1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include "amdgpu.h" 24 #include "amdgpu_amdkfd.h" 25 #include "cikd.h" 26 #include "cik_sdma.h" 27 #include "gfx_v7_0.h" 28 #include "gca/gfx_7_2_d.h" 29 #include "gca/gfx_7_2_enum.h" 30 #include "gca/gfx_7_2_sh_mask.h" 31 #include "oss/oss_2_0_d.h" 32 #include "oss/oss_2_0_sh_mask.h" 33 #include "gmc/gmc_7_1_d.h" 34 #include "gmc/gmc_7_1_sh_mask.h" 35 #include "cik_structs.h" 36 37 enum hqd_dequeue_request_type { 38 NO_ACTION = 0, 39 DRAIN_PIPE, 40 RESET_WAVES 41 }; 42 43 enum { 44 MAX_TRAPID = 8, /* 3 bits in the bitfield. */ 45 MAX_WATCH_ADDRESSES = 4 46 }; 47 48 enum { 49 ADDRESS_WATCH_REG_ADDR_HI = 0, 50 ADDRESS_WATCH_REG_ADDR_LO, 51 ADDRESS_WATCH_REG_CNTL, 52 ADDRESS_WATCH_REG_MAX 53 }; 54 55 /* not defined in the CI/KV reg file */ 56 enum { 57 ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL, 58 ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF, 59 ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000, 60 /* extend the mask to 26 bits to match the low address field */ 61 ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6, 62 ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF 63 }; 64 65 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = { 66 mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL, 67 mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL, 68 mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL, 69 mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL 70 }; 71 72 union TCP_WATCH_CNTL_BITS { 73 struct { 74 uint32_t mask:24; 75 uint32_t vmid:4; 76 uint32_t atc:1; 77 uint32_t mode:2; 78 uint32_t valid:1; 79 } bitfields, bits; 80 uint32_t u32All; 81 signed int i32All; 82 float f32All; 83 }; 84 85 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) 86 { 87 return (struct amdgpu_device *)kgd; 88 } 89 90 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, 91 uint32_t queue, uint32_t vmid) 92 { 93 struct amdgpu_device *adev = get_amdgpu_device(kgd); 94 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue); 95 96 mutex_lock(&adev->srbm_mutex); 97 WREG32(mmSRBM_GFX_CNTL, value); 98 } 99 100 static void unlock_srbm(struct kgd_dev *kgd) 101 { 102 struct amdgpu_device *adev = get_amdgpu_device(kgd); 103 104 WREG32(mmSRBM_GFX_CNTL, 0); 105 mutex_unlock(&adev->srbm_mutex); 106 } 107 108 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, 109 uint32_t queue_id) 110 { 111 struct amdgpu_device *adev = get_amdgpu_device(kgd); 112 113 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 114 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 115 116 lock_srbm(kgd, mec, pipe, queue_id, 0); 117 } 118 119 static void release_queue(struct kgd_dev *kgd) 120 { 121 unlock_srbm(kgd); 122 } 123 124 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, 125 uint32_t sh_mem_config, 126 uint32_t sh_mem_ape1_base, 127 uint32_t sh_mem_ape1_limit, 128 uint32_t sh_mem_bases) 129 { 130 struct amdgpu_device *adev = get_amdgpu_device(kgd); 131 132 lock_srbm(kgd, 0, 0, 0, vmid); 133 134 WREG32(mmSH_MEM_CONFIG, sh_mem_config); 135 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base); 136 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit); 137 WREG32(mmSH_MEM_BASES, sh_mem_bases); 138 139 unlock_srbm(kgd); 140 } 141 142 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, 143 unsigned int vmid) 144 { 145 struct amdgpu_device *adev = get_amdgpu_device(kgd); 146 147 /* 148 * We have to assume that there is no outstanding mapping. 149 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because 150 * a mapping is in progress or because a mapping finished and the 151 * SW cleared it. So the protocol is to always wait & clear. 152 */ 153 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 154 ATC_VMID0_PASID_MAPPING__VALID_MASK; 155 156 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping); 157 158 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid))) 159 cpu_relax(); 160 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid); 161 162 /* Mapping vmid to pasid also for IH block */ 163 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping); 164 165 return 0; 166 } 167 168 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) 169 { 170 struct amdgpu_device *adev = get_amdgpu_device(kgd); 171 uint32_t mec; 172 uint32_t pipe; 173 174 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 175 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 176 177 lock_srbm(kgd, mec, pipe, 0, 0); 178 179 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | 180 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); 181 182 unlock_srbm(kgd); 183 184 return 0; 185 } 186 187 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m) 188 { 189 uint32_t retval; 190 191 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET + 192 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; 193 194 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", 195 m->sdma_engine_id, m->sdma_queue_id, retval); 196 197 return retval; 198 } 199 200 static inline struct cik_mqd *get_mqd(void *mqd) 201 { 202 return (struct cik_mqd *)mqd; 203 } 204 205 