1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #undef pr_fmt
23 #define pr_fmt(fmt) "kfd2kgd: " fmt
24 
25 #include <linux/module.h>
26 #include <linux/fdtable.h>
27 #include <linux/uaccess.h>
28 #include <linux/firmware.h>
29 #include <linux/mmu_context.h>
30 #include "amdgpu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "amdgpu_ucode.h"
33 #include "soc15_hw_ip.h"
34 #include "gc/gc_10_1_0_offset.h"
35 #include "gc/gc_10_1_0_sh_mask.h"
36 #include "navi10_enum.h"
37 #include "athub/athub_2_0_0_offset.h"
38 #include "athub/athub_2_0_0_sh_mask.h"
39 #include "oss/osssys_5_0_0_offset.h"
40 #include "oss/osssys_5_0_0_sh_mask.h"
41 #include "soc15_common.h"
42 #include "v10_structs.h"
43 #include "nv.h"
44 #include "nvd.h"
45 
46 enum hqd_dequeue_request_type {
47 	NO_ACTION = 0,
48 	DRAIN_PIPE,
49 	RESET_WAVES,
50 	SAVE_WAVES
51 };
52 
53 /*
54  * Register access functions
55  */
56 
57 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
58 		uint32_t sh_mem_config,
59 		uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
60 		uint32_t sh_mem_bases);
61 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
62 		unsigned int vmid);
63 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
64 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
65 			uint32_t queue_id, uint32_t __user *wptr,
66 			uint32_t wptr_shift, uint32_t wptr_mask,
67 			struct mm_struct *mm);
68 static int kgd_hqd_dump(struct kgd_dev *kgd,
69 			uint32_t pipe_id, uint32_t queue_id,
70 			uint32_t (**dump)[2], uint32_t *n_regs);
71 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
72 			     uint32_t __user *wptr, struct mm_struct *mm);
73 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
74 			     uint32_t engine_id, uint32_t queue_id,
75 			     uint32_t (**dump)[2], uint32_t *n_regs);
76 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
77 		uint32_t pipe_id, uint32_t queue_id);
78 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
79 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
80 				enum kfd_preempt_type reset_type,
81 				unsigned int utimeout, uint32_t pipe_id,
82 				uint32_t queue_id);
83 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
84 				unsigned int utimeout);
85 #if 0
86 static uint32_t get_watch_base_addr(struct amdgpu_device *adev);
87 #endif
88 static int kgd_address_watch_disable(struct kgd_dev *kgd);
89 static int kgd_address_watch_execute(struct kgd_dev *kgd,
90 					unsigned int watch_point_id,
91 					uint32_t cntl_val,
92 					uint32_t addr_hi,
93 					uint32_t addr_lo);
94 static int kgd_wave_control_execute(struct kgd_dev *kgd,
95 					uint32_t gfx_index_val,
96 					uint32_t sq_cmd);
97 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
98 					unsigned int watch_point_id,
99 					unsigned int reg_offset);
100 
101 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
102 		uint8_t vmid);
103 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
104 		uint8_t vmid);
105 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
106 		uint64_t page_table_base);
107 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
108 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
109 
110 /* Because of REG_GET_FIELD() being used, we put this function in the
111  * asic specific file.
