xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gfx_v7_0.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 enum {
49 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
50 	MAX_WATCH_ADDRESSES = 4
51 };
52 
53 enum {
54 	ADDRESS_WATCH_REG_ADDR_HI = 0,
55 	ADDRESS_WATCH_REG_ADDR_LO,
56 	ADDRESS_WATCH_REG_CNTL,
57 	ADDRESS_WATCH_REG_MAX
58 };
59 
60 /*  not defined in the CI/KV reg file  */
61 enum {
62 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 	/* extend the mask to 26 bits to match the low address field */
66 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68 };
69 
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75 };
76 
77 union TCP_WATCH_CNTL_BITS {
78 	struct {
79 		uint32_t mask:24;
80 		uint32_t vmid:4;
81 		uint32_t atc:1;
82 		uint32_t mode:2;
83 		uint32_t valid:1;
84 	} bitfields, bits;
85 	uint32_t u32All;
86 	signed int i32All;
87 	float f32All;
88 };
89 
90 /*
91  * Register access functions
92  */
93 
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
96 		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97 
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99 					unsigned int vmid);
100 
101 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
102 				uint32_t hpd_size, uint64_t hpd_gpu_addr);
103 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
104 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
105 			uint32_t queue_id, uint32_t __user *wptr,
106 			uint32_t wptr_shift, uint32_t wptr_mask,
107 			struct mm_struct *mm);
108 static int kgd_hqd_dump(struct kgd_dev *kgd,
109 			uint32_t pipe_id, uint32_t queue_id,
110 			uint32_t (**dump)[2], uint32_t *n_regs);
111 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
112 			     uint32_t __user *wptr, struct mm_struct *mm);
113 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
114 			     uint32_t engine_id, uint32_t queue_id,
115 			     uint32_t (**dump)[2], uint32_t *n_regs);
116 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
117 				uint32_t pipe_id, uint32_t queue_id);
118 
119 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
120 				enum kfd_preempt_type reset_type,
121 				unsigned int utimeout, uint32_t pipe_id,
122 				uint32_t queue_id);
123 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
124 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
125 				unsigned int utimeout);
126 static int kgd_address_watch_disable(struct kgd_dev *kgd);
127 static int kgd_address_watch_execute(struct kgd_dev *kgd,
128 					unsigned int watch_point_id,
129 					uint32_t cntl_val,
130 					uint32_t addr_hi,
131 					uint32_t addr_lo);
132 static int kgd_wave_control_execute(struct kgd_dev *kgd,
133 					uint32_t gfx_index_val,
134 					uint32_t sq_cmd);
135 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
136 					unsigned int watch_point_id,
137 					unsigned int reg_offset);
138 
139 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
140 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
141 							uint8_t vmid);
142 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
143 
144 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
145 static void set_scratch_backing_va(struct kgd_dev *kgd,
146 					uint64_t va, uint32_t vmid);
147 
148 /* Because of REG_GET_FIELD() being used, we put this function in the
149  * asic specific file.
