m->sdma_rlc_rb_rptr_addr_lo);
486 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
487 			m->sdma_rlc_rb_rptr_addr_hi);
488 
489 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
490 			     RB_ENABLE, 1);
491 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
492 
493 	return 0;
494 }
495 
496 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
497 			     uint32_t engine_id, uint32_t queue_id,
498 			     uint32_t (**dump)[2], uint32_t *n_regs)
499 {
500 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
501 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
502 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
503 	uint32_t i = 0, reg;
504 #undef HQD_N_REGS
505 #define HQD_N_REGS (19+4)
506 
507 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
508 	if (*dump == NULL)
509 		return -ENOMEM;
510 
511 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
512 		DUMP_REG(sdma_offset + reg);
513 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
514 	     reg++)
515 		DUMP_REG(sdma_offset + reg);
516 
517 	WARN_ON_ONCE(i != HQD_N_REGS);
518 	*n_regs = i;
519 
520 	return 0;
521 }
522 
523 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
524 				uint32_t pipe_id, uint32_t queue_id)
525 {
526 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
527 	uint32_t act;
528 	bool retval = false;
529 	uint32_t low, high;
530 
531 	acquire_queue(kgd, pipe_id, queue_id);
532 	act = RREG32(mmCP_HQD_ACTIVE);
533 	if (act) {
534 		low = lower_32_bits(queue_address >> 8);
535 		high = upper_32_bits(queue_address >> 8);
536 
537 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
538 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
539 			retval = true;
540 	}
541 	release_queue(kgd);
542 	return retval;
543 }
544 
545 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
546 {
547 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
548 	struct cik_sdma_rlc_registers *m;
549 	uint32_t sdma_base_addr;
550 	uint32_t sdma_rlc_rb_cntl;
551 
552 	m = get_sdma_mqd(mqd);
553 	sdma_base_addr = get_sdma_base_addr(m);
554 
555 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
556 
557 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
558 		return true;
559 
560 	return false;
561 }
562 
563 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
564 				enum kfd_preempt_type reset_type,
565 				unsigned int utimeout, uint32_t pipe_id,
566 				uint32_t queue_id)
567 {
568 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
569 	uint32_t temp;
570 	enum hqd_dequeue_request_type type;
571 	unsigned long flags, end_jiffies;
572 	int retry;
573 
574 	acquire_queue(kgd, pipe_id, queue_id);
575 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
576 
577 	switch (reset_type) {
578 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
579 		type = DRAIN_PIPE;
580 		break;
581 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
582 		type = RESET_WAVES;
583 		break;
584 	default:
585 		type = DRAIN_PIPE;
586 		break;
587 	}
588 
589 	/* Workaround: If IQ timer is active and the wait time is close to or
590 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
591 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
592 	 * cleared before continuing. Also, ensure wait times are set to at
593 	 * least 0x3.
594 	 */
595 	local_irq_save(flags);
596 	preempt_disable();
597 	retry = 5000; /* wait for 500 usecs at maximum */
598 	while (true) {
599 		temp = RREG32(mmCP_HQD_IQ_TIMER);
600 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
601 			pr_debug("HW is processing IQ\n");
602 			goto loop;
603 		}
604 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
605 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
606 					== 3) /* SEM-rearm is safe */
607 				break;
608 			/* Wait time 3 is safe for CP, but our MMIO read/write
609 			 * time is close to 1 microsecond, so check for 10 to
610 			 * leave more buffer room
611 			 */
612 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
613 					>= 10)
614 				break;
615 			pr_debug("IQ timer is active\n");
616 		} else
617 			break;
618 loop:
619 		if (!retry) {
620 			pr_err("CP HQD IQ timer status time out\n");
621 			break;
622 		}
623 		ndelay(100);
624 		--retry;
625 	}
626 	retry = 1000;
627 	while (true) {
628 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
629 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
630 			break;
631 		pr_debug("Dequeue request is pending\n");
632 
633 		if (!retry) {
634 			pr_err("CP HQD dequeue request time out\n");
635 			break;
636 		}
637 		ndelay(100);
638 		--retry;
639 	}
640 	local_irq_restore(flags);
641 	preempt_enable();
642 
643 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
644 
645 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
646 	while (true) {
647 		temp = RREG32(mmCP_HQD_ACTIVE);
648 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
649 			break;
650 		if (time_after(jiffies, end_jiffies)) {
651 			pr_err("cp queue preemption time out\n");
652 			release_queue(kgd);
653 			return -ETIME;
654 		}
655 		usleep_range(500, 1000);
656 	}
657 
658 	release_queue(kgd);
659 	return 0;
660 }
661 
662 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
663 				unsigned int utimeout)
664 {
665 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
666 	struct cik_sdma_rlc_registers *m;
667 	uint32_t sdma_base_addr;
668 	uint32_t temp;
669 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
670 
671 	m = get_sdma_mqd(mqd);
672 	sdma_base_addr = get_sdma_base_addr(m);
673 
674 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
675 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
676 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
677 
678 	while (true) {
679 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
680 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
681 			break;
682 		if (time_after(jiffies, end_jiffies))
683 			return -ETIME;
684 		usleep_range(500, 1000);
685 	}
686 
687 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
688 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
689 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
690 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
691 
692 	m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