112  */
113 static int amdgpu_amdkfd_get_tile_config(struct kgd_dev *kgd,
114 		struct tile_config *config)
115 {
116 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
117 
118 	config->gb_addr_config = adev->gfx.config.gb_addr_config;
119 #if 0
120 /* TODO - confirm REG_GET_FIELD x2, should be OK as is... but
121  * MC_ARB_RAMCFG register doesn't exist on Vega10 - initial amdgpu
122  * changes commented out related code, doing the same here for now but
123  * need to sync with Ken et al
124  */
125 	config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
126 				MC_ARB_RAMCFG, NOOFBANK);
127 	config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
128 				MC_ARB_RAMCFG, NOOFRANKS);
129 #endif
130 
131 	config->tile_config_ptr = adev->gfx.config.tile_mode_array;
132 	config->num_tile_configs =
133 			ARRAY_SIZE(adev->gfx.config.tile_mode_array);
134 	config->macro_tile_config_ptr =
135 			adev->gfx.config.macrotile_mode_array;
136 	config->num_macro_tile_configs =
137 			ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
138 
139 	return 0;
140 }
141 
142 static const struct kfd2kgd_calls kfd2kgd = {
143 	.program_sh_mem_settings = kgd_program_sh_mem_settings,
144 	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
145 	.init_interrupts = kgd_init_interrupts,
146 	.hqd_load = kgd_hqd_load,
147 	.hqd_sdma_load = kgd_hqd_sdma_load,
148 	.hqd_dump = kgd_hqd_dump,
149 	.hqd_sdma_dump = kgd_hqd_sdma_dump,
150 	.hqd_is_occupied = kgd_hqd_is_occupied,
151 	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
152 	.hqd_destroy = kgd_hqd_destroy,
153 	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
154 	.address_watch_disable = kgd_address_watch_disable,
155 	.address_watch_execute = kgd_address_watch_execute,
156 	.wave_control_execute = kgd_wave_control_execute,
157 	.address_watch_get_offset = kgd_address_watch_get_offset,
158 	.get_atc_vmid_pasid_mapping_pasid =
159 			get_atc_vmid_pasid_mapping_pasid,
160 	.get_atc_vmid_pasid_mapping_valid =
161 			get_atc_vmid_pasid_mapping_valid,
162 	.invalidate_tlbs = invalidate_tlbs,
163 	.invalidate_tlbs_vmid = invalidate_tlbs_vmid,
164 	.set_vm_context_page_table_base = set_vm_context_page_table_base,
165 	.get_tile_config = amdgpu_amdkfd_get_tile_config,
166 };
167 
168 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_10_0_get_functions()
169 {
170 	return (struct kfd2kgd_calls *)&kfd2kgd;
171 }
172 
173 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
174 {
175 	return (struct amdgpu_device *)kgd;
176 }
177 
178 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
179 			uint32_t queue, uint32_t vmid)
180 {
181 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
182 
183 	mutex_lock(&adev->srbm_mutex);
184 	nv_grbm_select(adev, mec, pipe, queue, vmid);
185 }
186 
187 static void unlock_srbm(struct kgd_dev *kgd)
188 {
189 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
190 
191 	nv_grbm_select(adev, 0, 0, 0, 0);
192 	mutex_unlock(&adev->srbm_mutex);
193 }
194 
195 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
196 				uint32_t queue_id)
197 {
198 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
199 
200 	uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
201 	uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
202 
203 	lock_srbm(kgd, mec, pipe, queue_id, 0);
204 }
205 
206 static uint32_t get_queue_mask(struct amdgpu_device *adev,
207 			       uint32_t pipe_id, uint32_t queue_id)
208 {
209 	unsigned int bit = (pipe_id * adev->gfx.mec.num_queue_per_pipe +
210 			    queue_id) & 31;
211 
212 	return ((uint32_t)1) << bit;
213 }
214 
215 static void release_queue(struct kgd_dev *kgd)
216 {
217 	unlock_srbm(kgd);
218 }
219 
220 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
221 					uint32_t sh_mem_config,
222 					uint32_t sh_mem_ape1_base,
223 					uint32_t sh_mem_ape1_limit,
224 					uint32_t sh_mem_bases)
225 {
226 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
227 
228 	lock_srbm(kgd, 0, 0, 0, vmid);
229 
230 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
231 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
232 	/* APE1 no longer exists on GFX9 */
233 
234 	unlock_srbm(kgd);
235 }
236 
237 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
238 					unsigned int vmid)
239 {
240 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
241 
242 	/*
243 	 * We have to assume that there is no outstanding mapping.
244 	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
245 	 * a mapping is in progress or because a mapping finished
246 	 * and the SW cleared it.
247 	 * So the protocol is to always wait & clear.
