1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "cikd.h"
26 #include "cik_sdma.h"
27 #include "gfx_v7_0.h"
28 #include "gca/gfx_7_2_d.h"
29 #include "gca/gfx_7_2_enum.h"
30 #include "gca/gfx_7_2_sh_mask.h"
31 #include "oss/oss_2_0_d.h"
32 #include "oss/oss_2_0_sh_mask.h"
33 #include "gmc/gmc_7_1_d.h"
34 #include "gmc/gmc_7_1_sh_mask.h"
35 #include "cik_structs.h"
36 
37 enum hqd_dequeue_request_type {
38 	NO_ACTION = 0,
39 	DRAIN_PIPE,
40 	RESET_WAVES
41 };
42 
43 enum {
44 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
45 	MAX_WATCH_ADDRESSES = 4
46 };
47 
48 enum {
49 	ADDRESS_WATCH_REG_ADDR_HI = 0,
50 	ADDRESS_WATCH_REG_ADDR_LO,
51 	ADDRESS_WATCH_REG_CNTL,
52 	ADDRESS_WATCH_REG_MAX
53 };
54 
55 /*  not defined in the CI/KV reg file  */
56 enum {
57 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
58 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
59 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
60 	/* extend the mask to 26 bits to match the low address field */
61 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
62 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
63 };
64 
65 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
66 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
67 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
68 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
69 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
70 };
71 
72 union TCP_WATCH_CNTL_BITS {
73 	struct {
74 		uint32_t mask:24;
75 		uint32_t vmid:4;
76 		uint32_t atc:1;
77 		uint32_t mode:2;
78 		uint32_t valid:1;
79 	} bitfields, bits;
80 	uint32_t u32All;
81 	signed int i32All;
82 	float f32All;
83 };
84 
85 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
86 {
87 	return (struct amdgpu_device *)kgd;
88 }
89 
90 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
91 			uint32_t queue, uint32_t vmid)
92 {
93 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
94 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
95 
96 	mutex_lock(&adev->srbm_mutex);
97 	WREG32(mmSRBM_GFX_CNTL, value);
98 }
99 
100 static void unlock_srbm(struct kgd_dev *kgd)
101 {
102 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
103 
104 	WREG32(mmSRBM_GFX_CNTL, 0);
105 	mutex_unlock(&adev->srbm_mutex);
106 }
107 
108 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
109 				uint32_t queue_id)
110 {
111 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
112 
113 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
114 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
115 
116 	lock_srbm(kgd, mec, pipe, queue_id, 0);
117 }
118 
119 static void release_queue(struct kgd_dev *kgd)
120 {
121 	unlock_srbm(kgd);
122 }
123 
124 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
125 					uint32_t sh_mem_config,
126 					uint32_t sh_mem_ape1_base,
127 					uint32_t sh_mem_ape1_limit,
128 					uint32_t sh_mem_bases)
129 {
130 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
131 
132 	lock_srbm(kgd, 0, 0, 0, vmid);
133 
134 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
135 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
136 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
137 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
138 
139 	unlock_srbm(kgd);
140 }
141 
142 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
143 					unsigned int vmid)
144 {
145 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
146 
147 	/*
148 	 * We have to assume that there is no outstanding mapping.
149 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
150 	 * a mapping is in progress or because a mapping finished and the
151 	 * SW cleared it. So the protocol is to always wait & clear.
152 	 */
153 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
154 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
155 
156 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
157 
158 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
159 		cpu_relax();
160 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
161 
162 	/* Mapping vmid to pasid also for IH block */
163 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
164 
165 	return 0;
166 }
167 
168 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
169 {
170 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
171 	uint32_t mec;
172 	uint32_t pipe;
173 
174 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
175 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
176 
177 	lock_srbm(kgd, mec, pipe, 0, 0);
178 
179 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
180 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
181 
182 	unlock_srbm(kgd);
183 
184 	return 0;
185 }
186 
187 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
188 {
189 	uint32_t retval;
190 
191 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
192 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
193 
194 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
195 			m->sdma_engine_id, m->sdma_queue_id, retval);
196 
197 	return retval;
198 }
199 
200 static inline struct cik_mqd *get_mqd(void *mqd)
201 {
202 	return (struct cik_mqd *)mqd;
203 }
204 
205 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
206 {
207 	return (struct cik_sdma_rlc_registers *)mqd;
208 }
209 
210 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
211 			uint32_t queue_id, uint32_t __user *wptr,
212 			uint32_t wptr_shift, uint32_t wptr_mask,
213 			struct mm_struct *mm)
214 {
215 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
216 	struct cik_mqd *m;
217 	uint32_t *mqd_hqd;
218 	uint32_t reg, wptr_val, data;
219 	bool valid_wptr = false;
220 
221 	m = get_mqd(mqd);
222 
223 	acquire_queue(kgd, pipe_id, queue_id);
224 
225 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
226 	mqd_hqd = &m->cp_mqd_base_addr_lo;
227 
228 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
229 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
230 
231 	/* Copy userspace write pointer value to register.
