1 /* 2 * Copyright 2019 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 #include <linux/mmu_context.h> 23 #include "amdgpu.h" 24 #include "amdgpu_amdkfd.h" 25 #include "gc/gc_10_1_0_offset.h" 26 #include "gc/gc_10_1_0_sh_mask.h" 27 #include "navi10_enum.h" 28 #include "athub/athub_2_0_0_offset.h" 29 #include "athub/athub_2_0_0_sh_mask.h" 30 #include "oss/osssys_5_0_0_offset.h" 31 #include "oss/osssys_5_0_0_sh_mask.h" 32 #include "soc15_common.h" 33 #include "v10_structs.h" 34 #include "nv.h" 35 #include "nvd.h" 36 #include "gfxhub_v2_0.h" 37 38 enum hqd_dequeue_request_type { 39 NO_ACTION = 0, 40 DRAIN_PIPE, 41 RESET_WAVES, 42 SAVE_WAVES 43 }; 44 45 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) 46 { 47 return (struct amdgpu_device *)kgd; 48 } 49 50 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, 51 uint32_t queue, uint32_t vmid) 52 { 53 struct amdgpu_device *adev = get_amdgpu_device(kgd); 54 55 mutex_lock(&adev->srbm_mutex); 56 nv_grbm_select(adev, mec, pipe, queue, vmid); 57 } 58 59 static void unlock_srbm(struct kgd_dev *kgd) 60 { 61 struct amdgpu_device *adev = get_amdgpu_device(kgd); 62 63 nv_grbm_select(adev, 0, 0, 0, 0); 64 mutex_unlock(&adev->srbm_mutex); 65 } 66 67 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, 68 uint32_t queue_id) 69 { 70 struct amdgpu_device *adev = get_amdgpu_device(kgd); 71 72 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 73 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 74 75 lock_srbm(kgd, mec, pipe, queue_id, 0); 76 } 77 78 static uint64_t get_queue_mask(struct amdgpu_device *adev, 79 uint32_t pipe_id, uint32_t queue_id) 80 { 81 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + 82 queue_id; 83 84 return 1ull << bit; 85 } 86 87 static void release_queue(struct kgd_dev *kgd) 88 { 89 unlock_srbm(kgd); 90 } 91 92 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, 93 uint32_t sh_mem_config, 94 uint32_t sh_mem_ape1_base, 95 uint32_t sh_mem_ape1_limit, 96 uint32_t sh_mem_bases) 97 { 98 struct amdgpu_device *adev = get_amdgpu_device(kgd); 99 100 lock_srbm(kgd, 0, 0, 0, vmid); 101 102 WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config); 103 WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases); 104 /* APE1 no longer exists on GFX9 */ 105 106 unlock_srbm(kgd); 107 } 108 109 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, 110 unsigned int vmid) 111 { 112 struct amdgpu_device *adev = get_amdgpu_device(kgd); 113 114 /* 115 * We have to assume that there is no outstanding mapping. 116 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because 117 * a mapping is in progress or because a mapping finished 118 * and the SW cleared it. 119 * So the protocol is to always wait & clear. 120 */ 121 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 122 ATC_VMID0_PASID_MAPPING__VALID_MASK; 123 124 pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping); 125 126 pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); 127 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, 128 pasid_mapping); 129 130 #if 0 131 /* TODO: uncomment this code when the hardware support is ready. */ 132 while (!(RREG32(SOC15_REG_OFFSET( 133 ATHUB, 0, 134 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & 135 (1U << vmid))) 136 cpu_relax(); 137 138 pr_debug("ATHUB mapping update finished\n"); 139 WREG32(SOC15_REG_OFFSET(ATHUB, 0, 140 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 141 1U << vmid); 142 #endif 143 144 /* Mapping vmid to pasid also for IH block */ 145 pr_debug("update mapping for IH block and mmhub"); 146 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, 147 pasid_mapping); 148 149 return 0; 150 } 151 152 /* TODO - RING0 form of field is obsolete, seems to date back to SI 153 * but still works 154 */ 155 156 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) 157 { 158 struct amdgpu_device *adev = get_amdgpu_device(kgd); 159 uint32_t mec; 160 uint32_t pipe; 161 162 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 163 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 164 165 lock_srbm(kgd, mec, pipe, 0, 0); 166 167 WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL), 168 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | 169 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); 170 171 unlock_srbm(kgd); 172 173 return 0; 174 } 175 176 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, 177 unsigned int engine_id, 178 unsigned int queue_id) 179 { 180 uint32_t sdma_engine_reg_base[2] = { 181 SOC15_REG_OFFSET(SDMA0, 0, 182 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL, 183 /* On gfx10, mmSDMA1_xxx registers are defined NOT based 184 * on SDMA1 base address (dw 0x1860) but based on SDMA0 185 