1 /*
2  * Copyright 2021 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include <linux/mmu_context.h>
23 #include "amdgpu.h"
24 #include "amdgpu_amdkfd.h"
25 #include "gc/gc_11_0_0_offset.h"
26 #include "gc/gc_11_0_0_sh_mask.h"
27 #include "oss/osssys_6_0_0_offset.h"
28 #include "oss/osssys_6_0_0_sh_mask.h"
29 #include "soc15_common.h"
30 #include "soc15d.h"
31 #include "v11_structs.h"
32 #include "soc21.h"
33 
34 enum hqd_dequeue_request_type {
35 	NO_ACTION = 0,
36 	DRAIN_PIPE,
37 	RESET_WAVES,
38 	SAVE_WAVES
39 };
40 
41 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
42 			uint32_t queue, uint32_t vmid)
43 {
44 	mutex_lock(&adev->srbm_mutex);
45 	soc21_grbm_select(adev, mec, pipe, queue, vmid);
46 }
47 
48 static void unlock_srbm(struct amdgpu_device *adev)
49 {
50 	soc21_grbm_select(adev, 0, 0, 0, 0);
51 	mutex_unlock(&adev->srbm_mutex);
52 }
53 
54 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
55 				uint32_t queue_id)
56 {
57 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
58 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
59 
60 	lock_srbm(adev, mec, pipe, queue_id, 0);
61 }
62 
63 static uint64_t get_queue_mask(struct amdgpu_device *adev,
64 			       uint32_t pipe_id, uint32_t queue_id)
65 {
66 	unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
67 			queue_id;
68 
69 	return 1ull << bit;
70 }
71 
72 static void release_queue(struct amdgpu_device *adev)
73 {
74 	unlock_srbm(adev);
75 }
76 
77 static void program_sh_mem_settings_v11(struct amdgpu_device *adev, uint32_t vmid,
78 					uint32_t sh_mem_config,
79 					uint32_t sh_mem_ape1_base,
80 					uint32_t sh_mem_ape1_limit,
81 					uint32_t sh_mem_bases, uint32_t inst)
82 {
83 	lock_srbm(adev, 0, 0, 0, vmid);
84 
85 	WREG32(SOC15_REG_OFFSET(GC, 0, regSH_MEM_CONFIG), sh_mem_config);
86 	WREG32(SOC15_REG_OFFSET(GC, 0, regSH_MEM_BASES), sh_mem_bases);
87 
88 	unlock_srbm(adev);
89 }
90 
91 static int set_pasid_vmid_mapping_v11(struct amdgpu_device *adev, unsigned int pasid,
92 					unsigned int vmid, uint32_t inst)
93 {
94 	uint32_t value = pasid << IH_VMID_0_LUT__PASID__SHIFT;
95 
96 	/* Mapping vmid to pasid also for IH block */
97 	pr_debug("mapping vmid %d -> pasid %d in IH block for GFX client\n",
98 			vmid, pasid);
99 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, regIH_VMID_0_LUT) + vmid, value);
100 
101 	return 0;
102 }
103 
104 static int init_interrupts_v11(struct amdgpu_device *adev, uint32_t pipe_id,
105 				uint32_t inst)
106 {
107 	uint32_t mec;
108 	uint32_t pipe;
109 
110 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
111 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
112 
113 	lock_srbm(adev, mec, pipe, 0, 0);
114 
115 	WREG32_SOC15(GC, 0, regCPC_INT_CNTL,
116 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
117 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
118 
119 	unlock_srbm(adev);
120 
121 	return 0;
122 }
123 
124 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
125 				unsigned int engine_id,
126 				unsigned int queue_id)
127 {
128 	uint32_t sdma_engine_reg_base = 0;
129 	uint32_t sdma_rlc_reg_offset;
130 
131 	switch (engine_id) {
132 	case 0:
133 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0,
134 				regSDMA0_QUEUE0_RB_CNTL) - regSDMA0_QUEUE0_RB_CNTL;
135 		break;
136 	case 1:
137 		sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0,
138 				regSDMA1_QUEUE0_RB_CNTL) - regSDMA0_QUEUE0_RB_CNTL;
139 		break;
140 	default:
141 		BUG();
142 	}
143 
144 	sdma_rlc_reg_offset = sdma_engine_reg_base
145 		+ queue_id * (regSDMA0_QUEUE1_RB_CNTL - regSDMA0_QUEUE0_RB_CNTL);
146 
147 	pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
148 			queue_id, sdma_rlc_reg_offset);
149 
150 	return sdma_rlc_reg_offset;
151 }
152 
153 static inline struct v11_compute_mqd *get_mqd(void *mqd)
154 {
155 	return (struct v11_compute_mqd *)mqd;
156 }
157 
158 static inline struct v11_sdma_mqd *get_sdma_mqd(void *mqd)
159 {
160 	return (struct v11_sdma_mqd *)mqd;
161 }
162 
163 static int hqd_load_v11(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id,
164 			uint32_t queue_id, uint32_t __user *wptr,
165 			uint32_t wptr_shift, uint32_t wptr_mask,