248 	 */
249 	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
250 			ATC_VMID0_PASID_MAPPING__VALID_MASK;
251 
252 	pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
253 	/*
254 	 * need to do this twice, once for gfx and once for mmhub
255 	 * for ATC add 16 to VMID for mmhub, for IH different registers.
256 	 * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
257 	 */
258 
259 	pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
260 	WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
261 	       pasid_mapping);
262 
263 #if 0
264 	/* TODO: uncomment this code when the hardware support is ready. */
265 	while (!(RREG32(SOC15_REG_OFFSET(
266 				ATHUB, 0,
267 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
268 		 (1U << vmid)))
269 		cpu_relax();
270 
271 	pr_debug("ATHUB mapping update finished\n");
272 	WREG32(SOC15_REG_OFFSET(ATHUB, 0,
273 				mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
274 	       1U << vmid);
275 #endif
276 
277 	/* Mapping vmid to pasid also for IH block */
278 	pr_debug("update mapping for IH block and mmhub");
279 	WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
280 	       pasid_mapping);
281 
282 	return 0;
283 }
284 
285 /* TODO - RING0 form of field is obsolete, seems to date back to SI
286  * but still works
287  */
288 
289 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
290 {
291 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
292 	uint32_t mec;
293 	uint32_t pipe;
294 
295 	mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
296 	pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
297 
298 	lock_srbm(kgd, mec, pipe, 0, 0);
299 
300 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
301 		CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
302 		CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
303 
304 	unlock_srbm(kgd);
305 
306 	return 0;
307 }
308 
309 static uint32_t get_sdma_base_addr(struct amdgpu_device *adev,
310 				unsigned int engine_id,
311 				unsigned int queue_id)
312 {
313 	uint32_t base[2] = {
314 		SOC15_REG_OFFSET(SDMA0, 0,
315 				 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
316 		/* On gfx10, mmSDMA1_xxx registers are defined NOT based
317 		 * on SDMA1 base address (dw 0x1860) but based on SDMA0
318 		 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
319 		 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
320 		 * below
321 		 */
322 		SOC15_REG_OFFSET(SDMA1, 0,
323 				 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
324 	};
325 	uint32_t retval;
326 
327 	retval = base[engine_id] + queue_id * (mmSDMA0_RLC1_RB_CNTL -
328 					       mmSDMA0_RLC0_RB_CNTL);
329 
330 	pr_debug("sdma base address: 0x%x\n", retval);
331 
332 	return retval;
333 }
334 
335 #if 0
336 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
337 {
338 	uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
339 			mmTCP_WATCH0_ADDR_H;
340 
341 	pr_debug("kfd: reg watch base address: 0x%x\n", retval);
342 
343 	return retval;
344 }
345 #endif
346 
347 static inline struct v10_compute_mqd *get_mqd(void *mqd)
348 {
349 	return (struct v10_compute_mqd *)mqd;
350 }
351 
352 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
353 {
354 	return (struct v10_sdma_mqd *)mqd;
355 }
356 
357 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
358 			uint32_t queue_id, uint32_t __user *wptr,
359 			uint32_t wptr_shift, uint32_t wptr_mask,
360 			struct mm_struct *mm)
361 {
362 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
363 	struct v10_compute_mqd *m;
364 	uint32_t *mqd_hqd;
365 	uint32_t reg, hqd_base, data;
366 
367 	m = get_mqd(mqd);
368 
369 	pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
370 	acquire_queue(kgd, pipe_id, queue_id);
371 
372 	/* HIQ is set during driver init period with vmid set to 0*/
373 	if (m->cp_hqd_vmid == 0) {
374 		uint32_t value, mec, pipe;
375 
376 		mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
377 		pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
378 
379 		pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
380 			mec, pipe, queue_id);
381 		value = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS));
382 		value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
383 			((mec << 5) | (pipe << 3) | queue_id | 0x80));
384 		WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS), value);
385 	}
386 
387 	/* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
388 	mqd_hqd = &m->cp_mqd_base_addr_lo;
389 	hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
390 
391 	for (reg = hqd_base;
392 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
393 		WREG32(reg, mqd_hqd[reg - hqd_base]);
394 
395 
396 	/* Activate doorbell logic before triggering WPTR poll. */
397 	data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
398 			     CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
399 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
400 
401 	if (wptr) {
402 		/* Don't read wptr with get_user because the user
403 		 * context may not be accessible (if this function
404 		 * runs in a work queue). Instead trigger a one-shot
405 		 * polling read from memory in the CP. This assumes
406 		 * that wptr is GPU-accessible in the queue's VMID via
407 		 * ATC or SVM. WPTR==RPTR before starting the poll so
408 		 * the CP starts fetching new commands from the right
409 		 * place.
