1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2018 IBM Corp
3 /*
4  * A FSI master controller, using a simple GPIO bit-banging interface
5  */
6 
7 #include <linux/crc4.h>
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/fsi.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/io.h>
13 #include <linux/irqflags.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/regmap.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/aspeed.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/of_address.h>
23 #include <linux/genalloc.h>
24 
25 #include "fsi-master.h"
26 #include "cf-fsi-fw.h"
27 
28 #define FW_FILE_NAME	"cf-fsi-fw.bin"
29 
30 /* Common SCU based coprocessor control registers */
31 #define SCU_COPRO_CTRL			0x100
32 #define   SCU_COPRO_RESET			0x00000002
33 #define   SCU_COPRO_CLK_EN			0x00000001
34 
35 /* AST2500 specific ones */
36 #define SCU_2500_COPRO_SEG0		0x104
37 #define SCU_2500_COPRO_SEG1		0x108
38 #define SCU_2500_COPRO_SEG2		0x10c
39 #define SCU_2500_COPRO_SEG3		0x110
40 #define SCU_2500_COPRO_SEG4		0x114
41 #define SCU_2500_COPRO_SEG5		0x118
42 #define SCU_2500_COPRO_SEG6		0x11c
43 #define SCU_2500_COPRO_SEG7		0x120
44 #define SCU_2500_COPRO_SEG8		0x124
45 #define   SCU_2500_COPRO_SEG_SWAP		0x00000001
46 #define SCU_2500_COPRO_CACHE_CTL	0x128
47 #define   SCU_2500_COPRO_CACHE_EN		0x00000001
48 #define   SCU_2500_COPRO_SEG0_CACHE_EN		0x00000002
49 #define   SCU_2500_COPRO_SEG1_CACHE_EN		0x00000004
50 #define   SCU_2500_COPRO_SEG2_CACHE_EN		0x00000008
51 #define   SCU_2500_COPRO_SEG3_CACHE_EN		0x00000010
52 #define   SCU_2500_COPRO_SEG4_CACHE_EN		0x00000020
53 #define   SCU_2500_COPRO_SEG5_CACHE_EN		0x00000040
54 #define   SCU_2500_COPRO_SEG6_CACHE_EN		0x00000080
55 #define   SCU_2500_COPRO_SEG7_CACHE_EN		0x00000100
56 #define   SCU_2500_COPRO_SEG8_CACHE_EN		0x00000200
57 
58 #define SCU_2400_COPRO_SEG0		0x104
59 #define SCU_2400_COPRO_SEG2		0x108
60 #define SCU_2400_COPRO_SEG4		0x10c
61 #define SCU_2400_COPRO_SEG6		0x110
62 #define SCU_2400_COPRO_SEG8		0x114
63 #define   SCU_2400_COPRO_SEG_SWAP		0x80000000
64 #define SCU_2400_COPRO_CACHE_CTL	0x118
65 #define   SCU_2400_COPRO_CACHE_EN		0x00000001
66 #define   SCU_2400_COPRO_SEG0_CACHE_EN		0x00000002
67 #define   SCU_2400_COPRO_SEG2_CACHE_EN		0x00000004
68 #define   SCU_2400_COPRO_SEG4_CACHE_EN		0x00000008
69 #define   SCU_2400_COPRO_SEG6_CACHE_EN		0x00000010
70 #define   SCU_2400_COPRO_SEG8_CACHE_EN		0x00000020
71 
72 /* CVIC registers */
73 #define CVIC_EN_REG			0x10
74 #define CVIC_TRIG_REG			0x18
75 
76 /*
77  * System register base address (needed for configuring the
78  * coldfire maps)
79  */
80 #define SYSREG_BASE			0x1e600000
81 
82 /* Amount of SRAM required */
83 #define SRAM_SIZE			0x1000
84 
85 #define LAST_ADDR_INVALID		0x1
86 
87 struct fsi_master_acf {
88 	struct fsi_master	master;
89 	struct device		*dev;
90 	struct regmap		*scu;
91 	struct mutex		lock;	/* mutex for command ordering */
92 	struct gpio_desc	*gpio_clk;
93 	struct gpio_desc	*gpio_data;
94 	struct gpio_desc	*gpio_trans;	/* Voltage translator */
95 	struct gpio_desc	*gpio_enable;	/* FSI enable */
96 	struct gpio_desc	*gpio_mux;	/* Mux control */
97 	uint16_t		gpio_clk_vreg;
98 	uint16_t		gpio_clk_dreg;
99 	uint16_t       		gpio_dat_vreg;
100 	uint16_t       		gpio_dat_dreg;
101 	uint16_t       		gpio_tra_vreg;
102 	uint16_t       		gpio_tra_dreg;
103 	uint8_t			gpio_clk_bit;
104 	uint8_t			gpio_dat_bit;
105 	uint8_t			gpio_tra_bit;
106 	uint32_t		cf_mem_addr;
107 	size_t			cf_mem_size;
108 	void __iomem		*cf_mem;
109 	void __iomem		*cvic;
110 	struct gen_pool		*sram_pool;
111 	void __iomem		*sram;
112 	bool			is_ast2500;
113 	bool			external_mode;
114 	bool			trace_enabled;
115 	uint32_t		last_addr;
116 	uint8_t			t_send_delay;