150  */
151 static int get_tile_config(struct kgd_dev *kgd,
152 		struct tile_config *config)
153 {
154 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
155 
156 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
157 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
158 				MC_ARB_RAMCFG, NOOFBANK);
159 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
160 				MC_ARB_RAMCFG, NOOFRANKS);
161 
162 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
163 	config->num_tile_configs =
164 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
165 	config->macro_tile_config_ptr =
166 			adev->gfx.config.macrotile_mode_array;
167 	config->num_macro_tile_configs =
168 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
169 
170 	return 0;
171 }
172 
173 static const struct kfd2kgd_calls kfd2kgd = {
174 	.init_gtt_mem_allocation = alloc_gtt_mem,
175 	.free_gtt_mem = free_gtt_mem,
176 	.get_local_mem_info = get_local_mem_info,
177 	.get_gpu_clock_counter = get_gpu_clock_counter,
178 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
179 	.alloc_pasid = amdgpu_pasid_alloc,
180 	.free_pasid = amdgpu_pasid_free,
181 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
182 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
183 	.init_pipeline = kgd_init_pipeline,
184 	.init_interrupts = kgd_init_interrupts,
185 	.hqd_load = kgd_hqd_load,
186 	.hqd_sdma_load = kgd_hqd_sdma_load,
187 	.hqd_dump = kgd_hqd_dump,
188 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
189 	.hqd_is_occupied = kgd_hqd_is_occupied,
190 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
191 	.hqd_destroy = kgd_hqd_destroy,
192 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
193 	.address_watch_disable = kgd_address_watch_disable,
194 	.address_watch_execute = kgd_address_watch_execute,
195 	.wave_control_execute = kgd_wave_control_execute,
196 	.address_watch_get_offset = kgd_address_watch_get_offset,
197 	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
198 	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
199 	.write_vmid_invalidate_request = write_vmid_invalidate_request,
200 	.get_fw_version = get_fw_version,
201 	.set_scratch_backing_va = set_scratch_backing_va,
202 	.get_tile_config = get_tile_config,
203 	.get_cu_info = get_cu_info,
204 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage
205 };
206 
207 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
208 {
209 	return (struct kfd2kgd_calls *)&kfd2kgd;
210 }
211 
212 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
213 {
214 	return (struct amdgpu_device *)kgd;
215 }
216 
217 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
218 			uint32_t queue, uint32_t vmid)
219 {
220 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
221 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
222 
223 	mutex_lock(&adev->srbm_mutex);
224 	WREG32(mmSRBM_GFX_CNTL, value);
225 }
226 
227 static void unlock_srbm(struct kgd_dev *kgd)
228 {
229 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
230 
231 	WREG32(mmSRBM_GFX_CNTL, 0);
232 	mutex_unlock(&adev->srbm_mutex);
233 }
234 
235 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
236 				uint32_t queue_id)
237 {
238 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
239 
240 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
241 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
242 
243 	lock_srbm(kgd, mec, pipe, queue_id, 0);
244 }
245 
246 static void release_queue(struct kgd_dev *kgd)
247 {
248 	unlock_srbm(kgd);
249 }
250 
251 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
252 					uint32_t sh_mem_config,
253 					uint32_t sh_mem_ape1_base,
254 					uint32_t sh_mem_ape1_limit,
255 					uint32_t sh_mem_bases)
256 {
257 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
258 
259 	lock_srbm(kgd, 0, 0, 0, vmid);
260 
261 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
262 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
263 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
264 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
265 
266 	unlock_srbm(kgd);
267 }
268 
269 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
270 					unsigned int vmid)
271 {
272 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
273 
274 	/*
275 	 * We have to assume that there is no outstanding mapping.
276 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
277 	 * a mapping is in progress or because a mapping finished and the
278 	 * SW cleared it. So the protocol is to always wait & clear.
279 	 */
280 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
281 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
282 
283 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
284 
285 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
286 		cpu_relax();
287 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
288 
289 	/* Mapping vmid to pasid also for IH block */
290 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
291 
292 	return 0;
293 }
294 
295 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
296 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
297 {
298 	/* amdgpu owns the per-pipe state */
299 	return 0;
300 }
301 
302 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
303 {
304 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
305 	uint32_t mec;
306 	uint32_t pipe;
307 
308 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
309 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
310 
311 	lock_srbm(kgd, mec, pipe, 0, 0);
312 
313 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
314 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
315 
316 	unlock_srbm(kgd);
317 
318 	return 0;
319 }
320 
321 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
322 {
323 	uint32_t retval;
324 
325 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
326 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
327 
328 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
329 
330 	return retval;
331 }
332 
333 static inline struct cik_mqd *get_mqd(void *mqd)
334 {
335 	return (struct cik_mqd *)mqd;
336 }
337 
338 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
339 {
340 	return (struct cik_sdma_rlc_registers *)mqd;
341 }
342 
343 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
344 			uint32_t queue_id, uint32_t __user *wptr,
345 			uint32_t wptr_shift, uint32_t wptr_mask,
346 			struct mm_struct *mm)
347 {
348 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
349 	struct cik_mqd *m;
350 	uint32_t *mqd_hqd;
351 	uint32_t reg, wptr_val, data;
352 	bool valid_wptr = false;
353 
354 	m = get_mqd(mqd);
355 
356 	acquire_queue(kgd, pipe_id, queue_id);
357 
358 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
359 	mqd_hqd = &m->cp_mqd_base_addr_lo;
360 
361 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
362 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
363 
364 	/* Copy userspace write pointer value to register.