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL 186 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc 187 * below 188 */ 189 SOC15_REG_OFFSET(SDMA1, 0, 190 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL 191 }; 192 193 uint32_t retval = sdma_engine_reg_base[engine_id] 194 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); 195 196 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, 197 queue_id, retval); 198 199 return retval; 200 } 201 202 #if 0 203 static uint32_t get_watch_base_addr(struct amdgpu_device *adev) 204 { 205 uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) - 206 mmTCP_WATCH0_ADDR_H; 207 208 pr_debug("kfd: reg watch base address: 0x%x\n", retval); 209 210 return retval; 211 } 212 #endif 213 214 static inline struct v10_compute_mqd *get_mqd(void *mqd) 215 { 216 return (struct v10_compute_mqd *)mqd; 217 } 218 219 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd) 220 { 221 return (struct v10_sdma_mqd *)mqd; 222 } 223 224 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, 225 uint32_t queue_id, uint32_t __user *wptr, 226 uint32_t wptr_shift, uint32_t wptr_mask, 227 struct mm_struct *mm) 228 { 229 struct amdgpu_device *adev = get_amdgpu_device(kgd); 230 struct v10_compute_mqd *m; 231 uint32_t *mqd_hqd; 232 uint32_t reg, hqd_base, data; 233 234 m = get_mqd(mqd); 235 236 pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id); 237 acquire_queue(kgd, pipe_id, queue_id); 238 239 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ 240 mqd_hqd = &m->cp_mqd_base_addr_lo; 241 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 242 243 for (reg = hqd_base; 244 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 245 WREG32(reg, mqd_hqd[reg - hqd_base]); 246 247 248 /* Activate doorbell logic before triggering WPTR poll. */ 249 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, 250 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); 251 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data); 252 253 if (wptr) { 254 /* Don't read wptr with get_user because the user 255 * context may not be accessible (if this function 256 * runs in a work queue). Instead trigger a one-shot 257 * polling read from memory in the CP. This assumes 258 * that wptr is GPU-accessible in the queue's VMID via 259 * ATC or SVM. WPTR==RPTR before starting the poll so 260 * the CP starts fetching new commands from the right 261 * place. 262 * 263 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit 264 * tricky. Assume that the queue didn't overflow. The 265 * number of valid bits in the 32-bit RPTR depends on 266 * the queue size. The remaining bits are taken from 267 * the saved 64-bit WPTR. If the WPTR wrapped, add the 268 * queue size. 269 */ 270 uint32_t queue_size = 271 2 << REG_GET_FIELD(m->cp_hqd_pq_control, 272 CP_HQD_PQ_CONTROL, QUEUE_SIZE); 273 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); 274 275 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) 276 guessed_wptr += queue_size; 277 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); 278 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; 279 280 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO), 281 lower_32_bits(guessed_wptr)); 282 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI), 283 upper_32_bits(guessed_wptr)); 284 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR), 285 lower_32_bits((uint64_t)wptr)); 286 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI), 287 upper_32_bits((uint64_t)wptr)); 288 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, 289 (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); 290 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1), 291 (uint32_t)get_queue_mask(adev, pipe_id, queue_id)); 292 } 293 294 /* Start the EOP fetcher */ 295 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR), 296 REG_SET_FIELD(m->cp_hqd_eop_rptr, 297 CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); 298 299 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); 300 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data); 301 302 release_queue(kgd); 303 304 return 0; 305 } 306 307 static int kgd_hiq_mqd_load(struct kgd_dev *kgd, void *mqd, 308 uint32_t pipe_id, uint32_t queue_id, 309 uint32_t doorbell_off) 310 { 311 struct amdgpu_device *adev = get_amdgpu_device(kgd); 312 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; 313 struct v10_compute_mqd *m; 314 uint32_t mec, pipe; 315 int r; 316 317 m = get_mqd(mqd); 318 319 acquire_queue(kgd, pipe_id, queue_id); 320 321 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; 322 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); 323 324 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", 325 mec, pipe, queue_id); 326 327 spin_lock(&adev->gfx.kiq.ring_lock); 328 r = amdgpu_ring_alloc(kiq_ring, 7); 329 if (r) { 330 pr_err("Failed to alloc KIQ (%d).