117 	uint8_t			t_echo_delay;
118 	uint32_t		cvic_sw_irq;
119 };
120 #define to_fsi_master_acf(m) container_of(m, struct fsi_master_acf, master)
121 
122 struct fsi_msg {
123 	uint64_t	msg;
124 	uint8_t		bits;
125 };
126 
127 #define CREATE_TRACE_POINTS
128 #include <trace/events/fsi_master_ast_cf.h>
129 
130 static void msg_push_bits(struct fsi_msg *msg, uint64_t data, int bits)
131 {
132 	msg->msg <<= bits;
133 	msg->msg |= data & ((1ull << bits) - 1);
134 	msg->bits += bits;
135 }
136 
137 static void msg_push_crc(struct fsi_msg *msg)
138 {
139 	uint8_t crc;
140 	int top;
141 
142 	top = msg->bits & 0x3;
143 
144 	/* start bit, and any non-aligned top bits */
145 	crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1);
146 
147 	/* aligned bits */
148 	crc = crc4(crc, msg->msg, msg->bits - top);
149 
150 	msg_push_bits(msg, crc, 4);
151 }
152 
153 static void msg_finish_cmd(struct fsi_msg *cmd)
154 {
155 	/* Left align message */
156 	cmd->msg <<= (64 - cmd->bits);
157 }
158 
159 static bool check_same_address(struct fsi_master_acf *master, int id,
160 			       uint32_t addr)
161 {
162 	/* this will also handle LAST_ADDR_INVALID */
163 	return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3));
164 }
165 
166 static bool check_relative_address(struct fsi_master_acf *master, int id,
167 				   uint32_t addr, uint32_t *rel_addrp)
168 {
169 	uint32_t last_addr = master->last_addr;
170 	int32_t rel_addr;
171 
172 	if (last_addr == LAST_ADDR_INVALID)
173 		return false;
174 
175 	/* We may be in 23-bit addressing mode, which uses the id as the
176 	 * top two address bits. So, if we're referencing a different ID,
177 	 * use absolute addresses.
178 	 */
179 	if (((last_addr >> 21) & 0x3) != id)
180 		return false;
181 
182 	/* remove the top two bits from any 23-bit addressing */
183 	last_addr &= (1 << 21) - 1;
184 
185 	/* We know that the addresses are limited to 21 bits, so this won't
186 	 * overflow the signed rel_addr */
187 	rel_addr = addr - last_addr;
188 	if (rel_addr > 255 || rel_addr < -256)
189 		return false;
190 
191 	*rel_addrp = (uint32_t)rel_addr;
192 
193 	return true;
194 }
195 
196 static void last_address_update(struct fsi_master_acf *master,
197 				int id, bool valid, uint32_t addr)
198 {
199 	if (!valid)
200 		master->last_addr = LAST_ADDR_INVALID;
201 	else
202 		master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3);
203 }
204 
205 /*
206  * Encode an Absolute/Relative/Same Address command
207  */
208 static void build_ar_command(struct fsi_master_acf *master,
209 			     struct fsi_msg *cmd, uint8_t id,
210 			     uint32_t addr, size_t size,
211 			     const void *data)
212 {
213 	int i, addr_bits, opcode_bits;
214 	bool write = !!data;
215 	uint8_t ds, opcode;
216 	uint32_t rel_addr;
217 
218 	cmd->bits = 0;
219 	cmd->msg = 0;
220 
221 	/* we have 21 bits of address max */
222 	addr &= ((1 << 21) - 1);
223 
224 	/* cmd opcodes are variable length - SAME_AR is only two bits */
225 	opcode_bits = 3;
226 
227 	if (check_same_address(master, id, addr)) {
228 		/* we still address the byte offset within the word */
229 		addr_bits = 2;
230 		opcode_bits = 2;
231 		opcode = FSI_CMD_SAME_AR;
232 		trace_fsi_master_acf_cmd_same_addr(master);
233 
234 	} else if (check_relative_address(master, id, addr, &rel_addr)) {
235 		/* 8 bits plus sign */
236 		addr_bits = 9;
237 		addr = rel_addr;
238 		opcode = FSI_CMD_REL_AR;
239 		trace_fsi_master_acf_cmd_rel_addr(master, rel_addr);
240 
241 	} else {
242 		addr_bits = 21;
243 		opcode = FSI_CMD_ABS_AR;
244 		trace_fsi_master_acf_cmd_abs_addr(master, addr);
245 	}
246 
247 	/*
248 	 * The read/write size is encoded in the lower bits of the address
249 	 * (as it must be naturally-aligned), and the following ds bit.