166 			struct mm_struct *mm, uint32_t inst)
167 {
168 	struct v11_compute_mqd *m;
169 	uint32_t *mqd_hqd;
170 	uint32_t reg, hqd_base, data;
171 
172 	m = get_mqd(mqd);
173 
174 	pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
175 	acquire_queue(adev, pipe_id, queue_id);
176 
177 	/* HIQ is set during driver init period with vmid set to 0*/
178 	if (m->cp_hqd_vmid == 0) {
179 		uint32_t value, mec, pipe;
180 
181 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
182 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
183 
184 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
185 			mec, pipe, queue_id);
186 		value = RREG32(SOC15_REG_OFFSET(GC, 0, regRLC_CP_SCHEDULERS));
187 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
188 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
189 		WREG32(SOC15_REG_OFFSET(GC, 0, regRLC_CP_SCHEDULERS), value);
190 	}
191 
192 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
193 	mqd_hqd = &m->cp_mqd_base_addr_lo;
194 	hqd_base = SOC15_REG_OFFSET(GC, 0, regCP_MQD_BASE_ADDR);
195 
196 	for (reg = hqd_base;
197 	     reg <= SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI); reg++)
198 		WREG32(reg, mqd_hqd[reg - hqd_base]);
199 
200 
201 	/* Activate doorbell logic before triggering WPTR poll. */
202 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
203 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
204 	WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL), data);
205 
206 	if (wptr) {
207 		/* Don't read wptr with get_user because the user
208 		 * context may not be accessible (if this function
209 		 * runs in a work queue). Instead trigger a one-shot
210 		 * polling read from memory in the CP. This assumes
211 		 * that wptr is GPU-accessible in the queue's VMID via
212 		 * ATC or SVM. WPTR==RPTR before starting the poll so
213 		 * the CP starts fetching new commands from the right
214 		 * place.
215 		 *
216 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
217 		 * tricky. Assume that the queue didn't overflow. The
218 		 * number of valid bits in the 32-bit RPTR depends on
219 		 * the queue size. The remaining bits are taken from
220 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
221 		 * queue size.
222 		 */
223 		uint32_t queue_size =
224 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
225 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
226 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
227 
228 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
229 			guessed_wptr += queue_size;
230 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
231 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
232 
233 		WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_LO),
234 		       lower_32_bits(guessed_wptr));
235 		WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI),
236 		       upper_32_bits(guessed_wptr));
237 		WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR),
238 		       lower_32_bits((uint64_t)wptr));
239 		WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI),
240 		       upper_32_bits((uint64_t)wptr));
241 		pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
242 			 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
243 		WREG32(SOC15_REG_OFFSET(GC, 0, regCP_PQ_WPTR_POLL_CNTL1),
244 		       (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
245 	}
246 
247 	/* Start the EOP fetcher */
248 	WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_EOP_RPTR),
249 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
250 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
251 
252 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
253 	WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE), data);
254 
255 	release_queue(adev);
256 
257 	return 0;
258 }
259 
260 static int hiq_mqd_load_v11(struct amdgpu_device *adev, void *mqd,
261 			      uint32_t pipe_id, uint32_t queue_id,
262 			      uint32_t doorbell_off, uint32_t inst)
263 {
264 	struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring;
265 	struct v11_compute_mqd *m;
266 	uint32_t mec, pipe;
267 	int r;
268 
269 	m = get_mqd(mqd);
