1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/mmu_context.h>
24 
25 #include "amdgpu.h"
26 #include "amdgpu_amdkfd.h"
27 #include "cikd.h"
28 #include "cik_sdma.h"
29 #include "gfx_v7_0.h"
30 #include "gca/gfx_7_2_d.h"
31 #include "gca/gfx_7_2_enum.h"
32 #include "gca/gfx_7_2_sh_mask.h"
33 #include "oss/oss_2_0_d.h"
34 #include "oss/oss_2_0_sh_mask.h"
35 #include "gmc/gmc_7_1_d.h"
36 #include "gmc/gmc_7_1_sh_mask.h"
37 #include "cik_structs.h"
38 
39 enum hqd_dequeue_request_type {
40 	NO_ACTION = 0,
41 	DRAIN_PIPE,
42 	RESET_WAVES
43 };
44 
45 enum {
46 	MAX_TRAPID = 8,		/* 3 bits in the bitfield. */
47 	MAX_WATCH_ADDRESSES = 4
48 };
49 
50 enum {
51 	ADDRESS_WATCH_REG_ADDR_HI = 0,
52 	ADDRESS_WATCH_REG_ADDR_LO,
53 	ADDRESS_WATCH_REG_CNTL,
54 	ADDRESS_WATCH_REG_MAX
55 };
56 
57 /*  not defined in the CI/KV reg file  */
58 enum {
59 	ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL,
60 	ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF,
61 	ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000,
62 	/* extend the mask to 26 bits to match the low address field */
63 	ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6,
64 	ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF
65 };
66 
67 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
68 	mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL,
69 	mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL,
70 	mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL,
71 	mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL
72 };
73 
74 union TCP_WATCH_CNTL_BITS {
75 	struct {
76 		uint32_t mask:24;
77 		uint32_t vmid:4;
78 		uint32_t atc:1;
79 		uint32_t mode:2;
80 		uint32_t valid:1;
81 	} bitfields, bits;
82 	uint32_t u32All;
83 	signed int i32All;
84 	float f32All;
85 };
86 
87 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
88 {
89 	return (struct amdgpu_device *)kgd;
90 }
91 
92 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
93 			uint32_t queue, uint32_t vmid)
94 {
95 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
96 	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
97 
98 	mutex_lock(&adev->srbm_mutex);
99 	WREG32(mmSRBM_GFX_CNTL, value);
100 }
101 
102 static void unlock_srbm(struct kgd_dev *kgd)
103 {
104 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
105 
106 	WREG32(mmSRBM_GFX_CNTL, 0);
107 	mutex_unlock(&adev->srbm_mutex);
108 }
109 
110 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
111 				uint32_t queue_id)
112 {
113 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
114 
115 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
116 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
117 
118 	lock_srbm(kgd, mec, pipe, queue_id, 0);
119 }
120 
121 static void release_queue(struct kgd_dev *kgd)
122 {
123 	unlock_srbm(kgd);
124 }
125 
126 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
127 					uint32_t sh_mem_config,
128 					uint32_t sh_mem_ape1_base,
129 					uint32_t sh_mem_ape1_limit,
130 					uint32_t sh_mem_bases)
131 {
132 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
133 
134 	lock_srbm(kgd, 0, 0, 0, vmid);
135 
136 	WREG32(mmSH_MEM_CONFIG, sh_mem_config);
137 	WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
138 	WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
139 	WREG32(mmSH_MEM_BASES, sh_mem_bases);
140 
141 	unlock_srbm(kgd);
142 }
143 
144 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
145 					unsigned int vmid)
146 {
147 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
148 
149 	/*
150 	 * We have to assume that there is no outstanding mapping.
151 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
152 	 * a mapping is in progress or because a mapping finished and the
153 	 * SW cleared it. So the protocol is to always wait & clear.
154 	 */
155 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
156 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
157 
158 	WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
159 
160 	while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
161 		cpu_relax();
162 	WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
163 
164 	/* Mapping vmid to pasid also for IH block */
165 	WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
166 
167 	return 0;
168 }
169 
170 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
171 {
172 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
173 	uint32_t mec;
174 	uint32_t pipe;
175 
176 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
177 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
178 
179 	lock_srbm(kgd, mec, pipe, 0, 0);
180 
181 	WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
182 			CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
183 
184 	unlock_srbm(kgd);
185 
186 	return 0;
187 }
188 
189 static inline uint32_t get_sdma_rlc_reg_offset(struct cik_sdma_rlc_registers *m)
190 {
191 	uint32_t retval;
192 
193 	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
194 			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
195 
196 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
197 			m->sdma_engine_id, m->sdma_queue_id, retval);
198 
199 	return retval;
200 }
201 
202 static inline struct cik_mqd *get_mqd(void *mqd)
203 {
204 	return (struct cik_mqd *)mqd;
205 }
206 
207 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
208 {
209 	return (struct cik_sdma_rlc_registers *)mqd;
210 }
211 
212 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
213 			uint32_t queue_id, uint32_t __user *wptr,
214 			uint32_t wptr_shift, uint32_t wptr_mask,
215 			struct mm_struct *mm)
216 {
217 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
218 	struct cik_mqd *m;
219 	uint32_t *mqd_hqd;
220 	uint32_t reg, wptr_val, data;
221 	bool valid_wptr = false;
222 
223 	m = get_mqd(mqd);
224 
225 	acquire_queue(kgd, pipe_id, queue_id);
226 
227 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_MQD_CONTROL. */
228 	mqd_hqd = &m->cp_mqd_base_addr_lo;
229 
230 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
231 		WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
232 
233 	/* Copy userspace write pointer value to register.
