xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd_gfx_v7.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <linux/mmu_context.h>
27 #include <drm/drmP.h>
28 #include "amdgpu.h"
29 #include "amdgpu_amdkfd.h"
30 #include "cikd.h"
31 #include "cik_sdma.h"
32 #include "amdgpu_ucode.h"
33 #include "gfx_v7_0.h"
34 #include "gca/gfx_7_2_d.h"
35 #include "gca/gfx_7_2_enum.h"
36 #include "gca/gfx_7_2_sh_mask.h"
37 #include "oss/oss_2_0_d.h"
38 #include "oss/oss_2_0_sh_mask.h"
39 #include "gmc/gmc_7_1_d.h"
40 #include "gmc/gmc_7_1_sh_mask.h"
41 #include "cik_structs.h"
42 
43 enum hqd_dequeue_request_type {
44 	NO_ACTION = 0,
45 	DRAIN_PIPE,
46 	RESET_WAVES
47 };
48 
49 enum {
50 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
51 	MAX_WATCH_ADDRESSES = 4
52 };
53 
54 enum {
55 	ADDRESS_WATCH_REG_ADDR_HI = 0,
56 	ADDRESS_WATCH_REG_ADDR_LO,
57 	ADDRESS_WATCH_REG_CNTL,
58 	ADDRESS_WATCH_REG_MAX
59 };
60 
61 /*  not defined in the CI/KV reg file  */
62 enum {
63 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
64 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
65 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
66 	/* extend the mask to 26 bits to match the low address field */
67 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
68 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
69 };
70 
71 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
72 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
73 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
74 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
75 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
76 };
77 
78 union TCP_WATCH_CNTL_BITS {
79 	struct {
80 		uint32_t mask:24;
81 		uint32_t vmid:4;
82 		uint32_t atc:1;
83 		uint32_t mode:2;
84 		uint32_t valid:1;
85 	} bitfields, bits;
86 	uint32_t u32All;
87 	signed int i32All;
88 	float f32All;
89 };
90 
91 /*
92  * Register access functions
93  */
94 
95 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
96 		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
97 		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
98 
99 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
100 					unsigned int vmid);
101 
102 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
103 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
104 			uint32_t queue_id, uint32_t __user *wptr,
105 			uint32_t wptr_shift, uint32_t wptr_mask,
106 			struct mm_struct *mm);
107 static int kgd_hqd_dump(struct kgd_dev *kgd,
108 			uint32_t pipe_id, uint32_t queue_id,
109 			uint32_t (**dump)[2], uint32_t *n_regs);
110 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
111 			     uint32_t __user *wptr, struct mm_struct *mm);
112 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
113 			     uint32_t engine_id, uint32_t queue_id,
114 			     uint32_t (**dump)[2], uint32_t *n_regs);
115 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
116 				uint32_t pipe_id, uint32_t queue_id);
117 
118 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
119 				enum kfd_preempt_type reset_type,
120 				unsigned int utimeout, uint32_t pipe_id,
121 				uint32_t queue_id);
122 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
123 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
124 				unsigned int utimeout);
125 static int kgd_address_watch_disable(struct kgd_dev *kgd);
126 static int kgd_address_watch_execute(struct kgd_dev *kgd,
127 					unsigned int watch_point_id,
128 					uint32_t cntl_val,
129 					uint32_t addr_hi,
130 					uint32_t addr_lo);
131 static int kgd_wave_control_execute(struct kgd_dev *kgd,
132 					uint32_t gfx_index_val,
133 					uint32_t sq_cmd);
134 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
135 					unsigned int watch_point_id,
136 					unsigned int reg_offset);
137 
138 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
139 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
140 							uint8_t vmid);
141 
142 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
143 static void set_scratch_backing_va(struct kgd_dev *kgd,
144 					uint64_t va, uint32_t vmid);
145 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
146 		uint64_t page_table_base);
147 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
148 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
149 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd);
150 
151 /* Because of REG_GET_FIELD() being used, we put this function in the
152  * asic specific file.
