xref: /openbmc/linux/drivers/fsi/fsi-master-hub.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FSI hub master driver
4  *
5  * Copyright (C) IBM Corporation 2016
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/fsi.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 
14 #include "fsi-master.h"
15 
16 /* Control Registers */
17 #define FSI_MMODE		0x0		/* R/W: mode */
18 #define FSI_MDLYR		0x4		/* R/W: delay */
19 #define FSI_MCRSP		0x8		/* R/W: clock rate */
20 #define FSI_MENP0		0x10		/* R/W: enable */
21 #define FSI_MLEVP0		0x18		/* R: plug detect */
22 #define FSI_MSENP0		0x18		/* S: Set enable */
23 #define FSI_MCENP0		0x20		/* C: Clear enable */
24 #define FSI_MAEB		0x70		/* R: Error address */
25 #define FSI_MVER		0x74		/* R: master version/type */
26 #define FSI_MRESP0		0xd0		/* W: Port reset */
27 #define FSI_MESRB0		0x1d0		/* R: Master error status */
28 #define FSI_MRESB0		0x1d0		/* W: Reset bridge */
29 #define FSI_MECTRL		0x2e0		/* W: Error control */
30 
31 /* MMODE: Mode control */
32 #define FSI_MMODE_EIP		0x80000000	/* Enable interrupt polling */
33 #define FSI_MMODE_ECRC		0x40000000	/* Enable error recovery */
34 #define FSI_MMODE_EPC		0x10000000	/* Enable parity checking */
35 #define FSI_MMODE_P8_TO_LSB	0x00000010	/* Timeout value LSB */
36 						/*   MSB=1, LSB=0 is 0.8 ms */
37 						/*   MSB=0, LSB=1 is 0.9 ms */
38 #define FSI_MMODE_CRS0SHFT	18		/* Clk rate selection 0 shift */
39 #define FSI_MMODE_CRS0MASK	0x3ff		/* Clk rate selection 0 mask */
40 #define FSI_MMODE_CRS1SHFT	8		/* Clk rate selection 1 shift */
41 #define FSI_MMODE_CRS1MASK	0x3ff		/* Clk rate selection 1 mask */
42 
43 /* MRESB: Reset brindge */
44 #define FSI_MRESB_RST_GEN	0x80000000	/* General reset */
45 #define FSI_MRESB_RST_ERR	0x40000000	/* Error Reset */
46 
47 /* MRESB: Reset port */
48 #define FSI_MRESP_RST_ALL_MASTER 0x20000000	/* Reset all FSI masters */
49 #define FSI_MRESP_RST_ALL_LINK	0x10000000	/* Reset all FSI port contr. */
50 #define FSI_MRESP_RST_MCR	0x08000000	/* Reset FSI master reg. */
51 #define FSI_MRESP_RST_PYE	0x04000000	/* Reset FSI parity error */
52 #define FSI_MRESP_RST_ALL	0xfc000000	/* Reset any error */
53 
54 /* MECTRL: Error control */
55 #define FSI_MECTRL_EOAE		0x8000		/* Enable machine check when */
56 						/* master 0 in error */
57 #define FSI_MECTRL_P8_AUTO_TERM	0x4000		/* Auto terminate */
58 
59 #define FSI_ENGID_HUB_MASTER		0x1c
60 #define FSI_HUB_LINK_OFFSET		0x80000
61 #define FSI_HUB_LINK_SIZE		0x80000
62 #define FSI_HUB_MASTER_MAX_LINKS	8
63 
64 #define FSI_LINK_ENABLE_SETUP_TIME	10	/* in mS */
65 
66 /*
67  * FSI hub master support
68  *
69  * A hub master increases the number of potential target devices that the
70  * primary FSI master can access. For each link a primary master supports,
71  * each of those links can in turn be chained to a hub master with multiple
72  * links of its own.
73  *
74  * The hub is controlled by a set of control registers exposed as a regular fsi
75  * device (the hub->upstream device), and provides access to the downstream FSI
76  * bus as through an address range on the slave itself (->addr and ->size).
77  *
78  * [This differs from "cascaded" masters, which expose the entire downstream
79  * bus entirely through the fsi device address range, and so have a smaller
80  * accessible address space.]
