1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/fdtable.h>
24 #include <linux/uaccess.h>
25 #include <linux/firmware.h>
26 #include <drm/drmP.h>
27 #include "amdgpu.h"
28 #include "amdgpu_amdkfd.h"
29 #include "cikd.h"
30 #include "cik_sdma.h"
31 #include "amdgpu_ucode.h"
32 #include "gfx_v7_0.h"
33 #include "gca/gfx_7_2_d.h"
34 #include "gca/gfx_7_2_enum.h"
35 #include "gca/gfx_7_2_sh_mask.h"
36 #include "oss/oss_2_0_d.h"
37 #include "oss/oss_2_0_sh_mask.h"
38 #include "gmc/gmc_7_1_d.h"
39 #include "gmc/gmc_7_1_sh_mask.h"
40 #include "cik_structs.h"
41 
42 enum hqd_dequeue_request_type {
43 	NO_ACTION = 0,
44 	DRAIN_PIPE,
45 	RESET_WAVES
46 };
47 
48 enum {
49 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
50 	MAX_WATCH_ADDRESSES = 4
51 };
52 
53 enum {
54 	ADDRESS_WATCH_REG_ADDR_HI = 0,
55 	ADDRESS_WATCH_REG_ADDR_LO,
56 	ADDRESS_WATCH_REG_CNTL,
57 	ADDRESS_WATCH_REG_MAX
58 };
59 
60 /*  not defined in the CI/KV reg file  */
61 enum {
62 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
63 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
64 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
65 	/* extend the mask to 26 bits to match the low address field */
66 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
67 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
68 };
69 
70 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
71 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
72 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
73 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
74 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
75 };
76 
77 union TCP_WATCH_CNTL_BITS {
78 	struct {
79 		uint32_t mask:24;
80 		uint32_t vmid:4;
81 		uint32_t atc:1;
82 		uint32_t mode:2;
83 		uint32_t valid:1;
84 	} bitfields, bits;
85 	uint32_t u32All;
86 	signed int i32All;
87 	float f32All;
88 };
89 
90 /*
91  * Register access functions
92  */
93 
94 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
95 		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
96 		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
97 
98 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
99 					unsigned int vmid);
100 
101 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
102 				uint32_t hpd_size, uint64_t hpd_gpu_addr);
103 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
104 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
105 			uint32_t queue_id, uint32_t __user *wptr,
106 			uint32_t wptr_shift, uint32_t wptr_mask,
107 			struct mm_struct *mm);
108 static int kgd_hqd_dump(struct kgd_dev *kgd,
109 			uint32_t pipe_id, uint32_t queue_id,
110 			uint32_t (**dump)[2], uint32_t *n_regs);
111 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
112 			     uint32_t __user *wptr, struct mm_struct *mm);
113 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
114 			     uint32_t engine_id, uint32_t queue_id,
115 			     uint32_t (**dump)[2], uint32_t *n_regs);
116 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
117 				uint32_t pipe_id, uint32_t queue_id);
118 
119 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
120 				enum kfd_preempt_type reset_type,
121 				unsigned int utimeout, uint32_t pipe_id,
122 				uint32_t queue_id);
123 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
124 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
125 				unsigned int utimeout);
126 static int kgd_address_watch_disable(struct kgd_dev *kgd);
127 static int kgd_address_watch_execute(struct kgd_dev *kgd,
128 					unsigned int watch_point_id,
129 					uint32_t cntl_val,
130 					uint32_t addr_hi,
131 					uint32_t addr_lo);
132 static int kgd_wave_control_execute(struct kgd_dev *kgd,
133 					uint32_t gfx_index_val,
134 					uint32_t sq_cmd);
135 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
136 					unsigned int watch_point_id,
137 					unsigned int reg_offset);
138 
139 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
140 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
141 							uint8_t vmid);
142 
143 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
144 static void set_scratch_backing_va(struct kgd_dev *kgd,
145 					uint64_t va, uint32_t vmid);
146 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
147 		uint32_t page_table_base);
148 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
149 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
150 
151 /* Because of REG_GET_FIELD() being used, we put this function in the
152  * asic specific file.
