xref: /openbmc/linux/drivers/fsi/fsi-occ.c (revision 0ea33321)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/device.h>
4 #include <linux/err.h>
5 #include <linux/errno.h>
6 #include <linux/fs.h>
7 #include <linux/fsi-sbefifo.h>
8 #include <linux/gfp.h>
9 #include <linux/idr.h>
10 #include <linux/kernel.h>
11 #include <linux/list.h>
12 #include <linux/miscdevice.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/fsi-occ.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/uaccess.h>
22 #include <asm/unaligned.h>
23 
24 #define OCC_SRAM_BYTES		4096
25 #define OCC_CMD_DATA_BYTES	4090
26 #define OCC_RESP_DATA_BYTES	4089
27 
28 #define OCC_P9_SRAM_CMD_ADDR	0xFFFBE000
29 #define OCC_P9_SRAM_RSP_ADDR	0xFFFBF000
30 
31 #define OCC_P10_SRAM_CMD_ADDR	0xFFFFD000
32 #define OCC_P10_SRAM_RSP_ADDR	0xFFFFE000
33 
34 #define OCC_P10_SRAM_MODE	0x58	/* Normal mode, OCB channel 2 */
35 
36 /*
37  * Assume we don't have much FFDC, if we do we'll overflow and
38  * fail the command. This needs to be big enough for simple
39  * commands as well.
40  */
41 #define OCC_SBE_STATUS_WORDS	32
42 
43 #define OCC_TIMEOUT_MS		1000
44 #define OCC_CMD_IN_PRG_WAIT_MS	50
45 
46 enum versions { occ_p9, occ_p10 };
47 
48 struct occ {
49 	struct device *dev;
50 	struct device *sbefifo;
51 	char name[32];
52 	int idx;
53 	enum versions version;
54 	struct miscdevice mdev;
55 	struct mutex occ_lock;
56 };
57 
58 #define to_occ(x)	container_of((x), struct occ, mdev)
59 
60 struct occ_response {
61 	u8 seq_no;
62 	u8 cmd_type;
63 	u8 return_status;
64 	__be16 data_length;
65 	u8 data[OCC_RESP_DATA_BYTES + 2];	/* two bytes checksum */
66 } __packed;
67 
68 struct occ_client {
69 	struct occ *occ;
70 	struct mutex lock;
71 	size_t data_size;
72 	size_t read_offset;
73 	u8 *buffer;
74 };
75 
76 #define to_client(x)	container_of((x), struct occ_client, xfr)
77 
78 static DEFINE_IDA(occ_ida);
79 
80 static int occ_open(struct inode *inode, struct file *file)
81 {
82 	struct occ_client *client = kzalloc(sizeof(*client), GFP_KERNEL);
83 	struct miscdevice *mdev = file->private_data;
84 	struct occ *occ = to_occ(mdev);
85 
86 	if (!client)
87 		return -ENOMEM;
88 
89 	client->buffer = (u8 *)__get_free_page(GFP_KERNEL);
90 	if (!client->buffer) {
91 		kfree(client);
92 		return -ENOMEM;
93 	}
94 
95 	client->occ = occ;
96 	mutex_init(&client->lock);
97 	file->private_data = client;
98 
99 	/* We allocate a 1-page buffer, make sure it all fits */
100 	BUILD_BUG_ON((OCC_CMD_DATA_BYTES + 3) > PAGE_SIZE);
101 	BUILD_BUG_ON((OCC_RESP_DATA_BYTES + 7) > PAGE_SIZE);
102 
103 	return 0;
104 }
105 
106 static ssize_t occ_read(struct file *file, char __user *buf, size_t len,
107 			loff_t *offset)
108 {
109 	struct occ_client *client = file->private_data;
110 	ssize_t rc = 0;
111 
112 	if (!client)
113 		return -ENODEV;
114 
115 	if (len > OCC_SRAM_BYTES)
116 		return -EINVAL;
117 
118 	mutex_lock(&client->lock);
119 
120 	/* This should not be possible ... */
121 	if (WARN_ON_ONCE(client->read_offset > client->data_size)) {
122 		rc = -EIO;
123 		goto done;
124 	}
125 
126 	/* Grab how much data we have to read */
127 	rc = min(len, client->data_size - client->read_offset);