250 	 *
251 	 *	size	addr:1	addr:0	ds
252 	 *	1	x	x	0
253 	 *	2	x	0	1
254 	 *	4	0	1	1
255 	 *
256 	 */
257 	ds = size > 1 ? 1 : 0;
258 	addr &= ~(size - 1);
259 	if (size == 4)
260 		addr |= 1;
261 
262 	msg_push_bits(cmd, id, 2);
263 	msg_push_bits(cmd, opcode, opcode_bits);
264 	msg_push_bits(cmd, write ? 0 : 1, 1);
265 	msg_push_bits(cmd, addr, addr_bits);
266 	msg_push_bits(cmd, ds, 1);
267 	for (i = 0; write && i < size; i++)
268 		msg_push_bits(cmd, ((uint8_t *)data)[i], 8);
269 
270 	msg_push_crc(cmd);
271 	msg_finish_cmd(cmd);
272 }
273 
274 static void build_dpoll_command(struct fsi_msg *cmd, uint8_t slave_id)
275 {
276 	cmd->bits = 0;
277 	cmd->msg = 0;
278 
279 	msg_push_bits(cmd, slave_id, 2);
280 	msg_push_bits(cmd, FSI_CMD_DPOLL, 3);
281 	msg_push_crc(cmd);
282 	msg_finish_cmd(cmd);
283 }
284 
285 static void build_epoll_command(struct fsi_msg *cmd, uint8_t slave_id)
286 {
287 	cmd->bits = 0;
288 	cmd->msg = 0;
289 
290 	msg_push_bits(cmd, slave_id, 2);
291 	msg_push_bits(cmd, FSI_CMD_EPOLL, 3);
292 	msg_push_crc(cmd);
293 	msg_finish_cmd(cmd);
294 }
295 
296 static void build_term_command(struct fsi_msg *cmd, uint8_t slave_id)
297 {
298 	cmd->bits = 0;
299 	cmd->msg = 0;
300 
301 	msg_push_bits(cmd, slave_id, 2);
302 	msg_push_bits(cmd, FSI_CMD_TERM, 6);
303 	msg_push_crc(cmd);
304 	msg_finish_cmd(cmd);
305 }
306 
307 static int do_copro_command(struct fsi_master_acf *master, uint32_t op)
308 {
309 	uint32_t timeout = 10000000;
310 	uint8_t stat;
311 
312 	trace_fsi_master_acf_copro_command(master, op);
313 
314 	/* Send command */
315 	iowrite32be(op, master->sram + CMD_STAT_REG);
316 
317 	/* Ring doorbell if any */
318 	if (master->cvic)
319 		iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
320 
321 	/* Wait for status to indicate completion (or error) */
322 	do {
323 		if (timeout-- == 0) {
324 			dev_warn(master->dev,
325 				 "Timeout waiting for coprocessor completion\n");
326 			return -ETIMEDOUT;
327 		}
328 		stat = ioread8(master->sram + CMD_STAT_REG);
329 	} while(stat < STAT_COMPLETE || stat == 0xff);
330 
331 	if (stat == STAT_COMPLETE)
332 		return 0;
333 	switch(stat) {
334 	case STAT_ERR_INVAL_CMD:
335 		return -EINVAL;
336 	case STAT_ERR_INVAL_IRQ:
337 		return -EIO;
338 	case STAT_ERR_MTOE:
339 		return -ESHUTDOWN;
340 	}
341 	return -ENXIO;
342 }
343 
344 static int clock_zeros(struct fsi_master_acf *master, int count)
345 {
346 	while (count) {
347 		int rc, lcnt = min(count, 255);
348 
349 		rc = do_copro_command(master,
350 				      CMD_IDLE_CLOCKS | (lcnt << CMD_REG_CLEN_SHIFT));
351 		if (rc)
352 			return rc;
353 		count -= lcnt;
354 	}
355 	return 0;
356 }
357 
358 static int send_request(struct fsi_master_acf *master, struct fsi_msg *cmd,
359 			unsigned int resp_bits)
360 {
361 	uint32_t op;
362 
363 	trace_fsi_master_acf_send_request(master, cmd, resp_bits);
364 
365 	/* Store message into SRAM */
366 	iowrite32be((cmd->msg >> 32), master->sram + CMD_DATA);
367 	iowrite32be((cmd->msg & 0xffffffff), master->sram + CMD_DATA + 4);
368 
369 	op = CMD_COMMAND;
370 	op |= cmd->bits << CMD_REG_CLEN_SHIFT;
371 	if (resp_bits)
372 		op |= resp_bits << CMD_REG_RLEN_SHIFT;