153  */
154 static int get_tile_config(struct kgd_dev *kgd,
155 		struct tile_config *config)
156 {
157 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
158 
159 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
160 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
161 				MC_ARB_RAMCFG, NOOFBANK);
162 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
163 				MC_ARB_RAMCFG, NOOFRANKS);
164 
165 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
166 	config->num_tile_configs =
167 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
168 	config->macro_tile_config_ptr =
169 			adev->gfx.config.macrotile_mode_array;
170 	config->num_macro_tile_configs =
171 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
172 
173 	return 0;
174 }
175 
176 static const struct kfd2kgd_calls kfd2kgd = {
177 	.init_gtt_mem_allocation = alloc_gtt_mem,
178 	.free_gtt_mem = free_gtt_mem,
179 	.get_local_mem_info = get_local_mem_info,
180 	.get_gpu_clock_counter = get_gpu_clock_counter,
181 	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
182 	.alloc_pasid = amdgpu_pasid_alloc,
183 	.free_pasid = amdgpu_pasid_free,
184 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
185 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
186 	.init_pipeline = kgd_init_pipeline,
187 	.init_interrupts = kgd_init_interrupts,
188 	.hqd_load = kgd_hqd_load,
189 	.hqd_sdma_load = kgd_hqd_sdma_load,
190 	.hqd_dump = kgd_hqd_dump,
191 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
192 	.hqd_is_occupied = kgd_hqd_is_occupied,
193 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
194 	.hqd_destroy = kgd_hqd_destroy,
195 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
196 	.address_watch_disable = kgd_address_watch_disable,
197 	.address_watch_execute = kgd_address_watch_execute,
198 	.wave_control_execute = kgd_wave_control_execute,
199 	.address_watch_get_offset = kgd_address_watch_get_offset,
200 	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
201 	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
202 	.get_fw_version = get_fw_version,
203 	.set_scratch_backing_va = set_scratch_backing_va,
204 	.get_tile_config = get_tile_config,
205 	.get_cu_info = get_cu_info,
206 	.get_vram_usage = amdgpu_amdkfd_get_vram_usage,
207 	.create_process_vm = amdgpu_amdkfd_gpuvm_create_process_vm,
208 	.destroy_process_vm = amdgpu_amdkfd_gpuvm_destroy_process_vm,
209 	.get_process_page_dir = amdgpu_amdkfd_gpuvm_get_process_page_dir,
210 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
211 	.alloc_memory_of_gpu = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu,
212 	.free_memory_of_gpu = amdgpu_amdkfd_gpuvm_free_memory_of_gpu,
213 	.map_memory_to_gpu = amdgpu_amdkfd_gpuvm_map_memory_to_gpu,
214 	.unmap_memory_to_gpu = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu,
215 	.sync_memory = amdgpu_amdkfd_gpuvm_sync_memory,
216 	.map_gtt_bo_to_kernel = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel,
217 	.restore_process_bos = amdgpu_amdkfd_gpuvm_restore_process_bos,
218 	.invalidate_tlbs = invalidate_tlbs,
219 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
220 	.submit_ib = amdgpu_amdkfd_submit_ib,
221 };
222 
223 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
224 {
225 	return (struct kfd2kgd_calls *)&kfd2kgd;
226 }
227 
228 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
229 {
230 	return (struct amdgpu_device *)kgd;
231 }
232 
233 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
234 			uint32_t queue, uint32_t vmid)
235 {
236 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
237 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
238 
239 	mutex_lock(&adev->srbm_mutex);
240 	WREG32(mmSRBM_GFX_CNTL, value);
241 }
242 
243 static void unlock_srbm(struct kgd_dev *kgd)
244 {
245 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
246 
247 	WREG32(mmSRBM_GFX_CNTL, 0);
248 	mutex_unlock(&adev->srbm_mutex);
249 }
250 
251 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
252 				uint32_t queue_id)
253 {
254 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
255 
256 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
257 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
258 
259 	lock_srbm(kgd, mec, pipe, queue_id, 0);
260 }
261 
262 static void release_queue(struct kgd_dev *kgd)
263 {
264 	unlock_srbm(kgd);
265 }
266 
267 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
268 					uint32_t sh_mem_config,
269 					uint32_t sh_mem_ape1_base,
270 					uint32_t sh_mem_ape1_limit,
271 					uint32_t sh_mem_bases)
272 {
273 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
274 
275 	lock_srbm(kgd, 0, 0, 0, vmid);
276 
277 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
278 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
279 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
280 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
281 
282 	unlock_srbm(kgd);
283 }
284 
285 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
286 					unsigned int vmid)
287 {
288 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
289 
290 	/*
291 	 * We have to assume that there is no outstanding mapping.