270 
271 	acquire_queue(adev, pipe_id, queue_id);
272 
273 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
274 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
275 
276 	pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
277 		 mec, pipe, queue_id);
278 
279 	spin_lock(&adev->gfx.kiq[0].ring_lock);
280 	r = amdgpu_ring_alloc(kiq_ring, 7);
281 	if (r) {
282 		pr_err("Failed to alloc KIQ (%d).\n", r);
283 		goto out_unlock;
284 	}
285 
286 	amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
287 	amdgpu_ring_write(kiq_ring,
288 			  PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
289 			  PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
290 			  PACKET3_MAP_QUEUES_QUEUE(queue_id) |
291 			  PACKET3_MAP_QUEUES_PIPE(pipe) |
292 			  PACKET3_MAP_QUEUES_ME((mec - 1)) |
293 			  PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
294 			  PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
295 			  PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
296 			  PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
297 	amdgpu_ring_write(kiq_ring,
298 			PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
299 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
300 	amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
301 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
302 	amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
303 	amdgpu_ring_commit(kiq_ring);
304 
305 out_unlock:
306 	spin_unlock(&adev->gfx.kiq[0].ring_lock);
307 	release_queue(adev);
308 
309 	return r;
310 }
311 
312 static int hqd_dump_v11(struct amdgpu_device *adev,
313 			uint32_t pipe_id, uint32_t queue_id,
314 			uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
315 {
316 	uint32_t i = 0, reg;
317 #define HQD_N_REGS 56
318 #define DUMP_REG(addr) do {				\
319 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
320 			break;				\
321 		(*dump)[i][0] = (addr) << 2;		\
322 		(*dump)[i++][1] = RREG32(addr);		\
323 	} while (0)
324 
325 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
326 	if (*dump == NULL)
327 		return -ENOMEM;
328 
329 	acquire_queue(adev, pipe_id, queue_id);
330 
331 	for (reg = SOC15_REG_OFFSET(GC, 0, regCP_MQD_BASE_ADDR);
332 	     reg <= SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_WPTR_HI); reg++)
333 		DUMP_REG(reg);
334 
335 	release_queue(adev);
336 
337 	WARN_ON_ONCE(i != HQD_N_REGS);
338 	*n_regs = i;
339 
340 	return 0;
341 }
342 
343 static int hqd_sdma_load_v11(struct amdgpu_device *adev, void *mqd,
344 			     uint32_t __user *wptr, struct mm_struct *mm)
345 {
346 	struct v11_sdma_mqd *m;
347 	uint32_t sdma_rlc_reg_offset;
348 	unsigned long end_jiffies;
349 	uint32_t data;
350 	uint64_t data64;
351 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
352 
353 	m = get_sdma_mqd(mqd);
354 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
355 					    m->sdma_queue_id);
356 
357 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL,
358 		m->sdmax_rlcx_rb_cntl & (~SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK));
359 
360 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
361 	while (true) {
362 		data = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_CONTEXT_STATUS);
363 		if (data & SDMA0_QUEUE0_CONTEXT_STATUS__IDLE_MASK)
364 			break;
365 		if (time_after(jiffies, end_jiffies)) {
366 			pr_err("SDMA RLC not idle in %s\n", __func__);
367 			return -ETIME;
368 		}
369 		usleep_range(500, 1000);
370 	}
371 
372 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL_OFFSET,
373 	       m->sdmax_rlcx_doorbell_offset);
374 
375 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_QUEUE0_DOORBELL,
376 			     ENABLE, 1);
377 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL, data);
378 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR,
379 				m->sdmax_rlcx_rb_rptr);
380 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_HI,
381 				m->sdmax_rlcx_rb_rptr_hi);
382 
383 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_MINOR_PTR_UPDATE, 1);
384 	if (read_user_wptr(mm, wptr64, data64)) {
385 		WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR,
386 		       lower_32_bits(data64));