373 
374 	return do_copro_command(master, op);
375 }
376 
377 static int read_copro_response(struct fsi_master_acf *master, uint8_t size,
378 			       uint32_t *response, u8 *tag)
379 {
380 	uint8_t rtag = ioread8(master->sram + STAT_RTAG) & 0xf;
381 	uint8_t rcrc = ioread8(master->sram + STAT_RCRC) & 0xf;
382 	uint32_t rdata = 0;
383 	uint32_t crc;
384 	uint8_t ack;
385 
386 	*tag = ack = rtag & 3;
387 
388 	/* we have a whole message now; check CRC */
389 	crc = crc4(0, 1, 1);
390 	crc = crc4(crc, rtag, 4);
391 	if (ack == FSI_RESP_ACK && size) {
392 		rdata = ioread32be(master->sram + RSP_DATA);
393 		crc = crc4(crc, rdata, size);
394 		if (response)
395 			*response = rdata;
396 	}
397 	crc = crc4(crc, rcrc, 4);
398 
399 	trace_fsi_master_acf_copro_response(master, rtag, rcrc, rdata, crc == 0);
400 
401 	if (crc) {
402 		/*
403 		 * Check if it's all 1's or all 0's, that probably means
404 		 * the host is off
405 		 */
406 		if ((rtag == 0xf && rcrc == 0xf) || (rtag == 0 && rcrc == 0))
407 			return -ENODEV;
408 		dev_dbg(master->dev, "Bad response CRC !\n");
409 		return -EAGAIN;
410 	}
411 	return 0;
412 }
413 
414 static int send_term(struct fsi_master_acf *master, uint8_t slave)
415 {
416 	struct fsi_msg cmd;
417 	uint8_t tag;
418 	int rc;
419 
420 	build_term_command(&cmd, slave);
421 
422 	rc = send_request(master, &cmd, 0);
423 	if (rc) {
424 		dev_warn(master->dev, "Error %d sending term\n", rc);
425 		return rc;
426 	}
427 
428 	rc = read_copro_response(master, 0, NULL, &tag);
429 	if (rc < 0) {
430 		dev_err(master->dev,
431 				"TERM failed; lost communication with slave\n");
432 		return -EIO;
433 	} else if (tag != FSI_RESP_ACK) {
434 		dev_err(master->dev, "TERM failed; response %d\n", tag);
435 		return -EIO;
436 	}
437 	return 0;
438 }
439 
440 static void dump_ucode_trace(struct fsi_master_acf *master)
441 {
442 	char trbuf[52];
443 	char *p;
444 	int i;
445 
446 	dev_dbg(master->dev,
447 		"CMDSTAT:%08x RTAG=%02x RCRC=%02x RDATA=%02x #INT=%08x\n",
448 		ioread32be(master->sram + CMD_STAT_REG),
449 		ioread8(master->sram + STAT_RTAG),
450 		ioread8(master->sram + STAT_RCRC),
451 		ioread32be(master->sram + RSP_DATA),
452 		ioread32be(master->sram + INT_CNT));
453 
454 	for (i = 0; i < 512; i++) {
455 		uint8_t v;
456 		if ((i % 16) == 0)
457 			p = trbuf;
458 		v = ioread8(master->sram + TRACEBUF + i);
459 		p += sprintf(p, "%02x ", v);
460 		if (((i % 16) == 15) || v == TR_END)
461 			dev_dbg(master->dev, "%s\n", trbuf);
462 		if (v == TR_END)
463 			break;
464 	}
465 }
466 
467 static int handle_response(struct fsi_master_acf *master,
468 			   uint8_t slave, uint8_t size, void *data)
469 {
470 	int busy_count = 0, rc;
471 	int crc_err_retries = 0;
472 	struct fsi_msg cmd;
473 	uint32_t response;
474 	uint8_t tag;
475 retry:
476 	rc = read_copro_response(master, size, &response, &tag);
477 
478 	/* Handle retries on CRC errors */
479 	if (rc == -EAGAIN) {
480 		/* Too many retries ? */
481 		if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) {
482 			/*
483 			 * Pass it up as a -EIO otherwise upper level will retry
484 			 * the whole command which isn't what we want here.