232 	 * Activate doorbell logic to monitor subsequent changes.
233 	 */
234 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
235 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
236 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
237 
238 	/* read_user_ptr may take the mm->mmap_lock.
239 	 * release srbm_mutex to avoid circular dependency between
240 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
241 	 */
242 	release_queue(kgd);
243 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
244 	acquire_queue(kgd, pipe_id, queue_id);
245 	if (valid_wptr)
246 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
247 
248 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
249 	WREG32(mmCP_HQD_ACTIVE, data);
250 
251 	release_queue(kgd);
252 
253 	return 0;
254 }
255 
256 static int kgd_hqd_dump(struct kgd_dev *kgd,
257 			uint32_t pipe_id, uint32_t queue_id,
258 			uint32_t (**dump)[2], uint32_t *n_regs)
259 {
260 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
261 	uint32_t i = 0, reg;
262 #define HQD_N_REGS (35+4)
263 #define DUMP_REG(addr) do {				\
264 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
265 			break;				\
266 		(*dump)[i][0] = (addr) << 2;		\
267 		(*dump)[i++][1] = RREG32(addr);		\
268 	} while (0)
269 
270 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
271 	if (*dump == NULL)
272 		return -ENOMEM;
273 
274 	acquire_queue(kgd, pipe_id, queue_id);
275 
276 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
277 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
278 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
279 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
280 
281 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
282 		DUMP_REG(reg);
283 
284 	release_queue(kgd);
285 
286 	WARN_ON_ONCE(i != HQD_N_REGS);
287 	*n_regs = i;
288 
289 	return 0;
290 }
291 
292 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
293 			     uint32_t __user *wptr, struct mm_struct *mm)
294 {
295 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
296 	struct cik_sdma_rlc_registers *m;
297 	unsigned long end_jiffies;
298 	uint32_t sdma_rlc_reg_offset;
299 	uint32_t data;
300 
301 	m = get_sdma_mqd(mqd);
302 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
303 
304 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
305 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
306 
307 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
308 	while (true) {
309 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
310 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
311 			break;
312 		if (time_after(jiffies, end_jiffies)) {
313 			pr_err("SDMA RLC not idle in %s\n", __func__);
314 			return -ETIME;
315 		}
316 		usleep_range(500, 1000);
317 	}
318 
319 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
320 			     ENABLE, 1);
321 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
322 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
323 				m->sdma_rlc_rb_rptr);
324 
325 	if (read_user_wptr(mm, wptr, data))
326 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
327 	else
328 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
329 		       m->sdma_rlc_rb_rptr);
330 
331 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
332 				m->sdma_rlc_virtual_addr);
333 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
334 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
335 			m->sdma_rlc_rb_base_hi);
336 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
337 			m->sdma_rlc_rb_rptr_addr_lo);
338 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
339 			m->sdma_rlc_rb_rptr_addr_hi);
340 
341 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
342 			     RB_ENABLE, 1);
343 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
344 
345 	return 0;
346 }
347 
348 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
349 			     uint32_t engine_id, uint32_t queue_id,
350 			     uint32_t (**dump)[2], uint32_t *n_regs)
351 {
352 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
353 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
354 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
355 	uint32_t i = 0, reg;
356 #undef HQD_N_REGS
357 #define HQD_N_REGS (19+4)
358 
359 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
360 	if (*dump == NULL)
361 		return -ENOMEM;
362 
363 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
364 		DUMP_REG(sdma_offset + reg);
365 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
366 	     reg++)
367 		DUMP_REG(sdma_offset + reg);
368 
369 	WARN_ON_ONCE(i != HQD_N_REGS);
370 	*n_regs = i;
371 
372 	return 0;
373 }
374 
375 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
376 				uint32_t pipe_id, uint32_t queue_id)
377 {
378 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
379 	uint32_t act;
380 	bool retval = false;
381 	uint32_t low, high;
382 
383 	acquire_queue(kgd, pipe_id, queue_id);
384 	act = RREG32(mmCP_HQD_ACTIVE);
385 	if (act) {
386 		low = lower_32_bits(queue_address >> 8);