128 	if (copy_to_user(buf, client->buffer + client->read_offset, rc))
129 		rc = -EFAULT;
130 	else
131 		client->read_offset += rc;
132 
133  done:
134 	mutex_unlock(&client->lock);
135 
136 	return rc;
137 }
138 
139 static ssize_t occ_write(struct file *file, const char __user *buf,
140 			 size_t len, loff_t *offset)
141 {
142 	struct occ_client *client = file->private_data;
143 	size_t rlen, data_length;
144 	u16 checksum = 0;
145 	ssize_t rc, i;
146 	u8 *cmd;
147 
148 	if (!client)
149 		return -ENODEV;
150 
151 	if (len > (OCC_CMD_DATA_BYTES + 3) || len < 3)
152 		return -EINVAL;
153 
154 	mutex_lock(&client->lock);
155 
156 	/* Construct the command */
157 	cmd = client->buffer;
158 
159 	/* Sequence number (we could increment and compare with response) */
160 	cmd[0] = 1;
161 
162 	/*
163 	 * Copy the user command (assume user data follows the occ command
164 	 * format)
165 	 * byte 0: command type
166 	 * bytes 1-2: data length (msb first)
167 	 * bytes 3-n: data
168 	 */
169 	if (copy_from_user(&cmd[1], buf, len)) {
170 		rc = -EFAULT;
171 		goto done;
172 	}
173 
174 	/* Extract data length */
175 	data_length = (cmd[2] << 8) + cmd[3];
176 	if (data_length > OCC_CMD_DATA_BYTES) {
177 		rc = -EINVAL;
178 		goto done;
179 	}
180 
181 	/* Calculate checksum */
182 	for (i = 0; i < data_length + 4; ++i)
183 		checksum += cmd[i];
184 
185 	cmd[data_length + 4] = checksum >> 8;
186 	cmd[data_length + 5] = checksum & 0xFF;
187 
188 	/* Submit command */
189 	rlen = PAGE_SIZE;
190 	rc = fsi_occ_submit(client->occ->dev, cmd, data_length + 6, cmd,
191 			    &rlen);
192 	if (rc)
193 		goto done;
194 
195 	/* Set read tracking data */
196 	client->data_size = rlen;
197 	client->read_offset = 0;
198 
199 	/* Done */
200 	rc = len;
201 
202  done:
203 	mutex_unlock(&client->lock);
204 
205 	return rc;
206 }
207 
208 static int occ_release(struct inode *inode, struct file *file)
209 {
210 	struct occ_client *client = file->private_data;
211 
212 	free_page((unsigned long)client->buffer);
213 	kfree(client);
214 
215 	return 0;
216 }
217 
218 static const struct file_operations occ_fops = {
219 	.owner = THIS_MODULE,
220 	.open = occ_open,
221 	.read = occ_read,
222 	.write = occ_write,
223 	.release = occ_release,
224 };
225 
226 static int occ_verify_checksum(struct occ_response *resp, u16 data_length)
227 {
228 	/* Fetch the two bytes after the data for the checksum. */
229 	u16 checksum_resp = get_unaligned_be16(&resp->data[data_length]);
230 	u16 checksum;
231 	u16 i;
232 
233 	checksum = resp->seq_no;
234 	checksum += resp->cmd_type;
235 	checksum += resp->return_status;
236 	checksum += (data_length >> 8) + (data_length & 0xFF);
237 
238 	for (i = 0; i < data_length; ++i)
239 		checksum += resp->data[i];
240 
241 	if (checksum != checksum_resp)
242 		return -EBADMSG;
243 
244 	return 0;
245 }
246 
247 static int occ_getsram(struct occ *occ, u32 offset, void *data, ssize_t len)
248 {
249 	u32 data_len = ((len + 7) / 8) * 8;	/* must be multiples of 8 B */
250 	size_t cmd_len, resp_len, resp_data_len;
251 	__be32 *resp, cmd[6];
252 	int idx = 0, rc;
253 
254 	/*
255 	 * Magic sequence to do SBE getsram command. SBE will fetch data from
256 	 * specified SRAM address.