387 		WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR_HI,
388 		       upper_32_bits(data64));
389 	} else {
390 		WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR,
391 		       m->sdmax_rlcx_rb_rptr);
392 		WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_WPTR_HI,
393 		       m->sdmax_rlcx_rb_rptr_hi);
394 	}
395 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_MINOR_PTR_UPDATE, 0);
396 
397 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_BASE, m->sdmax_rlcx_rb_base);
398 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_BASE_HI,
399 			m->sdmax_rlcx_rb_base_hi);
400 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_ADDR_LO,
401 			m->sdmax_rlcx_rb_rptr_addr_lo);
402 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_ADDR_HI,
403 			m->sdmax_rlcx_rb_rptr_addr_hi);
404 
405 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_QUEUE0_RB_CNTL,
406 			     RB_ENABLE, 1);
407 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, data);
408 
409 	return 0;
410 }
411 
412 static int hqd_sdma_dump_v11(struct amdgpu_device *adev,
413 			     uint32_t engine_id, uint32_t queue_id,
414 			     uint32_t (**dump)[2], uint32_t *n_regs)
415 {
416 	uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
417 			engine_id, queue_id);
418 	uint32_t i = 0, reg;
419 #undef HQD_N_REGS
420 #define HQD_N_REGS (7+11+1+12+12)
421 
422 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
423 	if (*dump == NULL)
424 		return -ENOMEM;
425 
426 	for (reg = regSDMA0_QUEUE0_RB_CNTL;
427 	     reg <= regSDMA0_QUEUE0_RB_WPTR_HI; reg++)
428 		DUMP_REG(sdma_rlc_reg_offset + reg);
429 	for (reg = regSDMA0_QUEUE0_RB_RPTR_ADDR_HI;
430 	     reg <= regSDMA0_QUEUE0_DOORBELL; reg++)
431 		DUMP_REG(sdma_rlc_reg_offset + reg);
432 	for (reg = regSDMA0_QUEUE0_DOORBELL_LOG;
433 	     reg <= regSDMA0_QUEUE0_DOORBELL_LOG; reg++)
434 		DUMP_REG(sdma_rlc_reg_offset + reg);
435 	for (reg = regSDMA0_QUEUE0_DOORBELL_OFFSET;
436 	     reg <= regSDMA0_QUEUE0_RB_PREEMPT; reg++)
437 		DUMP_REG(sdma_rlc_reg_offset + reg);
438 	for (reg = regSDMA0_QUEUE0_MIDCMD_DATA0;
439 	     reg <= regSDMA0_QUEUE0_MIDCMD_CNTL; reg++)
440 		DUMP_REG(sdma_rlc_reg_offset + reg);
441 
442 	WARN_ON_ONCE(i != HQD_N_REGS);
443 	*n_regs = i;
444 
445 	return 0;
446 }
447 
448 static bool hqd_is_occupied_v11(struct amdgpu_device *adev, uint64_t queue_address,
449 				uint32_t pipe_id, uint32_t queue_id, uint32_t inst)
450 {
451 	uint32_t act;
452 	bool retval = false;
453 	uint32_t low, high;
454 
455 	acquire_queue(adev, pipe_id, queue_id);
456 	act = RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE));
457 	if (act) {
458 		low = lower_32_bits(queue_address >> 8);
459 		high = upper_32_bits(queue_address >> 8);
460 
461 		if (low == RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_BASE)) &&
462 		   high == RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_PQ_BASE_HI)))
463 			retval = true;
464 	}
465 	release_queue(adev);
466 	return retval;
467 }
468 
469 static bool hqd_sdma_is_occupied_v11(struct amdgpu_device *adev, void *mqd)
470 {
471 	struct v11_sdma_mqd *m;
472 	uint32_t sdma_rlc_reg_offset;
473 	uint32_t sdma_rlc_rb_cntl;
474 
475 	m = get_sdma_mqd(mqd);
476 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
477 					    m->sdma_queue_id);
478 
479 	sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL);
480 
481 	if (sdma_rlc_rb_cntl & SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK)
482 		return true;
483 
484 	return false;
485 }
486 
487 static int hqd_destroy_v11(struct amdgpu_device *adev, void *mqd,
488 				enum kfd_preempt_type reset_type,
489 				unsigned int utimeout, uint32_t pipe_id,
490 				uint32_t queue_id, uint32_t inst)
491 {
492 	enum hqd_dequeue_request_type type;
493 	unsigned long end_jiffies;
494 	uint32_t temp;
495 	struct v11_compute_mqd *m = get_mqd(mqd);
496 
497 	acquire_queue(adev, pipe_id, queue_id);
498 
499 	if (m->cp_hqd_vmid == 0)
500 		WREG32_FIELD15_PREREG(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
501 
502 	switch (reset_type) {
503 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
504 		type = DRAIN_PIPE;