\n", r); 331 goto out_unlock; 332 } 333 334 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); 335 amdgpu_ring_write(kiq_ring, 336 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ 337 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ 338 PACKET3_MAP_QUEUES_QUEUE(queue_id) | 339 PACKET3_MAP_QUEUES_PIPE(pipe) | 340 PACKET3_MAP_QUEUES_ME((mec - 1)) | 341 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ 342 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ 343 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ 344 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ 345 amdgpu_ring_write(kiq_ring, 346 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); 347 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); 348 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); 349 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); 350 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); 351 amdgpu_ring_commit(kiq_ring); 352 353 out_unlock: 354 spin_unlock(&adev->gfx.kiq.ring_lock); 355 release_queue(kgd); 356 357 return r; 358 } 359 360 static int kgd_hqd_dump(struct kgd_dev *kgd, 361 uint32_t pipe_id, uint32_t queue_id, 362 uint32_t (**dump)[2], uint32_t *n_regs) 363 { 364 struct amdgpu_device *adev = get_amdgpu_device(kgd); 365 uint32_t i = 0, reg; 366 #define HQD_N_REGS 56 367 #define DUMP_REG(addr) do { \ 368 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ 369 break; \ 370 (*dump)[i][0] = (addr) << 2; \ 371 (*dump)[i++][1] = RREG32(addr); \ 372 } while (0) 373 374 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); 375 if (*dump == NULL) 376 return -ENOMEM; 377 378 acquire_queue(kgd, pipe_id, queue_id); 379 380 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR); 381 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++) 382 DUMP_REG(reg); 383 384 release_queue(kgd); 385 386 WARN_ON_ONCE(i != HQD_N_REGS); 387 *n_regs = i; 388 389 return 0; 390 } 391 392 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd, 393 uint32_t __user *wptr, struct mm_struct *mm) 394 { 395 struct amdgpu_device *adev = get_amdgpu_device(kgd); 396 struct v10_sdma_mqd *m; 397 uint32_t sdma_rlc_reg_offset; 398 unsigned long end_jiffies; 399 uint32_t data; 400 uint64_t data64; 401 uint64_t __user *wptr64 = (uint64_t __user *)wptr; 402 403 m = get_sdma_mqd(mqd); 404 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 405 m->sdma_queue_id); 406 407 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 408 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); 409 410 end_jiffies = msecs_to_jiffies(2000) + jiffies; 411 while (true) { 412 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 413 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 414 break; 415 if (time_after(jiffies, end_jiffies)) { 416 pr_err("SDMA RLC not idle in %s\n", __func__); 417 return -ETIME; 418 } 419 usleep_range(500, 1000); 420 } 421 422 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET, 423 m->sdmax_rlcx_doorbell_offset); 424 425 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, 426 ENABLE, 1); 427 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); 428 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, 429 m->sdmax_rlcx_rb_rptr); 430 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI, 431 m->sdmax_rlcx_rb_rptr_hi); 432 433 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); 434 if (read_user_wptr(mm, wptr64, data64)) { 435 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 436 lower_32_bits(data64)); 437 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 438 upper_32_bits(data64)); 439 } else { 440 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, 441 m->sdmax_rlcx_rb_rptr); 442 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, 443 m->sdmax_rlcx_rb_rptr_hi); 444 } 445 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); 446 447 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); 448 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, 449 m->sdmax_rlcx_rb_base_hi); 450 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 451 m->sdmax_rlcx_rb_rptr_addr_lo); 452 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, 453 m->sdmax_rlcx_rb_rptr_addr_hi); 454 455 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, 456 RB_ENABLE, 1); 457 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); 458 459 return 0; 460 } 461 462 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd, 463 uint32_t engine_id, uint32_t queue_id, 464 uint32_t (**dump)[2], uint32_t *n_regs) 465 { 466 struct amdgpu_device *adev = get_amdgpu_device(kgd); 