257 	 */
258 	switch (occ->version) {
259 	default:
260 	case occ_p9:
261 		cmd_len = 5;
262 		cmd[2] = cpu_to_be32(1);	/* Normal mode */
263 		cmd[3] = cpu_to_be32(OCC_P9_SRAM_RSP_ADDR + offset);
264 		break;
265 	case occ_p10:
266 		idx = 1;
267 		cmd_len = 6;
268 		cmd[2] = cpu_to_be32(OCC_P10_SRAM_MODE);
269 		cmd[3] = 0;
270 		cmd[4] = cpu_to_be32(OCC_P10_SRAM_RSP_ADDR + offset);
271 		break;
272 	}
273 
274 	cmd[0] = cpu_to_be32(cmd_len);
275 	cmd[1] = cpu_to_be32(SBEFIFO_CMD_GET_OCC_SRAM);
276 	cmd[4 + idx] = cpu_to_be32(data_len);
277 
278 	resp_len = (data_len >> 2) + OCC_SBE_STATUS_WORDS;
279 	resp = kzalloc(resp_len << 2, GFP_KERNEL);
280 	if (!resp)
281 		return -ENOMEM;
282 
283 	rc = sbefifo_submit(occ->sbefifo, cmd, cmd_len, resp, &resp_len);
284 	if (rc)
285 		goto free;
286 
287 	rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_GET_OCC_SRAM,
288 				  resp, resp_len, &resp_len);
289 	if (rc)
290 		goto free;
291 
292 	resp_data_len = be32_to_cpu(resp[resp_len - 1]);
293 	if (resp_data_len != data_len) {
294 		dev_err(occ->dev, "SRAM read expected %d bytes got %zd\n",
295 			data_len, resp_data_len);
296 		rc = -EBADMSG;
297 	} else {
298 		memcpy(data, resp, len);
299 	}
300 
301 free:
302 	/* Convert positive SBEI status */
303 	if (rc > 0) {
304 		dev_err(occ->dev, "SRAM read returned failure status: %08x\n",
305 			rc);
306 		rc = -EBADMSG;
307 	}
308 
309 	kfree(resp);
310 	return rc;
311 }
312 
313 static int occ_putsram(struct occ *occ, const void *data, ssize_t len)
314 {
315 	size_t cmd_len, buf_len, resp_len, resp_data_len;
316 	u32 data_len = ((len + 7) / 8) * 8;	/* must be multiples of 8 B */
317 	__be32 *buf;
318 	int idx = 0, rc;
319 
320 	cmd_len = (occ->version == occ_p10) ? 6 : 5;
321 
322 	/*
323 	 * We use the same buffer for command and response, make
324 	 * sure it's big enough
325 	 */
326 	resp_len = OCC_SBE_STATUS_WORDS;
327 	cmd_len += data_len >> 2;
328 	buf_len = max(cmd_len, resp_len);
329 	buf = kzalloc(buf_len << 2, GFP_KERNEL);
330 	if (!buf)
331 		return -ENOMEM;
332 
333 	/*
334 	 * Magic sequence to do SBE putsram command. SBE will transfer
335 	 * data to specified SRAM address.
336 	 */
337 	buf[0] = cpu_to_be32(cmd_len);
338 	buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM);
339 
340 	switch (occ->version) {
341 	default:
342 	case occ_p9:
343 		buf[2] = cpu_to_be32(1);	/* Normal mode */
344 		buf[3] = cpu_to_be32(OCC_P9_SRAM_CMD_ADDR);
345 		break;
346 	case occ_p10:
347 		idx = 1;
348 		buf[2] = cpu_to_be32(OCC_P10_SRAM_MODE);
349 		buf[3] = 0;
350 		buf[4] = cpu_to_be32(OCC_P10_SRAM_CMD_ADDR);
351 		break;
352 	}
353 
354 	buf[4 + idx] = cpu_to_be32(data_len);
355 	memcpy(&buf[5 + idx], data, len);
356 
357 	rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len);
358 	if (rc)
359 		goto free;
360 
361 	rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM,
362 				  buf, resp_len, &resp_len);
363 	if (rc)
364 		goto free;
365 
366 	if (resp_len != 1) {
367 		dev_err(occ->dev, "SRAM write response length invalid: %zd\n",
368 			resp_len);
369 		rc = -EBADMSG;
370 	} else {
371 		resp_data_len = be32_to_cpu(buf[0]);
372 		if (resp_data_len != data_len) {
373 			dev_err(occ->dev,
374 				"SRAM write expected %d bytes got %zd\n",
375 				data_len, resp_data_len);
376 			rc = -EBADMSG;
377 		}
378 	}
379 
380 free:
381 	/* Convert positive SBEI status */
382 	if (rc > 0) {
383 		dev_err(occ->dev, "SRAM write returned failure status: %08x\n",
384 			rc);
385 		rc = -EBADMSG;
386 	}
387 
388 	kfree(buf);
389 	return rc;
390 }
391 
392 static int occ_trigger_attn(struct occ *occ)