693 
694 	return 0;
695 }
696 
697 static int kgd_address_watch_disable(struct kgd_dev *kgd)
698 {
699 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
700 	union TCP_WATCH_CNTL_BITS cntl;
701 	unsigned int i;
702 
703 	cntl.u32All = 0;
704 
705 	cntl.bitfields.valid = 0;
706 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
707 	cntl.bitfields.atc = 1;
708 
709 	/* Turning off this address until we set all the registers */
710 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
711 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
712 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
713 
714 	return 0;
715 }
716 
717 static int kgd_address_watch_execute(struct kgd_dev *kgd,
718 					unsigned int watch_point_id,
719 					uint32_t cntl_val,
720 					uint32_t addr_hi,
721 					uint32_t addr_lo)
722 {
723 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
724 	union TCP_WATCH_CNTL_BITS cntl;
725 
726 	cntl.u32All = cntl_val;
727 
728 	/* Turning off this watch point until we set all the registers */
729 	cntl.bitfields.valid = 0;
730 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
731 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
732 
733 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
734 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
735 
736 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
737 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
738 
739 	/* Enable the watch point */
740 	cntl.bitfields.valid = 1;
741 
742 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
743 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
744 
745 	return 0;
746 }
747 
748 static int kgd_wave_control_execute(struct kgd_dev *kgd,
749 					uint32_t gfx_index_val,
750 					uint32_t sq_cmd)
751 {
752 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
753 	uint32_t data;
754 
755 	mutex_lock(&adev->grbm_idx_mutex);
756 
757 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
758 	WREG32(mmSQ_CMD, sq_cmd);
759 
760 	/*  Restore the GRBM_GFX_INDEX register  */
761 
762 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
763 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
764 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
765 
766 	WREG32(mmGRBM_GFX_INDEX, data);
767 
768 	mutex_unlock(&adev->grbm_idx_mutex);
769 
770 	return 0;
771 }
772 
773 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
774 					unsigned int watch_point_id,
775 					unsigned int reg_offset)
776 {
777 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
778 }
779 
780 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
781 							uint8_t vmid)
782 {
783 	uint32_t reg;
784 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
785 
786 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
787 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
788 }
789 
790 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
791 								uint8_t vmid)
792 {
793 	uint32_t reg;
794 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
795 
796 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
797 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
798 }
799 
800 static void set_scratch_backing_va(struct kgd_dev *kgd,
801 					uint64_t va, uint32_t vmid)
802 {
803 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
804 
805 	lock_srbm(kgd, 0, 0, 0, vmid);
806 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
807 	unlock_srbm(kgd);
808 }
809 
810 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
811 {
812 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
813 	const union amdgpu_firmware_header *hdr;
814 
815 	switch (type) {
816 	case KGD_ENGINE_PFP:
817 		hdr = (const union amdgpu_firmware_header *)
818 						adev->gfx.pfp_fw->data;
819 		break;
820 
821 	case KGD_ENGINE_ME:
822 		hdr = (const union amdgpu_firmware_header *)
823 						adev->gfx.me_fw->data;
824 		break;
825 
826 	case KGD_ENGINE_CE:
827 		hdr = (const union amdgpu_firmware_header *)
828 						adev->gfx.ce_fw->data;
829 		break;
830 
831 	case KGD_ENGINE_MEC1:
832 		hdr = (const union amdgpu_firmware_header *)
833 						adev->gfx.mec_fw->data;
834 		break;
835 
836 	case KGD_ENGINE_MEC2:
837 		hdr = (const union amdgpu_firmware_header *)
838 						adev->gfx.mec2_fw->data;
839 		break;
840 
841 	case KGD_ENGINE_RLC:
842 		hdr = (const union amdgpu_firmware_header *)
843 						adev->gfx.rlc_fw->data;
844 		break;
845 
846 	case KGD_ENGINE_SDMA1:
847 		hdr = (const union amdgpu_firmware_header *)
848 						adev->sdma.instance[0].fw->data;
849 		break;
850 
851 	case KGD_ENGINE_SDMA2:
852 		hdr = (const union amdgpu_firmware_header *)
853 						adev->sdma.instance[1].fw->data;
854 		break;
855 
856 	default:
857 		return 0;
858 	}
859 
860 	if (hdr == NULL)
861 		return 0;
862 
863 	/* Only 12 bit in use*/
864 	return hdr->common.ucode_version;
865 }
866 
867 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
868 			uint32_t page_table_base)
869 {
870 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
871 
872 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
873 		pr_err("trying to set page table base for wrong VMID\n");
874 		return;
875 	}
876 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
877 }
878 
879 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
880 {
881 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
882 	int vmid;
883 	unsigned int tmp;
884 
885 	for (vmid = 0; vmid < 16; vmid++) {
886 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
887 			continue;
888 
889 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
890 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
891 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
892 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
893 			RREG32(mmVM_INVALIDATE_RESPONSE);
894 			break;
895 		}
896 	}
897 
898 	return 0;
899 }
900 
901 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
902 {
903 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
904 
905 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
906 		pr_err("non kfd vmid\n");
907 		return 0;
908 	}
909 
910 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
911 	RREG32(mmVM_INVALIDATE_RESPONSE);
912 	return 0;
913 }
914