153  */
154 static int get_tile_config(struct kgd_dev *kgd,
155 		struct tile_config *config)
156 {
157 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
158 
159 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
160 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
161 				MC_ARB_RAMCFG, NOOFBANK);
162 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
163 				MC_ARB_RAMCFG, NOOFRANKS);
164 
165 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
166 	config->num_tile_configs =
167 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
168 	config->macro_tile_config_ptr =
169 			adev->gfx.config.macrotile_mode_array;
170 	config->num_macro_tile_configs =
171 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
172 
173 	return 0;
174 }
175 
176 static const struct kfd2kgd_calls kfd2kgd = {
177 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
178 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
179 	.init_interrupts = kgd_init_interrupts,
180 	.hqd_load = kgd_hqd_load,
181 	.hqd_sdma_load = kgd_hqd_sdma_load,
182 	.hqd_dump = kgd_hqd_dump,
183 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
184 	.hqd_is_occupied = kgd_hqd_is_occupied,
185 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
186 	.hqd_destroy = kgd_hqd_destroy,
187 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
188 	.address_watch_disable = kgd_address_watch_disable,
189 	.address_watch_execute = kgd_address_watch_execute,
190 	.wave_control_execute = kgd_wave_control_execute,
191 	.address_watch_get_offset = kgd_address_watch_get_offset,
192 	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
193 	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
194 	.get_fw_version = get_fw_version,
195 	.set_scratch_backing_va = set_scratch_backing_va,
196 	.get_tile_config = get_tile_config,
197 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
198 	.invalidate_tlbs = invalidate_tlbs,
199 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
200 	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
201 };
202 
203 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
204 {
205 	return (struct kfd2kgd_calls *)&kfd2kgd;
206 }
207 
208 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
209 {
210 	return (struct amdgpu_device *)kgd;
211 }
212 
213 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
214 			uint32_t queue, uint32_t vmid)
215 {
216 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
217 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
218 
219 	mutex_lock(&adev->srbm_mutex);
220 	WREG32(mmSRBM_GFX_CNTL, value);
221 }
222 
223 static void unlock_srbm(struct kgd_dev *kgd)
224 {
225 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
226 
227 	WREG32(mmSRBM_GFX_CNTL, 0);
228 	mutex_unlock(&adev->srbm_mutex);
229 }
230 
231 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
232 				uint32_t queue_id)
233 {
234 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
235 
236 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
237 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
238 
239 	lock_srbm(kgd, mec, pipe, queue_id, 0);
240 }
241 
242 static void release_queue(struct kgd_dev *kgd)
243 {
244 	unlock_srbm(kgd);
245 }
246 
247 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
248 					uint32_t sh_mem_config,
249 					uint32_t sh_mem_ape1_base,
250 					uint32_t sh_mem_ape1_limit,
251 					uint32_t sh_mem_bases)
252 {
253 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
254 
255 	lock_srbm(kgd, 0, 0, 0, vmid);
256 
257 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
258 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
259 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
260 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
261 
262 	unlock_srbm(kgd);
263 }
264 
265 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
266 					unsigned int vmid)
267 {
268 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
269 
270 	/*
271 	 * We have to assume that there is no outstanding mapping.
272 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
273 	 * a mapping is in progress or because a mapping finished and the
274 	 * SW cleared it. So the protocol is to always wait & clear.
275 	 */
276 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
277 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
278 
279 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
280 
281 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
282 		cpu_relax();
283 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
284 
285 	/* Mapping vmid to pasid also for IH block */
286 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
287 
288 	return 0;
289 }
290 
291 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
292 {
293 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
294 	uint32_t mec;
295 	uint32_t pipe;
296 
297 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
298 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
299 
300 	lock_srbm(kgd, mec, pipe, 0, 0);
301 
302 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
303 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
304 
305 	unlock_srbm(kgd);
306 
307 	return 0;
308 }
309 
310 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
311 {
312 	uint32_t retval;
313 
314 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
315 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
316 
317 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
318 
319 	return retval;
320 }
321 
322 static inline struct cik_mqd *get_mqd(void *mqd)
323 {
324 	return (struct cik_mqd *)mqd;
325 }
326 
327 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
328 {
329 	return (struct cik_sdma_rlc_registers *)mqd;
330 }
331 
332 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
333 			uint32_t queue_id, uint32_t __user *wptr,
334 			uint32_t wptr_shift, uint32_t wptr_mask,
335 			struct mm_struct *mm)
336 {
337 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
338 	struct cik_mqd *m;
339 	uint32_t *mqd_hqd;
340 	uint32_t reg, wptr_val, data;
341 	bool valid_wptr = false;
342 
343 	m = get_mqd(mqd);
344 
345 	acquire_queue(kgd, pipe_id, queue_id);
346 
347 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
348 	mqd_hqd = &m->cp_mqd_base_addr_lo;
349 
350 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
351 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
352 
353 	/* Copy userspace write pointer value to register.
354 	 * Activate doorbell logic to monitor subsequent changes.
355 	 */
356 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
357 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
358 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
359 
360 	/* read_user_ptr may take the mm->mmap_sem.