467 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, 468 engine_id, queue_id); 469 uint32_t i = 0, reg; 470 #undef HQD_N_REGS 471 #define HQD_N_REGS (19+6+7+10) 472 473 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL); 474 if (*dump == NULL) 475 return -ENOMEM; 476 477 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) 478 DUMP_REG(sdma_rlc_reg_offset + reg); 479 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) 480 DUMP_REG(sdma_rlc_reg_offset + reg); 481 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; 482 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) 483 DUMP_REG(sdma_rlc_reg_offset + reg); 484 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; 485 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) 486 DUMP_REG(sdma_rlc_reg_offset + reg); 487 488 WARN_ON_ONCE(i != HQD_N_REGS); 489 *n_regs = i; 490 491 return 0; 492 } 493 494 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, 495 uint32_t pipe_id, uint32_t queue_id) 496 { 497 struct amdgpu_device *adev = get_amdgpu_device(kgd); 498 uint32_t act; 499 bool retval = false; 500 uint32_t low, high; 501 502 acquire_queue(kgd, pipe_id, queue_id); 503 act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE)); 504 if (act) { 505 low = lower_32_bits(queue_address >> 8); 506 high = upper_32_bits(queue_address >> 8); 507 508 if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) && 509 high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI))) 510 retval = true; 511 } 512 release_queue(kgd); 513 return retval; 514 } 515 516 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) 517 { 518 struct amdgpu_device *adev = get_amdgpu_device(kgd); 519 struct v10_sdma_mqd *m; 520 uint32_t sdma_rlc_reg_offset; 521 uint32_t sdma_rlc_rb_cntl; 522 523 m = get_sdma_mqd(mqd); 524 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 525 m->sdma_queue_id); 526 527 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 528 529 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) 530 return true; 531 532 return false; 533 } 534 535 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, 536 enum kfd_preempt_type reset_type, 537 unsigned int utimeout, uint32_t pipe_id, 538 uint32_t queue_id) 539 { 540 struct amdgpu_device *adev = get_amdgpu_device(kgd); 541 enum hqd_dequeue_request_type type; 542 unsigned long end_jiffies; 543 uint32_t temp; 544 struct v10_compute_mqd *m = get_mqd(mqd); 545 546 #if 0 547 unsigned long flags; 548 int retry; 549 #endif 550 551 acquire_queue(kgd, pipe_id, queue_id); 552 553 if (m->cp_hqd_vmid == 0) 554 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0); 555 556 switch (reset_type) { 557 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: 558 type = DRAIN_PIPE; 559 break; 560 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: 561 type = RESET_WAVES; 562 break; 563 default: 564 type = DRAIN_PIPE; 565 break; 566 } 567 568 #if 0 /* Is this still needed? */ 569 /* Workaround: If IQ timer is active and the wait time is close to or 570 * equal to 0, dequeueing is not safe. Wait until either the wait time 571 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is 572 * cleared before continuing. Also, ensure wait times are set to at 573 * least 0x3. 574 */ 575 local_irq_save(flags); 576 preempt_disable(); 577 retry = 5000; /* wait for 500 usecs at maximum */ 578 while (true) { 579 temp = RREG32(mmCP_HQD_IQ_TIMER); 580 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) { 581 pr_debug("HW is processing IQ\n"); 582 goto loop; 583 } 584 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) { 585 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE) 586 == 3) /* SEM-rearm is safe */ 587 break; 588 /* Wait time 3 is safe for CP, but our MMIO read/write 589 * time is close to 1 microsecond, so check for 10 to 590 * leave more buffer room 591 */ 592 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME) 593 >= 10) 594 break; 595 pr_debug("IQ timer is active\n"); 596 } else 597 break; 598 loop: 599 if (!retry) { 600 pr_err("CP HQD IQ timer status time out\n"); 601 break; 602 } 603 ndelay(100); 604 --retry; 605 } 606 retry = 1000; 607 while (true) { 608 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST); 609 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK)) 610 break; 611 pr_debug("Dequeue request is pending\n"); 612 613 if (!retry) { 614 pr_err("CP HQD dequeue request time out\n"); 615 break; 616 } 617 ndelay(100); 618 --retry; 619 } 620 local_irq_restore(flags); 621 preempt_enable(); 622 #endif 623 624 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type); 625 626 end_jiffies = (utimeout * HZ / 1000) + jiffies; 627 while (true) { 628 temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE)); 629 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) 630 break; 631 if (time_after(jiffies, end_jiffies)) { 632 pr_err("cp queue preemption time out.