485 			 */
486 			rc = -EIO;
487 			goto bail;
488 		}
489 		trace_fsi_master_acf_crc_rsp_error(master, crc_err_retries);
490 		if (master->trace_enabled)
491 			dump_ucode_trace(master);
492 		rc = clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS);
493 		if (rc) {
494 			dev_warn(master->dev,
495 				 "Error %d clocking zeros for E_POLL\n", rc);
496 			return rc;
497 		}
498 		build_epoll_command(&cmd, slave);
499 		rc = send_request(master, &cmd, size);
500 		if (rc) {
501 			dev_warn(master->dev, "Error %d sending E_POLL\n", rc);
502 			return -EIO;
503 		}
504 		goto retry;
505 	}
506 	if (rc)
507 		return rc;
508 
509 	switch (tag) {
510 	case FSI_RESP_ACK:
511 		if (size && data) {
512 			if (size == 32)
513 				*(__be32 *)data = cpu_to_be32(response);
514 			else if (size == 16)
515 				*(__be16 *)data = cpu_to_be16(response);
516 			else
517 				*(u8 *)data = response;
518 		}
519 		break;
520 	case FSI_RESP_BUSY:
521 		/*
522 		 * Its necessary to clock slave before issuing
523 		 * d-poll, not indicated in the hardware protocol
524 		 * spec. < 20 clocks causes slave to hang, 21 ok.
525 		 */
526 		dev_dbg(master->dev, "Busy, retrying...\n");
527 		if (master->trace_enabled)
528 			dump_ucode_trace(master);
529 		rc = clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS);
530 		if (rc) {
531 			dev_warn(master->dev,
532 				 "Error %d clocking zeros for D_POLL\n", rc);
533 			break;
534 		}
535 		if (busy_count++ < FSI_MASTER_MAX_BUSY) {
536 			build_dpoll_command(&cmd, slave);
537 			rc = send_request(master, &cmd, size);
538 			if (rc) {
539 				dev_warn(master->dev, "Error %d sending D_POLL\n", rc);
540 				break;
541 			}
542 			goto retry;
543 		}
544 		dev_dbg(master->dev,
545 			"ERR slave is stuck in busy state, issuing TERM\n");
546 		send_term(master, slave);
547 		rc = -EIO;
548 		break;
549 
550 	case FSI_RESP_ERRA:
551 		dev_dbg(master->dev, "ERRA received\n");
552 		if (master->trace_enabled)
553 			dump_ucode_trace(master);
554 		rc = -EIO;
555 		break;
556 	case FSI_RESP_ERRC:
557 		dev_dbg(master->dev, "ERRC received\n");
558 		if (master->trace_enabled)
559 			dump_ucode_trace(master);
560 		rc = -EAGAIN;
561 		break;
562 	}
563  bail:
564 	if (busy_count > 0) {
565 		trace_fsi_master_acf_poll_response_busy(master, busy_count);
566 	}
567 
568 	return rc;
569 }
570 
571 static int fsi_master_acf_xfer(struct fsi_master_acf *master, uint8_t slave,
572 			       struct fsi_msg *cmd, size_t resp_len, void *resp)
573 {
574 	int rc = -EAGAIN, retries = 0;
575 
576 	resp_len <<= 3;
577 	while ((retries++) < FSI_CRC_ERR_RETRIES) {
578 		rc = send_request(master, cmd, resp_len);
579 		if (rc) {
580 			if (rc != -ESHUTDOWN)
581 				dev_warn(master->dev, "Error %d sending command\n", rc);
582 			break;
583 		}
584 		rc = handle_response(master, slave, resp_len, resp);
585 		if (rc != -EAGAIN)
586 			break;
587 		rc = -EIO;
588 		dev_dbg(master->dev, "ECRC retry %d\n", retries);
589 
590 		/* Pace it a bit before retry */
591 		msleep(1);
592 	}
593 
594 	return rc;
595 }
596 
597 static int fsi_master_acf_read(struct fsi_master *_master, int link,
598 			       uint8_t id, uint32_t addr, void *val,
599 			       size_t size)
600 {