361 	 * release srbm_mutex to avoid circular dependency between
362 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
363 	 */
364 	release_queue(kgd);
365 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
366 	acquire_queue(kgd, pipe_id, queue_id);
367 	if (valid_wptr)
368 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
369 
370 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
371 	WREG32(mmCP_HQD_ACTIVE, data);
372 
373 	release_queue(kgd);
374 
375 	return 0;
376 }
377 
378 static int kgd_hqd_dump(struct kgd_dev *kgd,
379 			uint32_t pipe_id, uint32_t queue_id,
380 			uint32_t (**dump)[2], uint32_t *n_regs)
381 {
382 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
383 	uint32_t i = 0, reg;
384 #define HQD_N_REGS (35+4)
385 #define DUMP_REG(addr) do {				\
386 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
387 			break;				\
388 		(*dump)[i][0] = (addr) << 2;		\
389 		(*dump)[i++][1] = RREG32(addr);		\
390 	} while (0)
391 
392 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
393 	if (*dump == NULL)
394 		return -ENOMEM;
395 
396 	acquire_queue(kgd, pipe_id, queue_id);
397 
398 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
399 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
400 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
401 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
402 
403 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
404 		DUMP_REG(reg);
405 
406 	release_queue(kgd);
407 
408 	WARN_ON_ONCE(i != HQD_N_REGS);
409 	*n_regs = i;
410 
411 	return 0;
412 }
413 
414 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
415 			     uint32_t __user *wptr, struct mm_struct *mm)
416 {
417 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
418 	struct cik_sdma_rlc_registers *m;
419 	unsigned long end_jiffies;
420 	uint32_t sdma_base_addr;
421 	uint32_t data;
422 
423 	m = get_sdma_mqd(mqd);
424 	sdma_base_addr = get_sdma_base_addr(m);
425 
426 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
427 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
428 
429 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
430 	while (true) {
431 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
432 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
433 			break;
434 		if (time_after(jiffies, end_jiffies))
435 			return -ETIME;
436 		usleep_range(500, 1000);
437 	}
438 	if (m->sdma_engine_id) {
439 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
440 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
441 				RESUME_CTX, 0);
442 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
443 	} else {
444 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
445 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
446 				RESUME_CTX, 0);
447 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
448 	}
449 
450 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
451 			     ENABLE, 1);
452 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
453 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
454 
455 	if (read_user_wptr(mm, wptr, data))
456 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
457 	else
458 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
459 		       m->sdma_rlc_rb_rptr);
460 
461 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
462 				m->sdma_rlc_virtual_addr);
463 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
464 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
465 			m->sdma_rlc_rb_base_hi);
466 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
467 			m->sdma_rlc_rb_rptr_addr_lo);
468 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
469 			m->sdma_rlc_rb_rptr_addr_hi);
470 
471 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
472 			     RB_ENABLE, 1);
473 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
474 
475 	return 0;
476 }
477 
478 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
479 			     uint32_t engine_id, uint32_t queue_id,
480 			     uint32_t (**dump)[2], uint32_t *n_regs)
481 {
482 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
483 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
484 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
485 	uint32_t i = 0, reg;
486 #undef HQD_N_REGS
487 #define HQD_N_REGS (19+4)
488 
489 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
490 	if (*dump == NULL)
491 		return -ENOMEM;
492 
493 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
494 		DUMP_REG(sdma_offset + reg);
495 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
496 	     reg++)
497 		DUMP_REG(sdma_offset + reg);
498 
499 	WARN_ON_ONCE(i != HQD_N_REGS);
500 	*n_regs = i;
501 
502 	return 0;
503 }
504 
505 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
506 				uint32_t pipe_id, uint32_t queue_id)
507 {
508 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
509 	uint32_t act;
510 	bool retval = false;
511 	uint32_t low, high;
512 
513 	acquire_queue(kgd, pipe_id, queue_id);
514 	act = RREG32(mmCP_HQD_ACTIVE);
515 	if (act) {
516 		low = lower_32_bits(queue_address >> 8);
517 		high = upper_32_bits(queue_address >> 8);
518 
519 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
520 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
521 			retval = true;
522 	}
523 	release_queue(kgd);
524 	return retval;
525 }
526 
527 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
528 {
529 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
530 	struct cik_sdma_rlc_registers *m;
531 	uint32_t sdma_base_addr;
532 	uint32_t sdma_rlc_rb_cntl;
533 
534 	m = get_sdma_mqd(mqd);
535 	sdma_base_addr = get_sdma_base_addr(m);
536 
537 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
538 
539 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
540 		return true;
541 
542 	return false;
543 }
544 
545 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
546 				enum kfd_preempt_type reset_type,
547 				unsigned int utimeout, uint32_t pipe_id,
548 				uint32_t queue_id)
549 {
550 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
551 	uint32_t temp;
552 	enum hqd_dequeue_request_type type;
553 	unsigned long flags, end_jiffies;
554 	int retry;
555 
556 	if (adev->in_gpu_reset)
557 		return -EIO;
558 
559 	acquire_queue(kgd, pipe_id, queue_id);
560 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
561 
562 	switch (reset_type) {
563 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
564 		type = DRAIN_PIPE;
565 		break;
566 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
567 		type = RESET_WAVES;
568 		break;
569 	default:
570 		type = DRAIN_PIPE;
571 		break;
572 	}
573 
574 	/* Workaround: If IQ timer is active and the wait time is close to or
575 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
576 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
577 	 * cleared before continuing. Also, ensure wait times are set to at
578 	 * least 0x3.