365 	 * Activate doorbell logic to monitor subsequent changes.
366 	 */
367 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
368 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
369 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
370 
371 	/* read_user_ptr may take the mm->mmap_sem.
372 	 * release srbm_mutex to avoid circular dependency between
373 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
374 	 */
375 	release_queue(kgd);
376 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
377 	acquire_queue(kgd, pipe_id, queue_id);
378 	if (valid_wptr)
379 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
380 
381 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
382 	WREG32(mmCP_HQD_ACTIVE, data);
383 
384 	release_queue(kgd);
385 
386 	return 0;
387 }
388 
389 static int kgd_hqd_dump(struct kgd_dev *kgd,
390 			uint32_t pipe_id, uint32_t queue_id,
391 			uint32_t (**dump)[2], uint32_t *n_regs)
392 {
393 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
394 	uint32_t i = 0, reg;
395 #define HQD_N_REGS (35+4)
396 #define DUMP_REG(addr) do {				\
397 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
398 			break;				\
399 		(*dump)[i][0] = (addr) << 2;		\
400 		(*dump)[i++][1] = RREG32(addr);		\
401 	} while (0)
402 
403 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
404 	if (*dump == NULL)
405 		return -ENOMEM;
406 
407 	acquire_queue(kgd, pipe_id, queue_id);
408 
409 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
410 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
411 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
412 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
413 
414 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
415 		DUMP_REG(reg);
416 
417 	release_queue(kgd);
418 
419 	WARN_ON_ONCE(i != HQD_N_REGS);
420 	*n_regs = i;
421 
422 	return 0;
423 }
424 
425 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
426 			     uint32_t __user *wptr, struct mm_struct *mm)
427 {
428 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
429 	struct cik_sdma_rlc_registers *m;
430 	unsigned long end_jiffies;
431 	uint32_t sdma_base_addr;
432 	uint32_t data;
433 
434 	m = get_sdma_mqd(mqd);
435 	sdma_base_addr = get_sdma_base_addr(m);
436 
437 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
438 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
439 
440 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
441 	while (true) {
442 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
443 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
444 			break;
445 		if (time_after(jiffies, end_jiffies))
446 			return -ETIME;
447 		usleep_range(500, 1000);
448 	}
449 	if (m->sdma_engine_id) {
450 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
451 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
452 				RESUME_CTX, 0);
453 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
454 	} else {
455 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
456 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
457 				RESUME_CTX, 0);
458 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
459 	}
460 
461 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
462 			     ENABLE, 1);
463 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
464 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
465 
466 	if (read_user_wptr(mm, wptr, data))
467 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
468 	else
469 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
470 		       m->sdma_rlc_rb_rptr);
471 
472 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
473 				m->sdma_rlc_virtual_addr);
474 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
475 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
476 			m->sdma_rlc_rb_base_hi);
477 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
478 			m->sdma_rlc_rb_rptr_addr_lo);
479 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
480 			m->sdma_rlc_rb_rptr_addr_hi);
481 
482 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
483 			     RB_ENABLE, 1);
484 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
485 
486 	return 0;
487 }
488 
489 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
490 			     uint32_t engine_id, uint32_t queue_id,
491 			     uint32_t (**dump)[2], uint32_t *n_regs)
492 {
493 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
494 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
495 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
496 	uint32_t i = 0, reg;
497 #undef HQD_N_REGS
498 #define HQD_N_REGS (19+4)
499 
500 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
501 	if (*dump == NULL)
502 		return -ENOMEM;
503 
504 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
505 		DUMP_REG(sdma_offset + reg);
506 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
507 	     reg++)
508 		DUMP_REG(sdma_offset + reg);
509 
510 	WARN_ON_ONCE(i != HQD_N_REGS);
511 	*n_regs = i;
512 
513 	return 0;
514 }
515 
516 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
517 				uint32_t pipe_id, uint32_t queue_id)