234 	 * Activate doorbell logic to monitor subsequent changes.
235 	 */
236 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
237 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
238 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
239 
240 	/* read_user_ptr may take the mm->mmap_sem.
241 	 * release srbm_mutex to avoid circular dependency between
242 	 * srbm_mutex->mm_sem->reservation_ww_class_mutex->srbm_mutex.
243 	 */
244 	release_queue(kgd);
245 	valid_wptr = read_user_wptr(mm, wptr, wptr_val);
246 	acquire_queue(kgd, pipe_id, queue_id);
247 	if (valid_wptr)
248 		WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
249 
250 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
251 	WREG32(mmCP_HQD_ACTIVE, data);
252 
253 	release_queue(kgd);
254 
255 	return 0;
256 }
257 
258 static int kgd_hqd_dump(struct kgd_dev *kgd,
259 			uint32_t pipe_id, uint32_t queue_id,
260 			uint32_t (**dump)[2], uint32_t *n_regs)
261 {
262 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
263 	uint32_t i = 0, reg;
264 #define HQD_N_REGS (35+4)
265 #define DUMP_REG(addr) do {				\
266 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
267 			break;				\
268 		(*dump)[i][0] = (addr) << 2;		\
269 		(*dump)[i++][1] = RREG32(addr);		\
270 	} while (0)
271 
272 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
273 	if (*dump == NULL)
274 		return -ENOMEM;
275 
276 	acquire_queue(kgd, pipe_id, queue_id);
277 
278 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
279 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
280 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
281 	DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
282 
283 	for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
284 		DUMP_REG(reg);
285 
286 	release_queue(kgd);
287 
288 	WARN_ON_ONCE(i != HQD_N_REGS);
289 	*n_regs = i;
290 
291 	return 0;
292 }
293 
294 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
295 			     uint32_t __user *wptr, struct mm_struct *mm)
296 {
297 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
298 	struct cik_sdma_rlc_registers *m;
299 	unsigned long end_jiffies;
300 	uint32_t sdma_rlc_reg_offset;
301 	uint32_t data;
302 
303 	m = get_sdma_mqd(mqd);
304 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
305 
306 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
307 		m->sdma_rlc_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
308 
309 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
310 	while (true) {
311 		data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
312 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
313 			break;
314 		if (time_after(jiffies, end_jiffies)) {
315 			pr_err("SDMA RLC not idle in %s\n", __func__);
316 			return -ETIME;
317 		}
318 		usleep_range(500, 1000);
319 	}
320 
321 	data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
322 			     ENABLE, 1);
323 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
324 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
325 				m->sdma_rlc_rb_rptr);
326 
327 	if (read_user_wptr(mm, wptr, data))
328 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
329 	else
330 		WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
331 		       m->sdma_rlc_rb_rptr);
332 
333 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
334 				m->sdma_rlc_virtual_addr);
335 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
336 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
337 			m->sdma_rlc_rb_base_hi);
338 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
339 			m->sdma_rlc_rb_rptr_addr_lo);
340 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
341 			m->sdma_rlc_rb_rptr_addr_hi);
342 
343 	data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
344 			     RB_ENABLE, 1);
345 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
346 
347 	return 0;
348 }
349 
350 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
351 			     uint32_t engine_id, uint32_t queue_id,
352 			     uint32_t (**dump)[2], uint32_t *n_regs)
353 {
354 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
355 	uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
356 		queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
357 	uint32_t i = 0, reg;
358 #undef HQD_N_REGS
359 #define HQD_N_REGS (19+4)
360 
361 	*dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
362 	if (*dump == NULL)
363 		return -ENOMEM;
364 
365 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
366 		DUMP_REG(sdma_offset + reg);
367 	for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
368 	     reg++)
369 		DUMP_REG(sdma_offset + reg);
370 
371 	WARN_ON_ONCE(i != HQD_N_REGS);
372 	*n_regs = i;
373 
374 	return 0;
375 }
376 
377 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
378 				uint32_t pipe_id, uint32_t queue_id)
379 {
380 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
381 	uint32_t act;
382 	bool retval = false;
383 	uint32_t low, high;
384 
385 	acquire_queue(kgd, pipe_id, queue_id);
386 	act = RREG32(mmCP_HQD_ACTIVE);
387 	if (act) {