292 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
293 	 * a mapping is in progress or because a mapping finished and the
294 	 * SW cleared it. So the protocol is to always wait & clear.
295 	 */
296 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
297 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
298 
299 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
300 
301 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
302 		cpu_relax();
303 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
304 
305 	/* Mapping vmid to pasid also for IH block */
306 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
307 
308 	return 0;
309 }
310 
311 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
312 				uint32_t hpd_size, uint64_t hpd_gpu_addr)
313 {
314 	/* amdgpu owns the per-pipe state */
315 	return 0;
316 }
317 
318 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
319 {
320 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
321 	uint32_t mec;
322 	uint32_t pipe;
323 
324 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
325 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
326 
327 	lock_srbm(kgd, mec, pipe, 0, 0);
328 
329 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
330 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
331 
332 	unlock_srbm(kgd);
333 
334 	return 0;
335 }
336 
337 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
338 {
339 	uint32_t retval;
340 
341 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
342 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
343 
344 	pr_debug("kfd: sdma base address: 0x%x\n", retval);
345 
346 	return retval;
347 }
348 
349 static inline struct cik_mqd *get_mqd(void *mqd)
350 {
351 	return (struct cik_mqd *)mqd;
352 }
353 
354 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
355 {
356 	return (struct cik_sdma_rlc_registers *)mqd;
357 }
358 
359 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
360 			uint32_t queue_id, uint32_t __user *wptr,
361 			uint32_t wptr_shift, uint32_t wptr_mask,
362 			struct mm_struct *mm)
363 {
364 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
365 	struct cik_mqd *m;
366 	uint32_t *mqd_hqd;
367 	uint32_t reg, wptr_val, data;
368 	bool valid_wptr = false;
369 
370 	m = get_mqd(mqd);
371 
372 	acquire_queue(kgd, pipe_id, queue_id);
373 
374 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
375 	mqd_hqd = &m->cp_mqd_base_addr_lo;
376 
377 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
378 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
379 
380 	/* Copy userspace write pointer value to register.
381 	 * Activate doorbell logic to monitor subsequent changes.
382 	 */
383 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
384 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
385 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
386 
387 	/* read_user_ptr may take the mm->mmap_sem.