518 {
519 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
520 	uint32_t act;
521 	bool retval = false;
522 	uint32_t low, high;
523 
524 	acquire_queue(kgd, pipe_id, queue_id);
525 	act = RREG32(mmCP_HQD_ACTIVE);
526 	if (act) {
527 		low = lower_32_bits(queue_address >> 8);
528 		high = upper_32_bits(queue_address >> 8);
529 
530 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
531 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
532 			retval = true;
533 	}
534 	release_queue(kgd);
535 	return retval;
536 }
537 
538 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
539 {
540 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
541 	struct cik_sdma_rlc_registers *m;
542 	uint32_t sdma_base_addr;
543 	uint32_t sdma_rlc_rb_cntl;
544 
545 	m = get_sdma_mqd(mqd);
546 	sdma_base_addr = get_sdma_base_addr(m);
547 
548 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
549 
550 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
551 		return true;
552 
553 	return false;
554 }
555 
556 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
557 				enum kfd_preempt_type reset_type,
558 				unsigned int utimeout, uint32_t pipe_id,
559 				uint32_t queue_id)
560 {
561 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
562 	uint32_t temp;
563 	enum hqd_dequeue_request_type type;
564 	unsigned long flags, end_jiffies;
565 	int retry;
566 
567 	acquire_queue(kgd, pipe_id, queue_id);
568 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
569 
570 	switch (reset_type) {
571 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
572 		type = DRAIN_PIPE;
573 		break;
574 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
575 		type = RESET_WAVES;
576 		break;
577 	default:
578 		type = DRAIN_PIPE;
579 		break;
580 	}
581 
582 	/* Workaround: If IQ timer is active and the wait time is close to or
583 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
584 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
585 	 * cleared before continuing. Also, ensure wait times are set to at
586 	 * least 0x3.
587 	 */
588 	local_irq_save(flags);
589 	preempt_disable();
590 	retry = 5000; /* wait for 500 usecs at maximum */
591 	while (true) {
592 		temp = RREG32(mmCP_HQD_IQ_TIMER);
593 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
594 			pr_debug("HW is processing IQ\n");
595 			goto loop;
596 		}
597 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
598 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
599 					== 3) /* SEM-rearm is safe */
600 				break;
601 			/* Wait time 3 is safe for CP, but our MMIO read/write
602 			 * time is close to 1 microsecond, so check for 10 to
603 			 * leave more buffer room
604 			 */
605 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
606 					>= 10)
607 				break;
608 			pr_debug("IQ timer is active\n");
609 		} else
610 			break;
611 loop:
612 		if (!retry) {
613 			pr_err("CP HQD IQ timer status time out\n");
614 			break;
615 		}
616 		ndelay(100);
617 		--retry;
618 	}
619 	retry = 1000;
620 	while (true) {
621 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
622 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
623 			break;
624 		pr_debug("Dequeue request is pending\n");
625 
626 		if (!retry) {
627 			pr_err("CP HQD dequeue request time out\n");
628 			break;
629 		}
630 		ndelay(100);
631 		--retry;
632 	}
633 	local_irq_restore(flags);
634 	preempt_enable();
635 
636 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
637 
638 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
639 	while (true) {
640 		temp = RREG32(mmCP_HQD_ACTIVE);
641 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
642 			break;
643 		if (time_after(jiffies, end_jiffies)) {
644 			pr_err("cp queue preemption time out\n");
645 			release_queue(kgd);
646 			return -ETIME;
647 		}
648 		usleep_range(500, 1000);
649 	}
650 
651 	release_queue(kgd);
652 	return 0;
653 }
654 
655 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
656 				unsigned int utimeout)
657 {
658 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
659 	struct cik_sdma_rlc_registers *m;
660 	uint32_t sdma_base_addr;
661 	uint32_t temp;
662 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
663 
664 	m = get_sdma_mqd(mqd);
665 	sdma_base_addr = get_sdma_base_addr(m);
666 
667 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
668 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
669 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
670 
671 	while (true) {
672 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
673 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
674 			break;
675 		if (time_after(jiffies, end_jiffies))
676 			return -ETIME;
677 		usleep_range(500, 1000);
678 	}
679 
680 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
681 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
682 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
683 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
684 
685 	m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
686 
687 	return 0;