81  */
82 struct fsi_master_hub {
83 	struct fsi_master	master;
84 	struct fsi_device	*upstream;
85 	uint32_t		addr, size;	/* slave-relative addr of */
86 						/* master address space */
87 };
88 
89 #define to_fsi_master_hub(m) container_of(m, struct fsi_master_hub, master)
90 
91 static int hub_master_read(struct fsi_master *master, int link,
92 			uint8_t id, uint32_t addr, void *val, size_t size)
93 {
94 	struct fsi_master_hub *hub = to_fsi_master_hub(master);
95 
96 	if (id != 0)
97 		return -EINVAL;
98 
99 	addr += hub->addr + (link * FSI_HUB_LINK_SIZE);
100 	return fsi_slave_read(hub->upstream->slave, addr, val, size);
101 }
102 
103 static int hub_master_write(struct fsi_master *master, int link,
104 			uint8_t id, uint32_t addr, const void *val, size_t size)
105 {
106 	struct fsi_master_hub *hub = to_fsi_master_hub(master);
107 
108 	if (id != 0)
109 		return -EINVAL;
110 
111 	addr += hub->addr + (link * FSI_HUB_LINK_SIZE);
112 	return fsi_slave_write(hub->upstream->slave, addr, val, size);
113 }
114 
115 static int hub_master_break(struct fsi_master *master, int link)
116 {
117 	uint32_t addr;
118 	__be32 cmd;
119 
120 	addr = 0x4;
121 	cmd = cpu_to_be32(0xc0de0000);
122 
123 	return hub_master_write(master, link, 0, addr, &cmd, sizeof(cmd));
124 }
125 
126 static int hub_master_link_enable(struct fsi_master *master, int link)
127 {
128 	struct fsi_master_hub *hub = to_fsi_master_hub(master);
129 	int idx, bit;
130 	__be32 reg;
131 	int rc;
132 
133 	idx = link / 32;
134 	bit = link % 32;
135 
136 	reg = cpu_to_be32(0x80000000 >> bit);
137 
138 	rc = fsi_device_write(hub->upstream, FSI_MSENP0 + (4 * idx), &reg, 4);
139 
140 	mdelay(FSI_LINK_ENABLE_SETUP_TIME);
141 
142 	fsi_device_read(hub->upstream, FSI_MENP0 + (4 * idx), &reg, 4);
143 
144 	return rc;
145 }
146 
147 static void hub_master_release(struct device *dev)
148 {
149 	struct fsi_master_hub *hub = to_fsi_master_hub(dev_to_fsi_master(dev));
150 
151 	kfree(hub);
152 }
153 
154 /* mmode encoders */
155 static inline u32 fsi_mmode_crs0(u32 x)
156 {
157 	return (x & FSI_MMODE_CRS0MASK) << FSI_MMODE_CRS0SHFT;
158 }
159 
160 static inline u32 fsi_mmode_crs1(u32 x)
161 {
162 	return (x & FSI_MMODE_CRS1MASK) << FSI_MMODE_CRS1SHFT;
163 }
164 
165 static int hub_master_init(struct fsi_master_hub *hub)
166 {
167 	struct fsi_device *dev = hub->upstream;
168 	__be32 reg;
169 	int rc;
170 
171 	reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK
172 			| FSI_MRESP_RST_MCR | FSI_MRESP_RST_PYE);
173 	rc = fsi_device_write(dev, FSI_MRESP0, &reg, sizeof(reg));
174 	if (rc)
175 		return rc;
176 
177 	/* Initialize the MFSI (hub master) engine */
178 	reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK
179 			| FSI_MRESP_RST_MCR | FSI_MRESP_RST_PYE);
180 	rc = fsi_device_write(dev, FSI_MRESP0, &reg, sizeof(reg));
181 	if (rc)
182 		return rc;
183 
184 	reg = cpu_to_be32(FSI_MECTRL_EOAE | FSI_MECTRL_P8_AUTO_TERM);
185 	rc = fsi_device_write(dev, FSI_MECTRL, &reg, sizeof(reg));
186 	if (rc)
187 		return rc;
188 
189 	reg = cpu_to_be32(FSI_MMODE_EIP | FSI_MMODE_ECRC | FSI_MMODE_EPC
190 			| fsi_mmode_crs0(1) | fsi_mmode_crs1(1)
191 			| FSI_MMODE_P8_TO_LSB);
192 	rc = fsi_device_write(dev, FSI_MMODE, &reg, sizeof(reg));
193 	if (rc)
194 		return rc;
195 
196 	reg = cpu_to_be32(0xffff0000);
197 	rc = fsi_device_write(dev, FSI_MDLYR, &reg, sizeof(reg));
198 	if (rc)
199 		return rc;
200 
201 	reg = cpu_to_be32(~0);
202 	rc = fsi_device_write(dev, FSI_MSENP0, &reg, sizeof(reg));
203 	if (rc)
204 		return rc;
205 
206 	/* Leave enabled long enough for master logic to set up */
207 	mdelay(FSI_LINK_ENABLE_SETUP_TIME);
208 
209 	rc = fsi_device_write(dev, FSI_MCENP0, &reg, sizeof(reg));