388 	 * release srbm_mutex to avoid circular dependency between
389 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
390 	 */
391 	release_queue(kgd);
392 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
393 	acquire_queue(kgd, pipe_id, queue_id);
394 	if (valid_wptr)
395 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
396 
397 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
398 	WREG32(mmCP_HQD_ACTIVE, data);
399 
400 	release_queue(kgd);
401 
402 	return 0;
403 }
404 
405 static int kgd_hqd_dump(struct kgd_dev *kgd,
406 			uint32_t pipe_id, uint32_t queue_id,
407 			uint32_t (**dump)[2], uint32_t *n_regs)
408 {
409 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
410 	uint32_t i = 0, reg;
411 #define HQD_N_REGS (35+4)
412 #define DUMP_REG(addr) do {				\
413 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
414 			break;				\
415 		(*dump)[i][0] = (addr) << 2;		\
416 		(*dump)[i++][1] = RREG32(addr);		\
417 	} while (0)
418 
419 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
420 	if (*dump == NULL)
421 		return -ENOMEM;
422 
423 	acquire_queue(kgd, pipe_id, queue_id);
424 
425 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
426 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
427 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
428 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
429 
430 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
431 		DUMP_REG(reg);
432 
433 	release_queue(kgd);
434 
435 	WARN_ON_ONCE(i != HQD_N_REGS);
436 	*n_regs = i;
437 
438 	return 0;
439 }
440 
441 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
442 			     uint32_t __user *wptr, struct mm_struct *mm)
443 {
444 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
445 	struct cik_sdma_rlc_registers *m;
446 	unsigned long end_jiffies;
447 	uint32_t sdma_base_addr;
448 	uint32_t data;
449 
450 	m = get_sdma_mqd(mqd);
451 	sdma_base_addr = get_sdma_base_addr(m);
452 
453 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
454 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
455 
456 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
457 	while (true) {
458 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
459 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
460 			break;
461 		if (time_after(jiffies, end_jiffies))
462 			return -ETIME;
463 		usleep_range(500, 1000);
464 	}
465 	if (m->sdma_engine_id) {
466 		data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
467 		data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
468 				RESUME_CTX, 0);
469 		WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
470 	} else {
471 		data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
472 		data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
473 				RESUME_CTX, 0);
474 		WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
475 	}
476 
477 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
478 			     ENABLE, 1);
479 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
480 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
481 
482 	if (read_user_wptr(mm, wptr, data))
483 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
484 	else
485 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
486 		       m->sdma_rlc_rb_rptr);
487 
488 	WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
489 				m->sdma_rlc_virtual_addr);
490 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
491 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
492 			m->sdma_rlc_rb_base_hi);
493 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
494 			m->sdma_rlc_rb_rptr_addr_lo);
495 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
496 			m->sdma_rlc_rb_rptr_addr_hi);
497 
498 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
499 			     RB_ENABLE, 1);
500 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
501 
502 	return 0;
503 }
504 
505 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
506 			     uint32_t engine_id, uint32_t queue_id,
507 			     uint32_t (**dump)[2], uint32_t *n_regs)
508 {
509 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
510 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
511 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
512 	uint32_t i = 0, reg;
513 #undef HQD_N_REGS
514 #define HQD_N_REGS (19+4)
515 
516 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
517 	if (*dump == NULL)
518 		return -ENOMEM;
519 
520 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
521 		DUMP_REG(sdma_offset + reg);
522 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
523 	     reg++)
524 		DUMP_REG(sdma_offset + reg);
525 
526 	WARN_ON_ONCE(i != HQD_N_REGS);
527 	*n_regs = i;
528 
529 	return 0;
530 }
531 
532 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
533 				uint32_t pipe_id, uint32_t queue_id)
534 {
535 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
536 	uint32_t act;
537 	bool retval = false;
538 	uint32_t low, high;
539 
540 	acquire_queue(kgd, pipe_id, queue_id);
541 	act = RREG32(mmCP_HQD_ACTIVE);
542 	if (act) {
543 		low = lower_32_bits(queue_address >> 8);
544 		high = upper_32_bits(queue_address >> 8);
545 
546 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
547 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
548 			retval = true;
549 	}
550 	release_queue(kgd);
551 	return retval;
552 }
553 
554 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
555 {
556 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
557 	struct cik_sdma_rlc_registers *m;
558 	uint32_t sdma_base_addr;
559 	uint32_t sdma_rlc_rb_cntl;
560 
561 	m = get_sdma_mqd(mqd);
562 	sdma_base_addr = get_sdma_base_addr(m);
563 
564 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
565 
566 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
567 		return true;
568 
569 	return false;
570 }
571 
572 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
573 				enum kfd_preempt_type reset_type,
574 				unsigned int utimeout, uint32_t pipe_id,
575 				uint32_t queue_id)
576 {
577 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
578 	uint32_t temp;
579 	enum hqd_dequeue_request_type type;
580 	unsigned long flags, end_jiffies;
581 	int retry;
582 
583 	acquire_queue(kgd, pipe_id, queue_id);
584 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
585 
586 	switch (reset_type) {
587 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
588 		type = DRAIN_PIPE;
589 		break;
590 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
591 		type = RESET_WAVES;
592 		break;
593 	default:
594 		type = DRAIN_PIPE;
595 		break;
596 	}
597 
598 	/* Workaround: If IQ timer is active and the wait time is close to or
599 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
600 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
601 	 * cleared before continuing. Also, ensure wait times are set to at
602 	 * least 0x3.