\n"); 633 release_queue(kgd); 634 return -ETIME; 635 } 636 usleep_range(500, 1000); 637 } 638 639 release_queue(kgd); 640 return 0; 641 } 642 643 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, 644 unsigned int utimeout) 645 { 646 struct amdgpu_device *adev = get_amdgpu_device(kgd); 647 struct v10_sdma_mqd *m; 648 uint32_t sdma_rlc_reg_offset; 649 uint32_t temp; 650 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; 651 652 m = get_sdma_mqd(mqd); 653 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, 654 m->sdma_queue_id); 655 656 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); 657 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; 658 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); 659 660 while (true) { 661 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); 662 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) 663 break; 664 if (time_after(jiffies, end_jiffies)) { 665 pr_err("SDMA RLC not idle in %s\n", __func__); 666 return -ETIME; 667 } 668 usleep_range(500, 1000); 669 } 670 671 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); 672 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, 673 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | 674 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); 675 676 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); 677 m->sdmax_rlcx_rb_rptr_hi = 678 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI); 679 680 return 0; 681 } 682 683 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd, 684 uint8_t vmid, uint16_t *p_pasid) 685 { 686 uint32_t value; 687 struct amdgpu_device *adev = (struct amdgpu_device *) kgd; 688 689 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) 690 + vmid); 691 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; 692 693 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); 694 } 695 696 static int kgd_address_watch_disable(struct kgd_dev *kgd) 697 { 698 return 0; 699 } 700 701 static int kgd_address_watch_execute(struct kgd_dev *kgd, 702 unsigned int watch_point_id, 703 uint32_t cntl_val, 704 uint32_t addr_hi, 705 uint32_t addr_lo) 706 { 707 return 0; 708 } 709 710 static int kgd_wave_control_execute(struct kgd_dev *kgd, 711 uint32_t gfx_index_val, 712 uint32_t sq_cmd) 713 { 714 struct amdgpu_device *adev = get_amdgpu_device(kgd); 715 uint32_t data = 0; 716 717 mutex_lock(&adev->grbm_idx_mutex); 718 719 WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val); 720 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd); 721 722 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 723 INSTANCE_BROADCAST_WRITES, 1); 724 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 725 SA_BROADCAST_WRITES, 1); 726 data = REG_SET_FIELD(data, GRBM_GFX_INDEX, 727 SE_BROADCAST_WRITES, 1); 728 729 WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data); 730 mutex_unlock(&adev->grbm_idx_mutex); 731 732 return 0; 733 } 734 735 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, 736 unsigned int watch_point_id, 737 unsigned int reg_offset) 738 { 739 return 0; 740 } 741 742 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid, 743 uint64_t page_table_base) 744 { 745 struct amdgpu_device *adev = get_amdgpu_device(kgd); 746 747 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { 748 pr_err("trying to set page table base for wrong VMID %u\n", 749 vmid); 750 return; 751 } 752 753 /* SDMA is on gfxhub as well for Navi1* series */ 754 gfxhub_v2_0_setup_vm_pt_regs(adev, vmid, page_table_base); 755 } 756 757 const struct kfd2kgd_calls gfx_v10_kfd2kgd = { 758 .program_sh_mem_settings = kgd_program_sh_mem_settings, 759 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, 760 .init_interrupts = kgd_init_interrupts, 761 .hqd_load = kgd_hqd_load, 762 .hiq_mqd_load = kgd_hiq_mqd_load, 763 .hqd_sdma_load = kgd_hqd_sdma_load, 764 .hqd_dump = kgd_hqd_dump, 765 .hqd_sdma_dump = kgd_hqd_sdma_dump, 766 .hqd_is_occupied = kgd_hqd_is_occupied, 767 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, 768 .hqd_destroy = kgd_hqd_destroy, 769 .hqd_sdma_destroy = kgd_hqd_sdma_destroy, 770 .address_watch_disable = kgd_address_watch_disable, 771 .address_watch_execute = kgd_address_watch_execute, 772 .wave_control_execute = kgd_wave_control_execute, 773 .address_watch_get_offset = kgd_address_watch_get_offset, 774 .get_atc_vmid_pasid_mapping_info = 775 get_atc_vmid_pasid_mapping_info, 776 .set_vm_context_page_table_base = set_vm_context_page_table_base, 777 .get_hive_id = amdgpu_amdkfd_get_hive_id, 778 .get_unique_id = amdgpu_amdkfd_get_unique_id, 779 }; 780