410 		 *
411 		 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
412 		 * tricky. Assume that the queue didn't overflow. The
413 		 * number of valid bits in the 32-bit RPTR depends on
414 		 * the queue size. The remaining bits are taken from
415 		 * the saved 64-bit WPTR. If the WPTR wrapped, add the
416 		 * queue size.
417 		 */
418 		uint32_t queue_size =
419 			2 << REG_GET_FIELD(m->cp_hqd_pq_control,
420 					   CP_HQD_PQ_CONTROL, QUEUE_SIZE);
421 		uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
422 
423 		if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
424 			guessed_wptr += queue_size;
425 		guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
426 		guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
427 
428 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
429 		       lower_32_bits(guessed_wptr));
430 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
431 		       upper_32_bits(guessed_wptr));
432 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
433 		       lower_32_bits((uint64_t)wptr));
434 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
435 		       upper_32_bits((uint64_t)wptr));
436 		pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, get_queue_mask(adev, pipe_id, queue_id));
437 		WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
438 		       get_queue_mask(adev, pipe_id, queue_id));
439 	}
440 
441 	/* Start the EOP fetcher */
442 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
443 	       REG_SET_FIELD(m->cp_hqd_eop_rptr,
444 			     CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
445 
446 	data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
447 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
448 
449 	release_queue(kgd);
450 
451 	return 0;
452 }
453 
454 static int kgd_hqd_dump(struct kgd_dev *kgd,
455 			uint32_t pipe_id, uint32_t queue_id,
456 			uint32_t (**dump)[2], uint32_t *n_regs)
457 {
458 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
459 	uint32_t i = 0, reg;
460 #define HQD_N_REGS 56
461 #define DUMP_REG(addr) do {				\
462 		if (WARN_ON_ONCE(i >= HQD_N_REGS))	\
463 			break;				\
464 		(*dump)[i][0] = (addr) << 2;		\
465 		(*dump)[i++][1] = RREG32(addr);		\
466 	} while (0)
467 
468 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
469 	if (*dump == NULL)
470 		return -ENOMEM;
471 
472 	acquire_queue(kgd, pipe_id, queue_id);
473 
474 	for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
475 	     reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
476 		DUMP_REG(reg);
477 
478 	release_queue(kgd);
479 
480 	WARN_ON_ONCE(i != HQD_N_REGS);
481 	*n_regs = i;
482 
483 	return 0;
484 }
485 
486 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
487 			     uint32_t __user *wptr, struct mm_struct *mm)
488 {
489 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
490 	struct v10_sdma_mqd *m;
491 	uint32_t sdma_base_addr, sdmax_gfx_context_cntl;
492 	unsigned long end_jiffies;
493 	uint32_t data;
494 	uint64_t data64;
495 	uint64_t __user *wptr64 = (uint64_t __user *)wptr;
496 
497 	m = get_sdma_mqd(mqd);
498 	sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
499 					    m->sdma_queue_id);
500 	pr_debug("sdma load base addr %x for engine %d, queue %d\n", sdma_base_addr, m->sdma_engine_id, m->sdma_queue_id);
501 	sdmax_gfx_context_cntl = m->sdma_engine_id ?