387 		high = upper_32_bits(queue_address >> 8);
388 
389 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
390 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
391 			retval = true;
392 	}
393 	release_queue(kgd);
394 	return retval;
395 }
396 
397 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
398 {
399 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
400 	struct cik_sdma_rlc_registers *m;
401 	uint32_t sdma_rlc_reg_offset;
402 	uint32_t sdma_rlc_rb_cntl;
403 
404 	m = get_sdma_mqd(mqd);
405 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
406 
407 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
408 
409 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
410 		return true;
411 
412 	return false;
413 }
414 
415 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
416 				enum kfd_preempt_type reset_type,
417 				unsigned int utimeout, uint32_t pipe_id,
418 				uint32_t queue_id)
419 {
420 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
421 	uint32_t temp;
422 	enum hqd_dequeue_request_type type;
423 	unsigned long flags, end_jiffies;
424 	int retry;
425 
426 	if (amdgpu_in_reset(adev))
427 		return -EIO;
428 
429 	acquire_queue(kgd, pipe_id, queue_id);
430 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
431 
432 	switch (reset_type) {
433 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
434 		type = DRAIN_PIPE;
435 		break;
436 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
437 		type = RESET_WAVES;
438 		break;
439 	default:
440 		type = DRAIN_PIPE;
441 		break;
442 	}
443 
444 	/* Workaround: If IQ timer is active and the wait time is close to or
445 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
446 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
447 	 * cleared before continuing. Also, ensure wait times are set to at
448 	 * least 0x3.
449 	 */
450 	local_irq_save(flags);
451 	preempt_disable();
452 	retry = 5000; /* wait for 500 usecs at maximum */
453 	while (true) {
454 		temp = RREG32(mmCP_HQD_IQ_TIMER);
455 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
456 			pr_debug("HW is processing IQ\n");
457 			goto loop;
458 		}
459 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
460 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
461 					== 3) /* SEM-rearm is safe */
462 				break;
463 			/* Wait time 3 is safe for CP, but our MMIO read/write
464 			 * time is close to 1 microsecond, so check for 10 to
465 			 * leave more buffer room
466 			 */
467 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
468 					>= 10)
469 				break;
470 			pr_debug("IQ timer is active\n");
471 		} else
472 			break;
473 loop:
474 		if (!retry) {
475 			pr_err("CP HQD IQ timer status time out\n");
476 			break;
477 		}
478 		ndelay(100);
479 		--retry;
480 	}
481 	retry = 1000;
482 	while (true) {
483 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
484 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
485 			break;
486 		pr_debug("Dequeue request is pending\n");
487 
488 		if (!retry) {
489 			pr_err("CP HQD dequeue request time out\n");
490 			break;
491 		}
492 		ndelay(100);
493 		--retry;
494 	}
495 	local_irq_restore(flags);
496 	preempt_enable();
497 
498 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
499 
500 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
501 	while (true) {
502 		temp = RREG32(mmCP_HQD_ACTIVE);
503 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
504 			break;
505 		if (time_after(jiffies, end_jiffies)) {
506 			pr_err("cp queue preemption time out\n");
507 			release_queue(kgd);
508 			return -ETIME;
509 		}
510 		usleep_range(500, 1000);
511 	}
512 
513 	release_queue(kgd);
514 	return 0;
515 }
516 
517 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
518 				unsigned int utimeout)
519 {
520 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
521 	struct cik_sdma_rlc_registers *m;
522 	uint32_t sdma_rlc_reg_offset;
523 	uint32_t temp;
524 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
525 
526 	m = get_sdma_mqd(mqd);
527 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
528 
529 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
530 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
531 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
532 
533 	while (true) {
534 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
535 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
536 			break;
537 		if (time_after(jiffies, end_jiffies)) {
538 			pr_err("SDMA RLC not idle in %s\n", __func__);
539 			return -ETIME;
540 		}
541 		usleep_range(500, 1000);
542 	}
543 
544 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
545 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
546 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
547 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
548 
549 	m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
550 
551 	return 0;
552 }
553 
554 static int kgd_address_watch_disable(struct kgd_dev *kgd)
555 {