601 	struct fsi_master_acf *master = to_fsi_master_acf(_master);
602 	struct fsi_msg cmd;
603 	int rc;
604 
605 	if (link != 0)
606 		return -ENODEV;
607 
608 	mutex_lock(&master->lock);
609 	dev_dbg(master->dev, "read id %d addr %x size %zd\n", id, addr, size);
610 	build_ar_command(master, &cmd, id, addr, size, NULL);
611 	rc = fsi_master_acf_xfer(master, id, &cmd, size, val);
612 	last_address_update(master, id, rc == 0, addr);
613 	if (rc)
614 		dev_dbg(master->dev, "read id %d addr 0x%08x err: %d\n",
615 			id, addr, rc);
616 	mutex_unlock(&master->lock);
617 
618 	return rc;
619 }
620 
621 static int fsi_master_acf_write(struct fsi_master *_master, int link,
622 				uint8_t id, uint32_t addr, const void *val,
623 				size_t size)
624 {
625 	struct fsi_master_acf *master = to_fsi_master_acf(_master);
626 	struct fsi_msg cmd;
627 	int rc;
628 
629 	if (link != 0)
630 		return -ENODEV;
631 
632 	mutex_lock(&master->lock);
633 	build_ar_command(master, &cmd, id, addr, size, val);
634 	dev_dbg(master->dev, "write id %d addr %x size %zd raw_data: %08x\n",
635 		id, addr, size, *(uint32_t *)val);
636 	rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
637 	last_address_update(master, id, rc == 0, addr);
638 	if (rc)
639 		dev_dbg(master->dev, "write id %d addr 0x%08x err: %d\n",
640 			id, addr, rc);
641 	mutex_unlock(&master->lock);
642 
643 	return rc;
644 }
645 
646 static int fsi_master_acf_term(struct fsi_master *_master,
647 			       int link, uint8_t id)
648 {
649 	struct fsi_master_acf *master = to_fsi_master_acf(_master);
650 	struct fsi_msg cmd;
651 	int rc;
652 
653 	if (link != 0)
654 		return -ENODEV;
655 
656 	mutex_lock(&master->lock);
657 	build_term_command(&cmd, id);
658 	dev_dbg(master->dev, "term id %d\n", id);
659 	rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
660 	last_address_update(master, id, false, 0);
661 	mutex_unlock(&master->lock);
662 
663 	return rc;
664 }
665 
666 static int fsi_master_acf_break(struct fsi_master *_master, int link)
667 {
668 	struct fsi_master_acf *master = to_fsi_master_acf(_master);
669 	int rc;
670 
671 	if (link != 0)
672 		return -ENODEV;
673 
674 	mutex_lock(&master->lock);
675 	if (master->external_mode) {
676 		mutex_unlock(&master->lock);
677 		return -EBUSY;
678 	}
679 	dev_dbg(master->dev, "sending BREAK\n");
680 	rc = do_copro_command(master, CMD_BREAK);
681 	last_address_update(master, 0, false, 0);
682 	mutex_unlock(&master->lock);
683 
684 	/* Wait for logic reset to take effect */
685 	udelay(200);
686 
687 	return rc;
688 }
689 
690 static void reset_cf(struct fsi_master_acf *master)
691 {
692 	regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_RESET);
693 	usleep_range(20,20);
694 	regmap_write(master->scu, SCU_COPRO_CTRL, 0);
695 	usleep_range(20,20);
696 }
697 
698 static void start_cf(struct fsi_master_acf *master)
699 {
700 	regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_CLK_EN);
701 }
702 
703 static void setup_ast2500_cf_maps(struct fsi_master_acf *master)
704 {
705 	/*
706 	 * Note about byteswap setting: the bus is wired backwards,
707 	 * so setting the byteswap bit actually makes the ColdFire
708 	 * work "normally" for a BE processor, ie, put the MSB in
709 	 * the lowest address byte.