502 		SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_CONTEXT_CNTL) :
503 		SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_CONTEXT_CNTL);
504 
505 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
506 		m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
507 
508 	end_jiffies = msecs_to_jiffies(2000) + jiffies;
509 	while (true) {
510 		data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
511 		if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
512 			break;
513 		if (time_after(jiffies, end_jiffies))
514 			return -ETIME;
515 		usleep_range(500, 1000);
516 	}
517 	data = RREG32(sdmax_gfx_context_cntl);
518 	data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
519 			     RESUME_CTX, 0);
520 	WREG32(sdmax_gfx_context_cntl, data);
521 
522 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL_OFFSET,
523 	       m->sdmax_rlcx_doorbell_offset);
524 
525 	data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
526 			     ENABLE, 1);
527 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
528 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
529 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI,
530 				m->sdmax_rlcx_rb_rptr_hi);
531 
532 	WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
533 	if (read_user_wptr(mm, wptr64, data64)) {
534 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
535 		       lower_32_bits(data64));
536 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
537 		       upper_32_bits(data64));
538 	} else {
539 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
540 		       m->sdmax_rlcx_rb_rptr);
541 		WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
542 		       m->sdmax_rlcx_rb_rptr_hi);
543 	}
544 	WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
545 
546 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
547 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
548 			m->sdmax_rlcx_rb_base_hi);
549 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
550 			m->sdmax_rlcx_rb_rptr_addr_lo);
551 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
552 			m->sdmax_rlcx_rb_rptr_addr_hi);
553 
554 	data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
555 			     RB_ENABLE, 1);
556 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
557 
558 	return 0;
559 }
560 
561 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
562 			     uint32_t engine_id, uint32_t queue_id,
563 			     uint32_t (**dump)[2], uint32_t *n_regs)
564 {
565 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
566 	uint32_t sdma_base_addr = get_sdma_base_addr(adev, engine_id, queue_id);
567 	uint32_t i = 0, reg;
568 #undef HQD_N_REGS
569 #define HQD_N_REGS (19+6+7+10)
570 
571 	pr_debug("sdma dump engine id %d queue_id %d\n", engine_id, queue_id);
572 	pr_debug("sdma base addr %x\n", sdma_base_addr);
573 
574 	*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
575 	if (*dump == NULL)
576 		return -ENOMEM;
577 
578 	for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
579 		DUMP_REG(sdma_base_addr + reg);
580 	for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
581 		DUMP_REG(sdma_base_addr + reg);
582 	for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
583 	     reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
584 		DUMP_REG(sdma_base_addr + reg);
585 	for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
586 	     reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
587 		DUMP_REG(sdma_base_addr + reg);
588 
589 	WARN_ON_ONCE(i != HQD_N_REGS);
590 	*n_regs = i;
591 
592 	return 0;
593 }
594 
595 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
596 				uint32_t pipe_id, uint32_t queue_id)
597 {
598 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
599 	uint32_t act;
600 	bool retval = false;
601 	uint32_t low, high;
602 
603 	acquire_queue(kgd, pipe_id, queue_id);
604 	act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
605 	if (act) {
606 		low = lower_32_bits(queue_address >> 8);
607 		high = upper_32_bits(queue_address >> 8);
608 
609 		if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
610 		   high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
611 			retval = true;
612 	}
613 	release_queue(kgd);
614 	return retval;
615 }
616 
617 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
618 {
619 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
620 	struct v10_sdma_mqd *m;
621 	uint32_t sdma_base_addr;
622 	uint32_t sdma_rlc_rb_cntl;
623 
624 	m = get_sdma_mqd(mqd);
625 	sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
626 					    m->sdma_queue_id);
627 
628 	sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
629 
630 	if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
631 		return true;
632 
633 	return false;
634 }
635 
636 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
637 				enum kfd_preempt_type reset_type,
638 				unsigned int utimeout, uint32_t pipe_id,
639 				uint32_t queue_id)
640 {
641 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
642 	enum hqd_dequeue_request_type type;
643 	unsigned long end_jiffies;
644 	uint32_t temp;
645 	struct v10_compute_mqd *m = get_mqd(mqd);
646 
647 #if 0
648 	unsigned long flags;
649 	int retry;
650 #endif
651 
652 	acquire_queue(kgd, pipe_id, queue_id);
653 
654 	if (m->cp_hqd_vmid == 0)
655 		WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
656 
657 	switch (reset_type) {
658 	case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
659 		type = DRAIN_PIPE;
660 		break;
661 	case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
662 		type = RESET_WAVES;
663 		break;
664 	default:
665 		type = DRAIN_PIPE;
666 		break;
667 	}
668 
669 #if 0 /* Is this still needed? */
670 	/* Workaround: If IQ timer is active and the wait time is close to or
671 	 * equal to 0, dequeueing is not safe. Wait until either the wait time
672 	 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
673 	 * cleared before continuing. Also, ensure wait times are set to at
674 	 * least 0x3.