688 }
689 
690 static int kgd_address_watch_disable(struct kgd_dev *kgd)
691 {
692 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
693 	union TCP_WATCH_CNTL_BITS cntl;
694 	unsigned int i;
695 
696 	cntl.u32All = 0;
697 
698 	cntl.bitfields.valid = 0;
699 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
700 	cntl.bitfields.atc = 1;
701 
702 	/* Turning off this address until we set all the registers */
703 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
704 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
705 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
706 
707 	return 0;
708 }
709 
710 static int kgd_address_watch_execute(struct kgd_dev *kgd,
711 					unsigned int watch_point_id,
712 					uint32_t cntl_val,
713 					uint32_t addr_hi,
714 					uint32_t addr_lo)
715 {
716 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
717 	union TCP_WATCH_CNTL_BITS cntl;
718 
719 	cntl.u32All = cntl_val;
720 
721 	/* Turning off this watch point until we set all the registers */
722 	cntl.bitfields.valid = 0;
723 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
724 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
725 
726 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
727 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
728 
729 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
730 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
731 
732 	/* Enable the watch point */
733 	cntl.bitfields.valid = 1;
734 
735 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
736 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
737 
738 	return 0;
739 }
740 
741 static int kgd_wave_control_execute(struct kgd_dev *kgd,
742 					uint32_t gfx_index_val,
743 					uint32_t sq_cmd)
744 {
745 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
746 	uint32_t data;
747 
748 	mutex_lock(&adev->grbm_idx_mutex);
749 
750 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
751 	WREG32(mmSQ_CMD, sq_cmd);
752 
753 	/*  Restore the GRBM_GFX_INDEX register  */
754 
755 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
756 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
757 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
758 
759 	WREG32(mmGRBM_GFX_INDEX, data);
760 
761 	mutex_unlock(&adev->grbm_idx_mutex);
762 
763 	return 0;
764 }
765 
766 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
767 					unsigned int watch_point_id,
768 					unsigned int reg_offset)
769 {
770 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
771 }
772 
773 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
774 							uint8_t vmid)
775 {
776 	uint32_t reg;
777 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
778 
779 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
780 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
781 }
782 
783 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
784 								uint8_t vmid)
785 {
786 	uint32_t reg;
787 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
788 
789 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
790 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
791 }
792 
793 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
794 {
795 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
796 
797 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
798 }
799 
800 static void set_scratch_backing_va(struct kgd_dev *kgd,
801 					uint64_t va, uint32_t vmid)
802 {
803 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
804 
805 	lock_srbm(kgd, 0, 0, 0, vmid);
806 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
807 	unlock_srbm(kgd);
808 }
809 
810 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
811 {
812 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
813 	const union amdgpu_firmware_header *hdr;
814 
815 	BUG_ON(kgd == NULL);
816 
817 	switch (type) {
818 	case KGD_ENGINE_PFP:
819 		hdr = (const union amdgpu_firmware_header *)
820 						adev->gfx.pfp_fw->data;
821 		break;
822 
823 	case KGD_ENGINE_ME:
824 		hdr = (const union amdgpu_firmware_header *)
825 						adev->gfx.me_fw->data;
826 		break;
827 
828 	case KGD_ENGINE_CE:
829 		hdr = (const union amdgpu_firmware_header *)
830 						adev->gfx.ce_fw->data;
831 		break;
832 
833 	case KGD_ENGINE_MEC1:
834 		hdr = (const union amdgpu_firmware_header *)
835 						adev->gfx.mec_fw->data;
836 		break;
837 
838 	case KGD_ENGINE_MEC2:
839 		hdr = (const union amdgpu_firmware_header *)
840 						adev->gfx.mec2_fw->data;
841 		break;
842 
843 	case KGD_ENGINE_RLC:
844 		hdr = (const union amdgpu_firmware_header *)
845 						adev->gfx.rlc_fw->data;
846 		break;
847 
848 	case KGD_ENGINE_SDMA1:
849 		hdr = (const union amdgpu_firmware_header *)
850 						adev->sdma.instance[0].fw->data;
851 		break;
852 
853 	case KGD_ENGINE_SDMA2:
854 		hdr = (const union amdgpu_firmware_header *)
855 						adev->sdma.instance[1].fw->data;
856 		break;
857 
858 	default:
859 		return 0;
860 	}
861 
862 	if (hdr == NULL)
863 		return 0;
864 
865 	/* Only 12 bit in use*/
866 	return hdr->common.ucode_version;
867 }
868 
869