579 	 */
580 	local_irq_save(flags);
581 	preempt_disable();
582 	retry = 5000; /* wait for 500 usecs at maximum */
583 	while (true) {
584 		temp = RREG32(mmCP_HQD_IQ_TIMER);
585 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
586 			pr_debug("HW is processing IQ\n");
587 			goto loop;
588 		}
589 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
590 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
591 					== 3) /* SEM-rearm is safe */
592 				break;
593 			/* Wait time 3 is safe for CP, but our MMIO read/write
594 			 * time is close to 1 microsecond, so check for 10 to
595 			 * leave more buffer room
596 			 */
597 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
598 					>= 10)
599 				break;
600 			pr_debug("IQ timer is active\n");
601 		} else
602 			break;
603 loop:
604 		if (!retry) {
605 			pr_err("CP HQD IQ timer status time out\n");
606 			break;
607 		}
608 		ndelay(100);
609 		--retry;
610 	}
611 	retry = 1000;
612 	while (true) {
613 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
614 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
615 			break;
616 		pr_debug("Dequeue request is pending\n");
617 
618 		if (!retry) {
619 			pr_err("CP HQD dequeue request time out\n");
620 			break;
621 		}
622 		ndelay(100);
623 		--retry;
624 	}
625 	local_irq_restore(flags);
626 	preempt_enable();
627 
628 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
629 
630 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
631 	while (true) {
632 		temp = RREG32(mmCP_HQD_ACTIVE);
633 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
634 			break;
635 		if (time_after(jiffies, end_jiffies)) {
636 			pr_err("cp queue preemption time out\n");
637 			release_queue(kgd);
638 			return -ETIME;
639 		}
640 		usleep_range(500, 1000);
641 	}
642 
643 	release_queue(kgd);
644 	return 0;
645 }
646 
647 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
648 				unsigned int utimeout)
649 {
650 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
651 	struct cik_sdma_rlc_registers *m;
652 	uint32_t sdma_base_addr;
653 	uint32_t temp;
654 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
655 
656 	m = get_sdma_mqd(mqd);
657 	sdma_base_addr = get_sdma_base_addr(m);
658 
659 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
660 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
661 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
662 
663 	while (true) {
664 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
665 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
666 			break;
667 		if (time_after(jiffies, end_jiffies))
668 			return -ETIME;
669 		usleep_range(500, 1000);
670 	}
671 
672 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
673 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
674 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
675 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
676 
677 	m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
678 
679 	return 0;
680 }
681 
682 static int kgd_address_watch_disable(struct kgd_dev *kgd)
683 {
684 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
685 	union TCP_WATCH_CNTL_BITS cntl;
686 	unsigned int i;
687 
688 	cntl.u32All = 0;
689 
690 	cntl.bitfields.valid = 0;
691 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
692 	cntl.bitfields.atc = 1;
693 
694 	/* Turning off this address until we set all the registers */
695 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
696 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
697 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
698 
699 	return 0;
700 }
701 
702 static int kgd_address_watch_execute(struct kgd_dev *kgd,
703 					unsigned int watch_point_id,
704 					uint32_t cntl_val,
705 					uint32_t addr_hi,
706 					uint32_t addr_lo)
707 {
708 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
709 	union TCP_WATCH_CNTL_BITS cntl;
710 
711 	cntl.u32All = cntl_val;
712 
713 	/* Turning off this watch point until we set all the registers */
714 	cntl.bitfields.valid = 0;
715 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
716 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
717 
718 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
719 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
720 
721 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
722 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
723 
724 	/* Enable the watch point */
725 	cntl.bitfields.valid = 1;
726 
727 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
728 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
729 
730 	return 0;
731 }
732 
733 static int kgd_wave_control_execute(struct kgd_dev *kgd,
734 					uint32_t gfx_index_val,
735 					uint32_t sq_cmd)
736 {
737 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
738 	uint32_t data;
739 
740 	mutex_lock(&adev->grbm_idx_mutex);