675 	 */
676 	local_irq_save(flags);
677 	preempt_disable();
678 	retry = 5000; /* wait for 500 usecs at maximum */
679 	while (true) {
680 		temp = RREG32(mmCP_HQD_IQ_TIMER);
681 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
682 			pr_debug("HW is processing IQ\n");
683 			goto loop;
684 		}
685 		if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
686 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
687 					== 3) /* SEM-rearm is safe */
688 				break;
689 			/* Wait time 3 is safe for CP, but our MMIO read/write
690 			 * time is close to 1 microsecond, so check for 10 to
691 			 * leave more buffer room
692 			 */
693 			if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
694 					>= 10)
695 				break;
696 			pr_debug("IQ timer is active\n");
697 		} else
698 			break;
699 loop:
700 		if (!retry) {
701 			pr_err("CP HQD IQ timer status time out\n");
702 			break;
703 		}
704 		ndelay(100);
705 		--retry;
706 	}
707 	retry = 1000;
708 	while (true) {
709 		temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
710 		if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
711 			break;
712 		pr_debug("Dequeue request is pending\n");
713 
714 		if (!retry) {
715 			pr_err("CP HQD dequeue request time out\n");
716 			break;
717 		}
718 		ndelay(100);
719 		--retry;
720 	}
721 	local_irq_restore(flags);
722 	preempt_enable();
723 #endif
724 
725 	WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
726 
727 	end_jiffies = (utimeout * HZ / 1000) + jiffies;
728 	while (true) {
729 		temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
730 		if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
731 			break;
732 		if (time_after(jiffies, end_jiffies)) {
733 			pr_err("cp queue preemption time out.\n");
734 			release_queue(kgd);
735 			return -ETIME;
736 		}
737 		usleep_range(500, 1000);
738 	}
739 
740 	release_queue(kgd);
741 	return 0;
742 }
743 
744 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
745 				unsigned int utimeout)
746 {
747 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
748 	struct v10_sdma_mqd *m;
749 	uint32_t sdma_base_addr;
750 	uint32_t temp;
751 	unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
752 
753 	m = get_sdma_mqd(mqd);
754 	sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
755 					    m->sdma_queue_id);
756 
757 	temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
758 	temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
759 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
760 
761 	while (true) {
762 		temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
763 		if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
764 			break;
765 		if (time_after(jiffies, end_jiffies))
766 			return -ETIME;
767 		usleep_range(500, 1000);
768 	}
769 
770 	WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
771 	WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
772 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
773 		SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
774 
775 	m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
776 	m->sdmax_rlcx_rb_rptr_hi =
777 		RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI);
778 
779 	return 0;
780 }
781 
782 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
783 							uint8_t vmid)
784 {
785 	uint32_t reg;
786 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
787 
788 	reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
789 		     + vmid);
790 	return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
791 }
792 
793 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
794 								uint8_t vmid)
795 {
796 	uint32_t reg;
797 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
798 
799 	reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
800 		     + vmid);
801 	return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
802 }
803 
804 static int invalidate_tlbs_with_kiq(struct amdgpu_device *adev, uint16_t pasid)
805 {
806 	signed long r;
807 	uint32_t seq;
808 	struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
809 
810 	spin_lock(&adev->gfx.kiq.ring_lock);