388 		low = lower_32_bits(queue_address >> 8);
389 		high = upper_32_bits(queue_address >> 8);
390 
391 		if (low == RREG32(mmCP_HQD_PQ_BASE) &&
392 				high == RREG32(mmCP_HQD_PQ_BASE_HI))
393 			retval = true;
394 	}
395 	release_queue(kgd);
396 	return retval;
397 }
398 
399 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
400 {
401 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
402 	struct cik_sdma_rlc_registers *m;
403 	uint32_t sdma_rlc_reg_offset;
404 	uint32_t sdma_rlc_rb_cntl;
405 
406 	m = get_sdma_mqd(mqd);
407 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
408 
409 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
410 
411 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
412 		return true;
413 
414 	return false;
415 }
416 
417 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
418 				enum kfd_preempt_type reset_type,
419 				unsigned int utimeout, uint32_t pipe_id,
420 				uint32_t queue_id)
421 {
422 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
423 	uint32_t temp;
424 	enum hqd_dequeue_request_type type;
425 	unsigned long flags, end_jiffies;
426 	int retry;
427 
428 	if (adev->in_gpu_reset)
429 		return -EIO;
430 
431 	acquire_queue(kgd, pipe_id, queue_id);
432 	WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0);
433 
434 	switch (reset_type) {
435 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
436 		type = DRAIN_PIPE;
437 		break;
438 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
439 		type = RESET_WAVES;
440 		break;
441 	default:
442 		type = DRAIN_PIPE;
443 		break;
444 	}
445 
446 	/* Workaround: If IQ timer is active and the wait time is close to or
447 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
448 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
449 	 * cleared before continuing. Also, ensure wait times are set to at
450 	 * least 0x3.
451 	 */
452 	local_irq_save(flags);
453 	preempt_disable();
454 	retry = 5000; /* wait for 500 usecs at maximum */
455 	while (true) {
456 		temp = RREG32(mmCP_HQD_IQ_TIMER);
457 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
458 			pr_debug("HW is processing IQ\n");
459 			goto loop;
460 		}
461 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
462 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
463 					== 3) /* SEM-rearm is safe */
464 				break;
465 			/* Wait time 3 is safe for CP, but our MMIO read/write
466 			 * time is close to 1 microsecond, so check for 10 to
467 			 * leave more buffer room
468 			 */
469 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
470 					>= 10)
471 				break;
472 			pr_debug("IQ timer is active\n");
473 		} else
474 			break;
475 loop:
476 		if (!retry) {
477 			pr_err("CP HQD IQ timer status time out\n");
478 			break;
479 		}
480 		ndelay(100);
481 		--retry;
482 	}
483 	retry = 1000;
484 	while (true) {
485 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
486 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
487 			break;
488 		pr_debug("Dequeue request is pending\n");
489 
490 		if (!retry) {
491 			pr_err("CP HQD dequeue request time out\n");
492 			break;
493 		}
494 		ndelay(100);
495 		--retry;
496 	}
497 	local_irq_restore(flags);
498 	preempt_enable();
499 
500 	WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
501 
502 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
503 	while (true) {
504 		temp = RREG32(mmCP_HQD_ACTIVE);
505 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
506 			break;
507 		if (time_after(jiffies, end_jiffies)) {
508 			pr_err("cp queue preemption time out\n");
509 			release_queue(kgd);
510 			return -ETIME;
511 		}
512 		usleep_range(500, 1000);
513 	}
514 
515 	release_queue(kgd);
516 	return 0;
517 }
518 
519 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
520 				unsigned int utimeout)
521 {
522 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
523 	struct cik_sdma_rlc_registers *m;
524 	uint32_t sdma_rlc_reg_offset;
525 	uint32_t temp;
526 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
527 
528 	m = get_sdma_mqd(mqd);
529 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
530 
531 	temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
532 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
533 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
534 
535 	while (true) {
536 		temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
537 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
538 			break;
539 		if (time_after(jiffies, end_jiffies)) {
540 			pr_err("SDMA RLC not idle in %s\n", __func__);
541 			return -ETIME;
542 		}
543 		usleep_range(500, 1000);
544 	}
545 
546 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
547 	WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
548 		RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
549 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
550 
551 	m->sdma_rlc_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
552 
553 	return 0;
554 }
555 
556 static int kgd_address_watch_disable(struct kgd_dev *kgd)
557 {