393 {
394 	__be32 buf[OCC_SBE_STATUS_WORDS];
395 	size_t cmd_len, resp_len, resp_data_len;
396 	int idx = 0, rc;
397 
398 	BUILD_BUG_ON(OCC_SBE_STATUS_WORDS < 8);
399 	resp_len = OCC_SBE_STATUS_WORDS;
400 
401 	switch (occ->version) {
402 	default:
403 	case occ_p9:
404 		cmd_len = 7;
405 		buf[2] = cpu_to_be32(3); /* Circular mode */
406 		buf[3] = 0;
407 		break;
408 	case occ_p10:
409 		idx = 1;
410 		cmd_len = 8;
411 		buf[2] = cpu_to_be32(0xd0); /* Circular mode, OCB Channel 1 */
412 		buf[3] = 0;
413 		buf[4] = 0;
414 		break;
415 	}
416 
417 	buf[0] = cpu_to_be32(cmd_len);		/* Chip-op length in words */
418 	buf[1] = cpu_to_be32(SBEFIFO_CMD_PUT_OCC_SRAM);
419 	buf[4 + idx] = cpu_to_be32(8);		/* Data length in bytes */
420 	buf[5 + idx] = cpu_to_be32(0x20010000);	/* Trigger OCC attention */
421 	buf[6 + idx] = 0;
422 
423 	rc = sbefifo_submit(occ->sbefifo, buf, cmd_len, buf, &resp_len);
424 	if (rc)
425 		goto error;
426 
427 	rc = sbefifo_parse_status(occ->sbefifo, SBEFIFO_CMD_PUT_OCC_SRAM,
428 				  buf, resp_len, &resp_len);
429 	if (rc)
430 		goto error;
431 
432 	if (resp_len != 1) {
433 		dev_err(occ->dev, "SRAM attn response length invalid: %zd\n",
434 			resp_len);
435 		rc = -EBADMSG;
436 	} else {
437 		resp_data_len = be32_to_cpu(buf[0]);
438 		if (resp_data_len != 8) {
439 			dev_err(occ->dev,
440 				"SRAM attn expected 8 bytes got %zd\n",
441 				resp_data_len);
442 			rc = -EBADMSG;
443 		}
444 	}
445 
446  error:
447 	/* Convert positive SBEI status */
448 	if (rc > 0) {
449 		dev_err(occ->dev, "SRAM attn returned failure status: %08x\n",
450 			rc);
451 		rc = -EBADMSG;
452 	}
453 
454 	return rc;
455 }
456 
457 int fsi_occ_submit(struct device *dev, const void *request, size_t req_len,
458 		   void *response, size_t *resp_len)
459 {
460 	const unsigned long timeout = msecs_to_jiffies(OCC_TIMEOUT_MS);
461 	const unsigned long wait_time =
462 		msecs_to_jiffies(OCC_CMD_IN_PRG_WAIT_MS);
463 	struct occ *occ = dev_get_drvdata(dev);
464 	struct occ_response *resp = response;
465 	u8 seq_no;
466 	u16 resp_data_length;
467 	unsigned long start;
468 	int rc;
469 
470 	if (!occ)
471 		return -ENODEV;
472 
473 	if (*resp_len < 7) {
474 		dev_dbg(dev, "Bad resplen %zd\n", *resp_len);
475 		return -EINVAL;
476 	}
477 
478 	mutex_lock(&occ->occ_lock);
479 
480 	/* Extract the seq_no from the command (first byte) */
481 	seq_no = *(const u8 *)request;
482 	rc = occ_putsram(occ, request, req_len);
483 	if (rc)
484 		goto done;
485 
486 	rc = occ_trigger_attn(occ);
487 	if (rc)
488 		goto done;
489 
490 	/* Read occ response header */
491 	start = jiffies;
492 	do {
493 		rc = occ_getsram(occ, 0, resp, 8);
494 		if (rc)
495 			goto done;
496 
497 		if (resp->return_status == OCC_RESP_CMD_IN_PRG ||
498 		    resp->seq_no != seq_no) {
499 			rc = -ETIMEDOUT;
500 
501 			if (time_after(jiffies, start + timeout)) {
502 				dev_err(occ->dev, "resp timeout status=%02x "
503 					"resp seq_no=%d our seq_no=%d\n",
504 					resp->return_status, resp->seq_no,
505 					seq_no);
506 				goto done;
507 			}
508 
509 			set_current_state(TASK_UNINTERRUPTIBLE);
510 			schedule_timeout(wait_time);
511 		}
512 	} while (rc);
513 
514 	/* Extract size of response data */
515 	resp_data_length = get_unaligned_be16(&resp->data_length);
516 
517 	/* Message size is data length + 5 bytes header + 2 bytes checksum */
518 	if ((resp_data_length + 7) > *resp_len) {
519 		rc = -EMSGSIZE;
520 		goto done;
521 	}
522 
523 	dev_dbg(dev, "resp_status=%02x resp_data_len=%d\n",
524 		resp->return_status, resp_data_length);
525 