556 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
557 	union TCP_WATCH_CNTL_BITS cntl;
558 	unsigned int i;
559 
560 	cntl.u32All = 0;
561 
562 	cntl.bitfields.valid = 0;
563 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
564 	cntl.bitfields.atc = 1;
565 
566 	/* Turning off this address until we set all the registers */
567 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
568 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
569 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
570 
571 	return 0;
572 }
573 
574 static int kgd_address_watch_execute(struct kgd_dev *kgd,
575 					unsigned int watch_point_id,
576 					uint32_t cntl_val,
577 					uint32_t addr_hi,
578 					uint32_t addr_lo)
579 {
580 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
581 	union TCP_WATCH_CNTL_BITS cntl;
582 
583 	cntl.u32All = cntl_val;
584 
585 	/* Turning off this watch point until we set all the registers */
586 	cntl.bitfields.valid = 0;
587 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
588 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
589 
590 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
591 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
592 
593 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
594 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
595 
596 	/* Enable the watch point */
597 	cntl.bitfields.valid = 1;
598 
599 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
600 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
601 
602 	return 0;
603 }
604 
605 static int kgd_wave_control_execute(struct kgd_dev *kgd,
606 					uint32_t gfx_index_val,
607 					uint32_t sq_cmd)
608 {
609 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
610 	uint32_t data;
611 
612 	mutex_lock(&adev->grbm_idx_mutex);
613 
614 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
615 	WREG32(mmSQ_CMD, sq_cmd);
616 
617 	/*  Restore the GRBM_GFX_INDEX register  */
618 
619 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
620 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
621 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
622 
623 	WREG32(mmGRBM_GFX_INDEX, data);
624 
625 	mutex_unlock(&adev->grbm_idx_mutex);
626 
627 	return 0;
628 }
629 
630 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
631 					unsigned int watch_point_id,
632 					unsigned int reg_offset)
633 {
634 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
635 }
636 
637 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
638 					uint8_t vmid, uint16_t *p_pasid)
639 {
640 	uint32_t value;
641 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
642 
643 	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
644 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
645 
646 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
647 }
648 
649 static void set_scratch_backing_va(struct kgd_dev *kgd,
650 					uint64_t va, uint32_t vmid)
651 {
652 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
653 
654 	lock_srbm(kgd, 0, 0, 0, vmid);
655 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
656 	unlock_srbm(kgd);
657 }
658 
659 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
660 			uint64_t page_table_base)
661 {
662 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
663 
664 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
665 		pr_err("trying to set page table base for wrong VMID\n");
666 		return;
667 	}
668 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
669 		lower_32_bits(page_table_base));
670 }
671 
672  /**
673   * read_vmid_from_vmfault_reg - read vmid from register
674   *
675   * adev: amdgpu_device pointer
676   * @vmid: vmid pointer
677   * read vmid from register (CIK).
678   */
679 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
680 {
681 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
682 
683 	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
684 
685 	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
686 }
687 
688 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
689 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
690 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
691 	.init_interrupts = kgd_init_interrupts,
692 	.hqd_load = kgd_hqd_load,
693 	.hqd_sdma_load = kgd_hqd_sdma_load,
694 	.hqd_dump = kgd_hqd_dump,
695 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
696 	.hqd_is_occupied = kgd_hqd_is_occupied,
697 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
698 	.hqd_destroy = kgd_hqd_destroy,
699 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
700 	.address_watch_disable = kgd_address_watch_disable,
701 	.address_watch_execute = kgd_address_watch_execute,
702 	.wave_control_execute = kgd_wave_control_execute,
703 	.address_watch_get_offset = kgd_address_watch_get_offset,
704 	.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
705 	.set_scratch_backing_va = set_scratch_backing_va,
706 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
707 	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
708 };
709