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) 206 { 207 return (struct cik_sdma_rlc_registers *)mqd; 208 } 209 210 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, 211 uint32_t queue_id, uint32_t __user *wptr, 212 uint32_t wptr_shift, uint32_t wptr_mask, 213 struct mm_struct *mm) 214 { 215 struct amdgpu_device *adev = get_amdgpu_device(kgd); 216 struct cik_mqd *m; 217 uint32_t *mqd_hqd; 218 uint32_t reg, wptr_val, data; 219 bool valid_wptr = false; 220 221 m = get_mqd(mqd); 222 223 acquire_queue(kgd, pipe_id, queue_id); 224 225 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */ 226 mqd_hqd = &m->cp_mqd_base_addr_lo; 227 228 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++) 229 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]); 230 231 /* Copy userspace write pointer value to register. 232 * Activate doorbell logic to monitor subsequent changes. 233 */ 234 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, 235 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); 236 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data); 237 238 /* read_user_ptr may take the mm->mmap_lock. 239 * release srbm_mutex to avoid circular dependency between 240 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex. 241 */ 242 release_queue(kgd); 243 valid_wptr = read_user_wptr(mm, wptr, wptr_val); 244 acquire_queue(kgd, pipe_id, queue_id); 245 if (valid_wptr) 246 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask); 247 248 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); 249 WREG32(mmCP_HQD_ACTIVE, data); 250 251 release_queue(kgd); 252 253 return 0; 254 } 255 256 static int kgd_hqd_dump(struct kgd_dev *kgd, 257 uint32_t pipe_id, uint32_t queue_id, 258 uint32_t (**dump)[2], uint32_t *n_regs) 259 { 260 struct amdgpu_device *adev = get_amdgpu_device(kgd); 261 uint32_t i = 0, reg; 262 #define HQD_N_REGS (35+4) 263 #define DUMP_REG(addr) do { \ 264 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ 265 break; \ 266 (*dump)[i][0] = (addr) << 2; \ 267 (*dump)[i++][1] = RREG32(addr); \ 268 } while (0) 269 270 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 271 if (*dump == NULL) 272 return -ENOMEM; 273 274 acquire_queue(kgd, pipe_id, queue_id); 275 276 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0); 277 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1); 278 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2); 279 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3); 280 281 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++) 282 DUMP_REG(reg); 283 284 release_queue(kgd); 285 286 WARN_ON_ONCE(i != HQD_N_REGS); 287 *n_regs = i; 288 289 return 0; 290 } 291 292 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, 293 uint32_t __user *wptr, struct mm_struct *mm) 294 { 295 struct amdgpu_device *adev = get_amdgpu_device(kgd); 296 struct cik_sdma_rlc_registers *m; 297 unsigned long end_jiffies; 298 uint32_t sdma_rlc_reg_offset; 299 uint32_t data; 300 301 m = get_sdma_mqd(mqd); 302 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m); 303 304 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 305 m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); 306 307 end_jiffies = msecs_to_jiffies(2000) + jiffies; 308 while (true) { 309 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 310 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 311 break; 312 if (time_after(jiffies, end_jiffies)) { 313 pr_err("SDMA RLC not idle in %s\n", __func__); 314 return -ETIME; 315 } 316 usleep_range(500, 1000); 317 } 318 319 data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL, 320 ENABLE, 1); 321 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); 322 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, 323 m->sdma_rlc_rb_rptr); 324 325 if (read_user_wptr(mm, wptr, data)) 326 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data); 327 else 328 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 329 m->sdma_rlc_rb_rptr); 330 331 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR, 332 m->sdma_rlc_virtual_addr); 333 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base); 334 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, 335 m->sdma_rlc_rb_base_hi); 336 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 337 m->sdma_rlc_rb_rptr_addr_lo); 338 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, 339 m->sdma_rlc_rb_rptr_addr_hi); 340 341 data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL, 342 RB_ENABLE, 1); 343 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); 344 345 return 0; 346 } 347 348 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, 349 uint32_t engine_id, uint32_t queue_id, 350 uint32_t (**dump)[2], uint32_t *n_regs) 351 { 352 struct amdgpu_device *adev = get_amdgpu_device(kgd); 353 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET + 354 queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; 355 uint32_t i = 0, reg; 356 #undef HQD_N_REGS 357 #define HQD_N_REGS (19+4) 358 359 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL); 360 if (*dump == NULL) 361 return -ENOMEM; 362 363 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) 