710 	 *
711 	 * We thus need to set the bit for our main memory which
712 	 * contains our program code. We create two mappings for
713 	 * the register, one with each setting.
714 	 *
715 	 * Segments 2 and 3 has a "swapped" mapping (BE)
716 	 * and 6 and 7 have a non-swapped mapping (LE) which allows
717 	 * us to avoid byteswapping register accesses since the
718 	 * registers are all LE.
719 	 */
720 
721 	/* Setup segment 0 to our memory region */
722 	regmap_write(master->scu, SCU_2500_COPRO_SEG0, master->cf_mem_addr |
723 		     SCU_2500_COPRO_SEG_SWAP);
724 
725 	/* Segments 2 and 3 to sysregs with byteswap (for SRAM) */
726 	regmap_write(master->scu, SCU_2500_COPRO_SEG2, SYSREG_BASE |
727 		     SCU_2500_COPRO_SEG_SWAP);
728 	regmap_write(master->scu, SCU_2500_COPRO_SEG3, SYSREG_BASE | 0x100000 |
729 		     SCU_2500_COPRO_SEG_SWAP);
730 
731 	/* And segment 6 and 7 to sysregs no byteswap */
732 	regmap_write(master->scu, SCU_2500_COPRO_SEG6, SYSREG_BASE);
733 	regmap_write(master->scu, SCU_2500_COPRO_SEG7, SYSREG_BASE | 0x100000);
734 
735 	/* Memory cachable, regs and SRAM not cachable */
736 	regmap_write(master->scu, SCU_2500_COPRO_CACHE_CTL,
737 		     SCU_2500_COPRO_SEG0_CACHE_EN | SCU_2500_COPRO_CACHE_EN);
738 }
739 
740 static void setup_ast2400_cf_maps(struct fsi_master_acf *master)
741 {
742 	/* Setup segment 0 to our memory region */
743 	regmap_write(master->scu, SCU_2400_COPRO_SEG0, master->cf_mem_addr |
744 		     SCU_2400_COPRO_SEG_SWAP);
745 
746 	/* Segments 2 to sysregs with byteswap (for SRAM) */
747 	regmap_write(master->scu, SCU_2400_COPRO_SEG2, SYSREG_BASE |
748 		     SCU_2400_COPRO_SEG_SWAP);
749 
750 	/* And segment 6 to sysregs no byteswap */
751 	regmap_write(master->scu, SCU_2400_COPRO_SEG6, SYSREG_BASE);
752 
753 	/* Memory cachable, regs and SRAM not cachable */
754 	regmap_write(master->scu, SCU_2400_COPRO_CACHE_CTL,
755 		     SCU_2400_COPRO_SEG0_CACHE_EN | SCU_2400_COPRO_CACHE_EN);
756 }
757 
758 static void setup_common_fw_config(struct fsi_master_acf *master,
759 				   void __iomem *base)
760 {
761 	iowrite16be(master->gpio_clk_vreg, base + HDR_CLOCK_GPIO_VADDR);
762 	iowrite16be(master->gpio_clk_dreg, base + HDR_CLOCK_GPIO_DADDR);
763 	iowrite16be(master->gpio_dat_vreg, base + HDR_DATA_GPIO_VADDR);
764 	iowrite16be(master->gpio_dat_dreg, base + HDR_DATA_GPIO_DADDR);
765 	iowrite16be(master->gpio_tra_vreg, base + HDR_TRANS_GPIO_VADDR);
766 	iowrite16be(master->gpio_tra_dreg, base + HDR_TRANS_GPIO_DADDR);
767 	iowrite8(master->gpio_clk_bit, base + HDR_CLOCK_GPIO_BIT);
768 	iowrite8(master->gpio_dat_bit, base + HDR_DATA_GPIO_BIT);
769 	iowrite8(master->gpio_tra_bit, base + HDR_TRANS_GPIO_BIT);
770 }
771 
772 static void setup_ast2500_fw_config(struct fsi_master_acf *master)
773 {
774 	void __iomem *base = master->cf_mem + HDR_OFFSET;
775 
776 	setup_common_fw_config(master, base);
777 	iowrite32be(FW_CONTROL_USE_STOP, base + HDR_FW_CONTROL);
778 }
779 
780 static void setup_ast2400_fw_config(struct fsi_master_acf *master)
781 {
782 	void __iomem *base = master->cf_mem + HDR_OFFSET;