603 	 */
604 	local_irq_save(flags);
605 	preempt_disable();
606 	retry = 5000; /* wait for 500 usecs at maximum */
607 	while (true) {
608 		temp = RREG32(mmCP_HQD_IQ_TIMER);
609 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
610 			pr_debug("HW is processing IQ\n");
611 			goto loop;
612 		}
613 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
614 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
615 					== 3) /* SEM-rearm is safe */
616 				break;
617 			/* Wait time 3 is safe for CP, but our MMIO read/write
618 			 * time is close to 1 microsecond, so check for 10 to
619 			 * leave more buffer room
620 			 */
621 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
622 					>= 10)
623 				break;
624 			pr_debug("IQ timer is active\n");
625 		} else
626 			break;
627 loop:
628 		if (!retry) {
629 			pr_err("CP HQD IQ timer status time out\n");
630 			break;
631 		}
632 		ndelay(100);
633 		--retry;
634 	}
635 	retry = 1000;
636 	while (true) {
637 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
638 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
639 			break;
640 		pr_debug("Dequeue request is pending\n");
641 
642 		if (!retry) {
643 			pr_err("CP HQD dequeue request time out\n");
644 			break;
645 		}
646 		ndelay(100);
647 		--retry;
648 	}
649 	local_irq_restore(flags);
650 	preempt_enable();
651 
652 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
653 
654 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
655 	while (true) {
656 		temp = RREG32(mmCP_HQD_ACTIVE);
657 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
658 			break;
659 		if (time_after(jiffies, end_jiffies)) {
660 			pr_err("cp queue preemption time out\n");
661 			release_queue(kgd);
662 			return -ETIME;
663 		}
664 		usleep_range(500, 1000);
665 	}
666 
667 	release_queue(kgd);
668 	return 0;
669 }
670 
671 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
672 				unsigned int utimeout)
673 {
674 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
675 	struct cik_sdma_rlc_registers *m;
676 	uint32_t sdma_base_addr;
677 	uint32_t temp;
678 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
679 
680 	m = get_sdma_mqd(mqd);
681 	sdma_base_addr = get_sdma_base_addr(m);
682 
683 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
684 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
685 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
686 
687 	while (true) {
688 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
689 		if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
690 			break;
691 		if (time_after(jiffies, end_jiffies))
692 			return -ETIME;
693 		usleep_range(500, 1000);
694 	}
695 
696 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
697 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
698 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
699 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
700 
701 	m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
702 
703 	return 0;
704 }
705 
706 static int kgd_address_watch_disable(struct kgd_dev *kgd)
707 {
708 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
709 	union TCP_WATCH_CNTL_BITS cntl;
710 	unsigned int i;
711 
712 	cntl.u32All = 0;
713 
714 	cntl.bitfields.valid = 0;
715 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
716 	cntl.bitfields.atc = 1;
717 
718 	/* Turning off this address until we set all the registers */
719 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
720 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
721 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
722 
723 	return 0;
724 }
725 
726 static int kgd_address_watch_execute(struct kgd_dev *kgd,
727 					unsigned int watch_point_id,
728 					uint32_t cntl_val,
729 					uint32_t addr_hi,
730 					uint32_t addr_lo)
731 {
732 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
733 	union TCP_WATCH_CNTL_BITS cntl;
734 
735 	cntl.u32All = cntl_val;
736 
737 	/* Turning off this watch point until we set all the registers */
738 	cntl.bitfields.valid = 0;
739 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
740 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
741 
742 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
743 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
744 
745 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
746 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
747 
748 	/* Enable the watch point */
749 	cntl.bitfields.valid = 1;
750 
751 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
752 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
753 
754 	return 0;