210 	if (rc)
211 		return rc;
212 
213 	rc = fsi_device_read(dev, FSI_MAEB, &reg, sizeof(reg));
214 	if (rc)
215 		return rc;
216 
217 	reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK);
218 	rc = fsi_device_write(dev, FSI_MRESP0, &reg, sizeof(reg));
219 	if (rc)
220 		return rc;
221 
222 	rc = fsi_device_read(dev, FSI_MLEVP0, &reg, sizeof(reg));
223 	if (rc)
224 		return rc;
225 
226 	/* Reset the master bridge */
227 	reg = cpu_to_be32(FSI_MRESB_RST_GEN);
228 	rc = fsi_device_write(dev, FSI_MRESB0, &reg, sizeof(reg));
229 	if (rc)
230 		return rc;
231 
232 	reg = cpu_to_be32(FSI_MRESB_RST_ERR);
233 	return fsi_device_write(dev, FSI_MRESB0, &reg, sizeof(reg));
234 }
235 
236 static int hub_master_probe(struct device *dev)
237 {
238 	struct fsi_device *fsi_dev = to_fsi_dev(dev);
239 	struct fsi_master_hub *hub;
240 	uint32_t reg, links;
241 	__be32 __reg;
242 	int rc;
243 
244 	rc = fsi_device_read(fsi_dev, FSI_MVER, &__reg, sizeof(__reg));
245 	if (rc)
246 		return rc;
247 
248 	reg = be32_to_cpu(__reg);
249 	links = (reg >> 8) & 0xff;
250 	dev_dbg(dev, "hub version %08x (%d links)\n", reg, links);
251 
252 	rc = fsi_slave_claim_range(fsi_dev->slave, FSI_HUB_LINK_OFFSET,
253 			FSI_HUB_LINK_SIZE * links);
254 	if (rc) {
255 		dev_err(dev, "can't claim slave address range for links");
256 		return rc;
257 	}
258 
259 	hub = kzalloc(sizeof(*hub), GFP_KERNEL);
260 	if (!hub) {
261 		rc = -ENOMEM;
262 		goto err_release;
263 	}
264 
265 	hub->addr = FSI_HUB_LINK_OFFSET;
266 	hub->size = FSI_HUB_LINK_SIZE * links;
267 	hub->upstream = fsi_dev;
268 
269 	hub->master.dev.parent = dev;
270 	hub->master.dev.release = hub_master_release;
271 	hub->master.dev.of_node = of_node_get(dev_of_node(dev));
272 
273 	hub->master.n_links = links;
274 	hub->master.read = hub_master_read;
275 	hub->master.write = hub_master_write;
276 	hub->master.send_break = hub_master_break;
277 	hub->master.link_enable = hub_master_link_enable;
278 
279 	dev_set_drvdata(dev, hub);
280 
281 	hub_master_init(hub);
282 
283 	rc = fsi_master_register(&hub->master);
284 	if (rc)
285 		goto err_release;
286 
287 	/* At this point, fsi_master_register performs the device_initialize(),
288 	 * and holds the sole reference on master.dev. This means the device
289 	 * will be freed (via ->release) during any subsequent call to
290 	 * fsi_master_unregister.  We add our own reference to it here, so we
291 	 * can perform cleanup (in _remove()) without it being freed before
292 	 * we're ready.
293 	 */
294 	get_device(&hub->master.dev);
295 	return 0;
296 
297 err_release:
298 	fsi_slave_release_range(fsi_dev->slave, FSI_HUB_LINK_OFFSET,
299 			FSI_HUB_LINK_SIZE * links);
300 	return rc;
301 }
302 
303 static int hub_master_remove(struct device *dev)
304 {
305 	struct fsi_master_hub *hub = dev_get_drvdata(dev);
306 
307 	fsi_master_unregister(&hub->master);
308 	fsi_slave_release_range(hub->upstream->slave, hub->addr, hub->size);
309 	of_node_put(hub->master.dev.of_node);
310 
311 	/*
312 	 * master.dev will likely be ->release()ed after this, which free()s
313 	 * the hub
314 	 */
315 	put_device(&hub->master.dev);
316 
317 	return 0;
318 }
319 
320 static struct fsi_device_id hub_master_ids[] = {
321 	{
322 		.engine_type = FSI_ENGID_HUB_MASTER,
323 		.version = FSI_VERSION_ANY,
324 	},
325 	{ 0 }
326 };
327 
328 static struct fsi_driver hub_master_driver = {
329 	.id_table = hub_master_ids,
330 	.drv = {
331 		.name = "fsi-master-hub",
332 		.bus = &fsi_bus_type,
333 		.probe = hub_master_probe,
334 		.remove = hub_master_remove,
335 	}
336 };
337 
338 module_fsi_driver(hub_master_driver);
339 MODULE_LICENSE("GPL");
340