505 		break;
506 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
507 		type = RESET_WAVES;
508 		break;
509 	default:
510 		type = DRAIN_PIPE;
511 		break;
512 	}
513 
514 	WREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_DEQUEUE_REQUEST), type);
515 
516 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
517 	while (true) {
518 		temp = RREG32(SOC15_REG_OFFSET(GC, 0, regCP_HQD_ACTIVE));
519 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
520 			break;
521 		if (time_after(jiffies, end_jiffies)) {
522 			pr_err("cp queue pipe %d queue %d preemption failed\n",
523 					pipe_id, queue_id);
524 			release_queue(adev);
525 			return -ETIME;
526 		}
527 		usleep_range(500, 1000);
528 	}
529 
530 	release_queue(adev);
531 	return 0;
532 }
533 
534 static int hqd_sdma_destroy_v11(struct amdgpu_device *adev, void *mqd,
535 				unsigned int utimeout)
536 {
537 	struct v11_sdma_mqd *m;
538 	uint32_t sdma_rlc_reg_offset;
539 	uint32_t temp;
540 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
541 
542 	m = get_sdma_mqd(mqd);
543 	sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
544 					    m->sdma_queue_id);
545 
546 	temp = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL);
547 	temp = temp & ~SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK;
548 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL, temp);
549 
550 	while (true) {
551 		temp = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_CONTEXT_STATUS);
552 		if (temp & SDMA0_QUEUE0_CONTEXT_STATUS__IDLE_MASK)
553 			break;
554 		if (time_after(jiffies, end_jiffies)) {
555 			pr_err("SDMA RLC not idle in %s\n", __func__);
556 			return -ETIME;
557 		}
558 		usleep_range(500, 1000);
559 	}
560 
561 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_DOORBELL, 0);
562 	WREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL,
563 		RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_CNTL) |
564 		SDMA0_QUEUE0_RB_CNTL__RB_ENABLE_MASK);
565 
566 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR);
567 	m->sdmax_rlcx_rb_rptr_hi =
568 		RREG32(sdma_rlc_reg_offset + regSDMA0_QUEUE0_RB_RPTR_HI);
569 
570 	return 0;
571 }
572 
573 static int wave_control_execute_v11(struct amdgpu_device *adev,
574 					uint32_t gfx_index_val,
575 					uint32_t sq_cmd, uint32_t inst)
576 {
577 	uint32_t data = 0;
578 
579 	mutex_lock(&adev->grbm_idx_mutex);
580 
581 	WREG32(SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX), gfx_index_val);
582 	WREG32(SOC15_REG_OFFSET(GC, 0, regSQ_CMD), sq_cmd);
583 
584 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
585 		INSTANCE_BROADCAST_WRITES, 1);
586 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
587 		SA_BROADCAST_WRITES, 1);
588 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
589 		SE_BROADCAST_WRITES, 1);
590 
591 	WREG32(SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX), data);
592 	mutex_unlock(&adev->grbm_idx_mutex);
593 
594 	return 0;
595 }
596 
597 static void set_vm_context_page_table_base_v11(struct amdgpu_device *adev,
598 		uint32_t vmid, uint64_t page_table_base)
599 {
600 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
601 		pr_err("trying to set page table base for wrong VMID %u\n",
602 		       vmid);
603 		return;
604 	}
605 
606 	/* SDMA is on gfxhub as well for gfx11 adapters */
607 	adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
608 }
609 
610 const struct kfd2kgd_calls gfx_v11_kfd2kgd = {
611 	.program_sh_mem_settings = program_sh_mem_settings_v11,
612 	.set_pasid_vmid_mapping = set_pasid_vmid_mapping_v11,
613 	.init_interrupts = init_interrupts_v11,
614 	.hqd_load = hqd_load_v11,
615 	.hiq_mqd_load = hiq_mqd_load_v11,
616 	.hqd_sdma_load = hqd_sdma_load_v11,
617 	.hqd_dump = hqd_dump_v11,
618 	.hqd_sdma_dump = hqd_sdma_dump_v11,
619 	.hqd_is_occupied = hqd_is_occupied_v11,
620 	.hqd_sdma_is_occupied = hqd_sdma_is_occupied_v11,
621 	.hqd_destroy = hqd_destroy_v11,
622 	.hqd_sdma_destroy = hqd_sdma_destroy_v11,
623 	.wave_control_execute = wave_control_execute_v11,
624 	.get_atc_vmid_pasid_mapping_info = NULL,
625 	.set_vm_context_page_table_base = set_vm_context_page_table_base_v11,
626 };
627