558 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
559 	union TCP_WATCH_CNTL_BITS cntl;
560 	unsigned int i;
561 
562 	cntl.u32All = 0;
563 
564 	cntl.bitfields.valid = 0;
565 	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
566 	cntl.bitfields.atc = 1;
567 
568 	/* Turning off this address until we set all the registers */
569 	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
570 		WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX +
571 			ADDRESS_WATCH_REG_CNTL], cntl.u32All);
572 
573 	return 0;
574 }
575 
576 static int kgd_address_watch_execute(struct kgd_dev *kgd,
577 					unsigned int watch_point_id,
578 					uint32_t cntl_val,
579 					uint32_t addr_hi,
580 					uint32_t addr_lo)
581 {
582 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
583 	union TCP_WATCH_CNTL_BITS cntl;
584 
585 	cntl.u32All = cntl_val;
586 
587 	/* Turning off this watch point until we set all the registers */
588 	cntl.bitfields.valid = 0;
589 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
590 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
591 
592 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
593 		ADDRESS_WATCH_REG_ADDR_HI], addr_hi);
594 
595 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
596 		ADDRESS_WATCH_REG_ADDR_LO], addr_lo);
597 
598 	/* Enable the watch point */
599 	cntl.bitfields.valid = 1;
600 
601 	WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
602 		ADDRESS_WATCH_REG_CNTL], cntl.u32All);
603 
604 	return 0;
605 }
606 
607 static int kgd_wave_control_execute(struct kgd_dev *kgd,
608 					uint32_t gfx_index_val,
609 					uint32_t sq_cmd)
610 {
611 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
612 	uint32_t data;
613 
614 	mutex_lock(&adev->grbm_idx_mutex);
615 
616 	WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
617 	WREG32(mmSQ_CMD, sq_cmd);
618 
619 	/*  Restore the GRBM_GFX_INDEX register  */
620 
621 	data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK |
622 		GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK |
623 		GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK;
624 
625 	WREG32(mmGRBM_GFX_INDEX, data);
626 
627 	mutex_unlock(&adev->grbm_idx_mutex);
628 
629 	return 0;
630 }
631 
632 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
633 					unsigned int watch_point_id,
634 					unsigned int reg_offset)
635 {
636 	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
637 }
638 
639 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
640 					uint8_t vmid, uint16_t *p_pasid)
641 {
642 	uint32_t value;
643 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
644 
645 	value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
646 	*p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
647 
648 	return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
649 }
650 
651 static void set_scratch_backing_va(struct kgd_dev *kgd,
652 					uint64_t va, uint32_t vmid)
653 {
654 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
655 
656 	lock_srbm(kgd, 0, 0, 0, vmid);
657 	WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
658 	unlock_srbm(kgd);
659 }
660 
661 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
662 			uint64_t page_table_base)
663 {
664 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
665 
666 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
667 		pr_err("trying to set page table base for wrong VMID\n");
668 		return;
669 	}
670 	WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
671 		lower_32_bits(page_table_base));
672 }
673 
674  /**
675   * read_vmid_from_vmfault_reg - read vmid from register
676   *
677   * adev: amdgpu_device pointer
678   * @vmid: vmid pointer
679   * read vmid from register (CIK).
680   */
681 static uint32_t read_vmid_from_vmfault_reg(struct kgd_dev *kgd)
682 {
683 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
684 
685 	uint32_t status = RREG32(mmVM_CONTEXT1_PROTECTION_FAULT_STATUS);
686 
687 	return REG_GET_FIELD(status, VM_CONTEXT1_PROTECTION_FAULT_STATUS, VMID);
688 }
689 
690 const struct kfd2kgd_calls gfx_v7_kfd2kgd = {
691 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
692 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
693 	.init_interrupts = kgd_init_interrupts,
694 	.hqd_load = kgd_hqd_load,
695 	.hqd_sdma_load = kgd_hqd_sdma_load,
696 	.hqd_dump = kgd_hqd_dump,
697 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
698 	.hqd_is_occupied = kgd_hqd_is_occupied,
699 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
700 	.hqd_destroy = kgd_hqd_destroy,
701 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
702 	.address_watch_disable = kgd_address_watch_disable,
703 	.address_watch_execute = kgd_address_watch_execute,
704 	.wave_control_execute = kgd_wave_control_execute,
705 	.address_watch_get_offset = kgd_address_watch_get_offset,
706 	.get_atc_vmid_pasid_mapping_info = get_atc_vmid_pasid_mapping_info,
707 	.set_scratch_backing_va = set_scratch_backing_va,
708 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
709 	.read_vmid_from_vmfault_reg = read_vmid_from_vmfault_reg,
710 };
711