811 	amdgpu_ring_alloc(ring, 12); /* fence + invalidate_tlbs package*/
812 	amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0));
813 	amdgpu_ring_write(ring,
814 			PACKET3_INVALIDATE_TLBS_DST_SEL(1) |
815 			PACKET3_INVALIDATE_TLBS_PASID(pasid));
816 	amdgpu_fence_emit_polling(ring, &seq);
817 	amdgpu_ring_commit(ring);
818 	spin_unlock(&adev->gfx.kiq.ring_lock);
819 
820 	r = amdgpu_fence_wait_polling(ring, seq, adev->usec_timeout);
821 	if (r < 1) {
822 		DRM_ERROR("wait for kiq fence error: %ld.\n", r);
823 		return -ETIME;
824 	}
825 
826 	return 0;
827 }
828 
829 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
830 {
831 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
832 	int vmid;
833 	struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
834 
835 	if (amdgpu_emu_mode == 0 && ring->sched.ready)
836 		return invalidate_tlbs_with_kiq(adev, pasid);
837 
838 	for (vmid = 0; vmid < 16; vmid++) {
839 		if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
840 			continue;
841 		if (get_atc_vmid_pasid_mapping_valid(kgd, vmid)) {
842 			if (get_atc_vmid_pasid_mapping_pasid(kgd, vmid)
843 				== pasid) {
844 				amdgpu_gmc_flush_gpu_tlb(adev, vmid,
845 						AMDGPU_GFXHUB_0, 0);
846 				break;
847 			}
848 		}
849 	}
850 
851 	return 0;
852 }
853 
854 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
855 {
856 	struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
857 
858 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
859 		pr_err("non kfd vmid %d\n", vmid);
860 		return 0;
861 	}
862 
863 	amdgpu_gmc_flush_gpu_tlb(adev, vmid, AMDGPU_GFXHUB_0, 0);
864 	return 0;
865 }
866 
867 static int kgd_address_watch_disable(struct kgd_dev *kgd)
868 {
869 	return 0;
870 }
871 
872 static int kgd_address_watch_execute(struct kgd_dev *kgd,
873 					unsigned int watch_point_id,
874 					uint32_t cntl_val,
875 					uint32_t addr_hi,
876 					uint32_t addr_lo)
877 {
878 	return 0;
879 }
880 
881 static int kgd_wave_control_execute(struct kgd_dev *kgd,
882 					uint32_t gfx_index_val,
883 					uint32_t sq_cmd)
884 {
885 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
886 	uint32_t data = 0;
887 
888 	mutex_lock(&adev->grbm_idx_mutex);
889 
890 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
891 	WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
892 
893 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
894 		INSTANCE_BROADCAST_WRITES, 1);
895 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
896 		SA_BROADCAST_WRITES, 1);
897 	data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
898 		SE_BROADCAST_WRITES, 1);
899 
900 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
901 	mutex_unlock(&adev->grbm_idx_mutex);
902 
903 	return 0;
904 }
905 
906 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
907 					unsigned int watch_point_id,
908 					unsigned int reg_offset)
909 {
910 	return 0;
911 }
912 
913 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
914 		uint64_t page_table_base)
915 {
916 	struct amdgpu_device *adev = get_amdgpu_device(kgd);
917 	uint64_t base = page_table_base | AMDGPU_PTE_VALID;
918 
919 	if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
920 		pr_err("trying to set page table base for wrong VMID %u\n",
921 		       vmid);
922 		return;
923 	}
924 
925 	/* TODO: take advantage of per-process address space size. For
926 	 * now, all processes share the same address space size, like
927 	 * on GFX8 and older.
928 	 */
929 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32) + (vmid*2), 0);
930 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32) + (vmid*2), 0);
931 
932 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32) + (vmid*2),
933 			lower_32_bits(adev->vm_manager.max_pfn - 1));
934 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32) + (vmid*2),
935 			upper_32_bits(adev->vm_manager.max_pfn - 1));
936 
937 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32) + (vmid*2), lower_32_bits(base));
938 	WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32) + (vmid*2), upper_32_bits(base));
939 }
940