755 }
756 
757 static int kgd_wave_control_execute(struct kgd_dev *kgd,
758 					uint32_t gfx_index_val,
759 					uint32_t sq_cmd)
760 {
761 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
762 	uint32_t data;
763 
764 	mutex_lock(&adev->grbm_idx_mutex);
765 
766 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
767 	WREG32(mmSQ_CMD, sq_cmd);
768 
769 	/*  Restore the GRBM_GFX_INDEX register  */
770 
771 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
772 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
773 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
774 
775 	WREG32(mmGRBM_GFX_INDEX, data);
776 
777 	mutex_unlock(&adev->grbm_idx_mutex);
778 
779 	return 0;
780 }
781 
782 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
783 					unsigned int watch_point_id,
784 					unsigned int reg_offset)
785 {
786 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
787 }
788 
789 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
790 							uint8_t vmid)
791 {
792 	uint32_t reg;
793 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
794 
795 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
796 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
797 }
798 
799 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
800 								uint8_t vmid)
801 {
802 	uint32_t reg;
803 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
804 
805 	reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
806 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
807 }
808 
809 static void set_scratch_backing_va(struct kgd_dev *kgd,
810 					uint64_t va, uint32_t vmid)
811 {
812 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
813 
814 	lock_srbm(kgd, 0, 0, 0, vmid);
815 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
816 	unlock_srbm(kgd);
817 }
818 
819 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
820 {
821 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
822 	const union amdgpu_firmware_header *hdr;
823 
824 	switch (type) {
825 	case KGD_ENGINE_PFP:
826 		hdr = (const union amdgpu_firmware_header *)
827 						adev->gfx.pfp_fw->data;
828 		break;
829 
830 	case KGD_ENGINE_ME:
831 		hdr = (const union amdgpu_firmware_header *)
832 						adev->gfx.me_fw->data;
833 		break;
834 
835 	case KGD_ENGINE_CE:
836 		hdr = (const union amdgpu_firmware_header *)
837 						adev->gfx.ce_fw->data;
838 		break;
839 
840 	case KGD_ENGINE_MEC1:
841 		hdr = (const union amdgpu_firmware_header *)
842 						adev->gfx.mec_fw->data;
843 		break;
844 
845 	case KGD_ENGINE_MEC2:
846 		hdr = (const union amdgpu_firmware_header *)
847 						adev->gfx.mec2_fw->data;
848 		break;
849 
850 	case KGD_ENGINE_RLC:
851 		hdr = (const union amdgpu_firmware_header *)
852 						adev->gfx.rlc_fw->data;
853 		break;
854 
855 	case KGD_ENGINE_SDMA1:
856 		hdr = (const union amdgpu_firmware_header *)
857 						adev->sdma.instance[0].fw->data;
858 		break;
859 
860 	case KGD_ENGINE_SDMA2:
861 		hdr = (const union amdgpu_firmware_header *)
862 						adev->sdma.instance[1].fw->data;
863 		break;
864 
865 	default:
866 		return 0;
867 	}
868 
869 	if (hdr == NULL)
870 		return 0;
871 
872 	/* Only 12 bit in use*/
873 	return hdr->common.ucode_version;
874 }
875 
876 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
877 			uint32_t page_table_base)
878 {
879 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
880 
881 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
882 		pr_err("trying to set page table base for wrong VMID\n");
883 		return;
884 	}
885 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8, page_table_base);
886 }
887 
888 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
889 {
890 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
891 	int vmid;
892 	unsigned int tmp;
893 
894 	for (vmid = 0; vmid < 16; vmid++) {
895 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
896 			continue;
897 
898 		tmp = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
899 		if ((tmp & ATC_VMID0_PASID_MAPPING__VALID_MASK) &&
900 			(tmp & ATC_VMID0_PASID_MAPPING__PASID_MASK) == pasid) {
901 			WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
902 			RREG32(mmVM_INVALIDATE_RESPONSE);
903 			break;
904 		}
905 	}
906 
907 	return 0;
908 }
909 
910 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
911 {
912 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
913 
914 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
915 		pr_err("non kfd vmid\n");
916 		return 0;
917 	}
918 
919 	WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid);
920 	RREG32(mmVM_INVALIDATE_RESPONSE);
921 	return 0;
922 }
923