364 DUMP_REG(sdma_offset + reg); 365 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK; 366 reg++) 367 DUMP_REG(sdma_offset + reg); 368 369 WARN_ON_ONCE(i != HQD_N_REGS); 370 *n_regs = i; 371 372 return 0; 373 } 374 375 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, 376 uint32_t pipe_id, uint32_t queue_id) 377 { 378 struct amdgpu_device *adev = get_amdgpu_device(kgd); 379 uint32_t act; 380 bool retval = false; 381 uint32_t low, high; 382 383 acquire_queue(kgd, pipe_id, queue_id); 384 act = RREG32(mmCP_HQD_ACTIVE); 385 if (act) { 386 low = lower_32_bits(queue_address >> 8); 387 high = upper_32_bits(queue_address >> 8); 388 389 if (low == RREG32(mmCP_HQD_PQ_BASE) && 390 high == RREG32(mmCP_HQD_PQ_BASE_HI)) 391 retval = true; 392 } 393 release_queue(kgd); 394 return retval; 395 } 396 397 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) 398 { 399 struct amdgpu_device *adev = get_amdgpu_device(kgd); 400 struct cik_sdma_rlc_registers *m; 401 uint32_t sdma_rlc_reg_offset; 402 uint32_t sdma_rlc_rb_cntl; 403 404 m = get_sdma_mqd(mqd); 405 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m); 406 407 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 408 409 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) 410 return true; 411 412 return false; 413 } 414 415 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, 416 enum kfd_preempt_type reset_type, 417 unsigned int utimeout, uint32_t pipe_id, 418 uint32_t queue_id) 419 { 420 struct amdgpu_device *adev = get_amdgpu_device(kgd); 421 uint32_t temp; 422 enum hqd_dequeue_request_type type; 423 unsigned long flags, end_jiffies; 424 int retry; 425 426 if (adev->in_gpu_reset) 427 return -EIO; 428 429 acquire_queue(kgd, pipe_id, queue_id); 430 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0); 431 432 switch (reset_type) { 433 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: 434 type = DRAIN_PIPE; 435 break; 436 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: 437 type = RESET_WAVES; 438 break; 439 default: 440 type = DRAIN_PIPE; 441 break; 442 } 443 444 /* Workaround: If IQ timer is active and the wait time is close to or 445 * equal to 0, dequeueing is not safe. Wait until either the wait time 446 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is 447 * cleared before continuing. Also, ensure wait times are set to at 448 * least 0x3. 449 */ 450 local_irq_save(flags); 451 preempt_disable(); 452 retry = 5000; /* wait for 500 usecs at maximum */ 453 while (true) { 454 temp = RREG32(mmCP_HQD_IQ_TIMER); 455 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { 456 pr_debug("HW is processing IQ\n"); 457 goto loop; 458 } 459 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { 460 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) 461 == 3) /* SEM-rearm is safe */ 462 break; 463 /* Wait time 3 is safe for CP, but our MMIO read/write 464 * time is close to 1 microsecond, so check for 10 to 465 * leave more buffer room 466 */ 467 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) 468 >= 10) 469 break; 470 pr_debug("IQ timer is active\n"); 471 } else 472 break; 473 loop: 474 if (!retry) { 475 pr_err("CP HQD IQ timer status time out\n"); 476 break; 477 } 478 ndelay(100); 479 --retry; 480 } 481 retry = 1000; 482 while (true) { 483 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); 484 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) 485 break; 486 pr_debug("Dequeue request is pending\n"); 487 488 if (!retry) { 489 pr_err("CP HQD dequeue request time out\n"); 490 break; 491 } 492 ndelay(100); 493 --retry; 494 } 495 local_irq_restore(flags); 496 preempt_enable(); 497 498 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type); 499 500 end_jiffies = (utimeout * HZ / 1000) + jiffies; 501 while (true) { 502 temp = RREG32(mmCP_HQD_ACTIVE); 503 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) 504 break; 505 if (time_after(jiffies, end_jiffies)) { 506 pr_err("cp queue preemption time out\n"); 507 release_queue(kgd); 508 return -ETIME; 509 } 510 usleep_range(500, 1000); 511 } 512 513 release_queue(kgd); 514 return 0; 515 } 516 517 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, 518 unsigned int utimeout) 519 { 520 struct amdgpu_device *adev = get_amdgpu_device(kgd); 521 struct cik_sdma_rlc_registers *m; 522 uint32_t sdma_rlc_reg_offset; 523 uint32_t temp; 524 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; 525 526 m = get_sdma_mqd(mqd); 527 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m); 528 529 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 530 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; 531 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); 532 533 while (true) { 534 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 535 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 536 break; 537 if (time_after(jiffies, end_jiffies)) { 538 pr_err("SDMA RLC not idle in %s\n", __func__); 539 return -ETIME; 540 } 541 usleep_range(500, 1000); 542 } 543 544 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); 545 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 