526 	/* Grab the rest */
527 	if (resp_data_length > 1) {
528 		/* already got 3 bytes resp, also need 2 bytes checksum */
529 		rc = occ_getsram(occ, 8, &resp->data[3], resp_data_length - 1);
530 		if (rc)
531 			goto done;
532 	}
533 
534 	*resp_len = resp_data_length + 7;
535 	rc = occ_verify_checksum(resp, resp_data_length);
536 
537  done:
538 	mutex_unlock(&occ->occ_lock);
539 
540 	return rc;
541 }
542 EXPORT_SYMBOL_GPL(fsi_occ_submit);
543 
544 static int occ_unregister_child(struct device *dev, void *data)
545 {
546 	struct platform_device *hwmon_dev = to_platform_device(dev);
547 
548 	platform_device_unregister(hwmon_dev);
549 
550 	return 0;
551 }
552 
553 static int occ_probe(struct platform_device *pdev)
554 {
555 	int rc;
556 	u32 reg;
557 	struct occ *occ;
558 	struct platform_device *hwmon_dev;
559 	struct device *dev = &pdev->dev;
560 	struct platform_device_info hwmon_dev_info = {
561 		.parent = dev,
562 		.name = "occ-hwmon",
563 	};
564 
565 	occ = devm_kzalloc(dev, sizeof(*occ), GFP_KERNEL);
566 	if (!occ)
567 		return -ENOMEM;
568 
569 	occ->version = (uintptr_t)of_device_get_match_data(dev);
570 	occ->dev = dev;
571 	occ->sbefifo = dev->parent;
572 	mutex_init(&occ->occ_lock);
573 
574 	if (dev->of_node) {
575 		rc = of_property_read_u32(dev->of_node, "reg", &reg);
576 		if (!rc) {
577 			/* make sure we don't have a duplicate from dts */
578 			occ->idx = ida_simple_get(&occ_ida, reg, reg + 1,
579 						  GFP_KERNEL);
580 			if (occ->idx < 0)
581 				occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX,
582 							  GFP_KERNEL);
583 		} else {
584 			occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX,
585 						  GFP_KERNEL);
586 		}
587 	} else {
588 		occ->idx = ida_simple_get(&occ_ida, 1, INT_MAX, GFP_KERNEL);
589 	}
590 
591 	platform_set_drvdata(pdev, occ);
592 
593 	snprintf(occ->name, sizeof(occ->name), "occ%d", occ->idx);
594 	occ->mdev.fops = &occ_fops;
595 	occ->mdev.minor = MISC_DYNAMIC_MINOR;
596 	occ->mdev.name = occ->name;
597 	occ->mdev.parent = dev;
598 
599 	rc = misc_register(&occ->mdev);
600 	if (rc) {
601 		dev_err(dev, "failed to register miscdevice: %d\n", rc);
602 		ida_simple_remove(&occ_ida, occ->idx);
603 		return rc;
604 	}
605 
606 	hwmon_dev_info.id = occ->idx;
607 	hwmon_dev = platform_device_register_full(&hwmon_dev_info);
608 	if (IS_ERR(hwmon_dev))
609 		dev_warn(dev, "failed to create hwmon device\n");
610 
611 	return 0;
612 }
613 
614 static int occ_remove(struct platform_device *pdev)
615 {
616 	struct occ *occ = platform_get_drvdata(pdev);
617 
618 	misc_deregister(&occ->mdev);
619 
620 	device_for_each_child(&pdev->dev, NULL, occ_unregister_child);
621 
622 	ida_simple_remove(&occ_ida, occ->idx);
623 
624 	return 0;
625 }
626 
627 static const struct of_device_id occ_match[] = {
628 	{
629 		.compatible = "ibm,p9-occ",
630 		.data = (void *)occ_p9
631 	},
632 	{
633 		.compatible = "ibm,p10-occ",
634 		.data = (void *)occ_p10
635 	},
636 	{ },
637 };
638 
639 static struct platform_driver occ_driver = {
640 	.driver = {
641 		.name = "occ",
642 		.of_match_table	= occ_match,
643 	},
644 	.probe	= occ_probe,
645 	.remove = occ_remove,
646 };
647 
648 static int occ_init(void)
649 {
650 	return platform_driver_register(&occ_driver);
651 }
652 
653 static void occ_exit(void)
654 {
655 	platform_driver_unregister(&occ_driver);
656 
657 	ida_destroy(&occ_ida);
658 }
659 
660 module_init(occ_init);
661 module_exit(occ_exit);
662 
663 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
664 MODULE_DESCRIPTION("BMC P9 OCC driver");
665 MODULE_LICENSE("GPL");
666