741 
742 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
743 	WREG32(mmSQ_CMD, sq_cmd);
744 
745 	/*  Restore the GRBM_GFX_INDEX register  */
746 
747 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
748 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
749 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
750 
751 	WREG32(mmGRBM_GFX_INDEX, data);
752 
753 	mutex_unlock(&adev->grbm_idx_mutex);
754 
755 	return 0;
756 }
757 
758 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
759 					unsigned int watch_point_id,
760 					unsigned int reg_offset)
761 {
762 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
763 }
764 
765 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
766 							uint8_t vmid)
767 {
768 	uint32_t reg;
769 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
770 
771 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
772 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
773 }
774 
775 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
776 								uint8_t vmid)
777 {
778 	uint32_t reg;
779 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
780 
781 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
782 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
783 }
784 
785 static void set_scratch_backing_va(struct kgd_dev *kgd,
786 					uint64_t va, uint32_t vmid)
787 {
788 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
789 
790 	lock_srbm(kgd, 0, 0, 0, vmid);
791 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
792 	unlock_srbm(kgd);
793 }
794 
795 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
796 {
797 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
798 	const union amdgpu_firmware_header *hdr;
799 
800 	switch (type) {
801 	case KGD_ENGINE_PFP:
802 		hdr = (const union amdgpu_firmware_header *)
803 						adev->gfx.pfp_fw->data;
804 		break;
805 
806 	case KGD_ENGINE_ME:
807 		hdr = (const union amdgpu_firmware_header *)
808 						adev->gfx.me_fw->data;
809 		break;
810 
811 	case KGD_ENGINE_CE:
812 		hdr = (const union amdgpu_firmware_header *)
813 						adev->gfx.ce_fw->data;
814 		break;
815 
816 	case KGD_ENGINE_MEC1:
817 		hdr = (const union amdgpu_firmware_header *)
818 						adev->gfx.mec_fw->data;
819 		break;
820 
821 	case KGD_ENGINE_MEC2:
822 		hdr = (const union amdgpu_firmware_header *)
823 						adev->gfx.mec2_fw->data;
824 		break;
825 
826 	case KGD_ENGINE_RLC:
827 		hdr = (const union amdgpu_firmware_header *)
828 						adev->gfx.rlc_fw->data;
829 		break;
830 
831 	case KGD_ENGINE_SDMA1:
832 		hdr = (const union amdgpu_firmware_header *)
833 						adev->sdma.instance[0].fw->data;
834 		break;
835 
836 	case KGD_ENGINE_SDMA2:
837 		hdr = (const union amdgpu_firmware_header *)
838 						adev->sdma.instance[1].fw->data;
839 		break;
840 
841 	default:
842 		return 0;
843 	}
844 
845 	if (hdr == NULL)
846 		return 0;
847 
848 	/* Only 12 bit in use*/
849 	return hdr->common.ucode_version;
850 }
851 
852 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
853 			uint64_t page_table_base)
854 {
855 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
856 
857 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
858 		pr_err("trying to set page table base for wrong VMID\n");
859 		return;
860 	}
861 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
862 		lower_32_bits(page_table_base));
863 }
864 
865 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
866 {
867 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
868 	int vmid;
869 	unsigned int tmp;
870 
871 	if (adev->in_gpu_reset)
872 		return -EIO;
873 
874 	for (vmid = 0; vmid < 16; vmid++) {
875 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
876 			continue;
877 
878 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
879 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
880 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
881 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
882 			RREG32(mmVM_INVALIDATE_RESPONSE);
883 			break;
884 		}
885 	}
886 
887 	return 0;
888 }
889 
890 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
891 {
892 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
893 
894 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
895 		pr_err("non kfd vmid\n");
896 		return 0;
897 	}
898 
899 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
900 	RREG32(mmVM_INVALIDATE_RESPONSE);
901 	return 0;
902 }
903 
904  /**
905   * read_vmid_from_vmfault_reg - read vmid from register
906   *
907   * adev: amdgpu_device pointer
908   * @vmid: vmid pointer
909   * read vmid from register (CIK).
910   */
911 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
912 {
913 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
914 
915 	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
916 
917 	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
918 }
919