546 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | 547 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); 548 549 m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); 550 551 return 0; 552 } 553 554 static int kgd_address_watch_disable(struct kgd_dev *kgd) 555 { 556 struct amdgpu_device *adev = get_amdgpu_device(kgd); 557 union TCP_WATCH_CNTL_BITS cntl; 558 unsigned int i; 559 560 cntl.u32All = 0; 561 562 cntl.bitfields.valid = 0; 563 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK; 564 cntl.bitfields.atc = 1; 565 566 /* Turning off this address until we set all the registers */ 567 for (i = 0; i < MAX_WATCH_ADDRESSES; i++) 568 WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX + 569 ADDRESS_WATCH_REG_CNTL], cntl.u32All); 570 571 return 0; 572 } 573 574 static int kgd_address_watch_execute(struct kgd_dev *kgd, 575 unsigned int watch_point_id, 576 uint32_t cntl_val, 577 uint32_t addr_hi, 578 uint32_t addr_lo) 579 { 580 struct amdgpu_device *adev = get_amdgpu_device(kgd); 581 union TCP_WATCH_CNTL_BITS cntl; 582 583 cntl.u32All = cntl_val; 584 585 /* Turning off this watch point until we set all the registers */ 586 cntl.bitfields.valid = 0; 587 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 588 ADDRESS_WATCH_REG_CNTL], cntl.u32All); 589 590 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 591 ADDRESS_WATCH_REG_ADDR_HI], addr_hi); 592 593 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 594 ADDRESS_WATCH_REG_ADDR_LO], addr_lo); 595 596 /* Enable the watch point */ 597 cntl.bitfields.valid = 1; 598 599 WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + 600 ADDRESS_WATCH_REG_CNTL], cntl.u32All); 601 602 return 0; 603 } 604 605 static int kgd_wave_control_execute(struct kgd_dev *kgd, 606 uint32_t gfx_index_val, 607 uint32_t sq_cmd) 608 { 609 struct amdgpu_device *adev = get_amdgpu_device(kgd); 610 uint32_t data; 611 612 mutex_lock(&adev->grbm_idx_mutex); 613 614 WREG32(mmGRBM_GFX_INDEX, gfx_index_val); 615 WREG32(mmSQ_CMD, sq_cmd); 616 617 /* Restore the GRBM_GFX_INDEX register */ 618 619 data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK | 620 GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK | 621 GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK; 622 623 WREG32(mmGRBM_GFX_INDEX, data); 624 625 mutex_unlock(&adev->grbm_idx_mutex); 626 627 return 0; 628 } 629 630 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, 631 unsigned int watch_point_id, 632 unsigned int reg_offset) 633 { 634 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset]; 635 } 636 637 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd, 638 uint8_t vmid, uint16_t *p_pasid) 639 { 640 uint32_t value; 641 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 642 643 value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); 644 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; 645 646 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); 647 } 648 649 static void set_scratch_backing_va(struct kgd_dev *kgd, 650 uint64_t va, uint32_t vmid) 651 { 652 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 653 654 lock_srbm(kgd, 0, 0, 0, vmid); 655 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va); 656 unlock_srbm(kgd); 657 } 658 659 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, 660 uint64_t page_table_base) 661 { 662 struct amdgpu_device *adev = get_amdgpu_device(kgd); 663 664 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 665 pr_err("trying to set page table base for wrong VMID\n"); 666 return; 667 } 668 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, 669 lower_32_bits(page_table_base)); 670 } 671 672 /** 673 * read_vmid_from_vmfault_reg - read vmid from register 674 * 675 * adev: amdgpu_device pointer 676 * @vmid: vmid pointer 677 * read vmid from register (CIK). 678 */ 679 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd) 680 { 681 struct amdgpu_device *adev = get_amdgpu_device(kgd); 682 683 uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS); 684 685 return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID); 686 } 687 688 const struct kfd2kgd_calls gfx_v7_kfd2kgd = { 689 .program_sh_mem_settings = kgd_program_sh_mem_settings, 690 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, 691 .init_interrupts = kgd_init_interrupts, 692 .hqd_load = kgd_hqd_load, 693 .hqd_sdma_load = kgd_hqd_sdma_load, 694 .hqd_dump = kgd_hqd_dump, 695 .hqd_sdma_dump = kgd_hqd_sdma_dump, 696 .hqd_is_occupied = kgd_hqd_is_occupied, 697 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, 698 .hqd_destroy = kgd_hqd_destroy, 699 .hqd_sdma_destroy = kgd_hqd_sdma_destroy, 700 .address_watch_disable = kgd_address_watch_disable, 701 .address_watch_execute = kgd_address_watch_execute, 702 .wave_control_execute = kgd_wave_control_execute, 703 .address_watch_get_offset = kgd_address_watch_get_offset, 704 .get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info, 705 .set_scratch_backing_va = set_scratch_backing_va, 706 .set_vm_context_page_table_base = set_vm_context_page_table_base, 707 .read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg, 708 }; 709