783 
784 	setup_common_fw_config(master, base);
785 	iowrite32be(FW_CONTROL_CONT_CLOCK|FW_CONTROL_DUMMY_RD, base + HDR_FW_CONTROL);
786 }
787 
788 static int setup_gpios_for_copro(struct fsi_master_acf *master)
789 {
790 
791 	int rc;
792 
793 	/* This aren't under ColdFire control, just set them up appropriately */
794 	gpiod_direction_output(master->gpio_mux, 1);
795 	gpiod_direction_output(master->gpio_enable, 1);
796 
797 	/* Those are under ColdFire control, let it configure them */
798 	rc = aspeed_gpio_copro_grab_gpio(master->gpio_clk, &master->gpio_clk_vreg,
799 					 &master->gpio_clk_dreg, &master->gpio_clk_bit);
800 	if (rc) {
801 		dev_err(master->dev, "failed to assign clock gpio to coprocessor\n");
802 		return rc;
803 	}
804 	rc = aspeed_gpio_copro_grab_gpio(master->gpio_data, &master->gpio_dat_vreg,
805 					 &master->gpio_dat_dreg, &master->gpio_dat_bit);
806 	if (rc) {
807 		dev_err(master->dev, "failed to assign data gpio to coprocessor\n");
808 		aspeed_gpio_copro_release_gpio(master->gpio_clk);
809 		return rc;
810 	}
811 	rc = aspeed_gpio_copro_grab_gpio(master->gpio_trans, &master->gpio_tra_vreg,
812 					 &master->gpio_tra_dreg, &master->gpio_tra_bit);
813 	if (rc) {
814 		dev_err(master->dev, "failed to assign trans gpio to coprocessor\n");
815 		aspeed_gpio_copro_release_gpio(master->gpio_clk);
816 		aspeed_gpio_copro_release_gpio(master->gpio_data);
817 		return rc;
818 	}
819 	return 0;
820 }
821 
822 static void release_copro_gpios(struct fsi_master_acf *master)
823 {
824 	aspeed_gpio_copro_release_gpio(master->gpio_clk);
825 	aspeed_gpio_copro_release_gpio(master->gpio_data);
826 	aspeed_gpio_copro_release_gpio(master->gpio_trans);
827 }
828 
829 static int load_copro_firmware(struct fsi_master_acf *master)
830 {
831 	const struct firmware *fw;
832 	uint16_t sig = 0, wanted_sig;
833 	const u8 *data;
834 	size_t size = 0;
835 	int rc;
836 
837 	/* Get the binary */
838 	rc = request_firmware(&fw, FW_FILE_NAME, master->dev);
839 	if (rc) {
840 		dev_err(
841 			master->dev, "Error %d to load firmware '%s' !\n",
842 			rc, FW_FILE_NAME);
843 		return rc;
844 	}
845 
846 	/* Which image do we want ? (shared vs. split clock/data GPIOs) */
847 	if (master->gpio_clk_vreg == master->gpio_dat_vreg)
848 		wanted_sig = SYS_SIG_SHARED;
849 	else
850 		wanted_sig = SYS_SIG_SPLIT;
851 	dev_dbg(master->dev, "Looking for image sig %04x\n", wanted_sig);
852 
853 	/* Try to find it */
854 	for (data = fw->data; data < (fw->data + fw->size);) {
855 		sig = be16_to_cpup((__be16 *)(data + HDR_OFFSET + HDR_SYS_SIG));
856 		size = be32_to_cpup((__be32 *)(data + HDR_OFFSET + HDR_FW_SIZE));
857 		if (sig == wanted_sig)
858 			break;
859 		data += size;
860 	}
861 	if (sig != wanted_sig) {
862 		dev_err(master->dev, "Failed to locate image sig %04x in FW blob\n",
863 			wanted_sig);
864 		rc = -ENODEV;
865 		goto release_fw;
866 	}
867 	if (size > master->cf_mem_size) {
868 		dev_err(master->dev, "FW size (%zd) bigger than memory reserve (%zd)\n",
869 			fw->size, master->cf_mem_size);
870 		rc = -ENOMEM;
871 	} else {
872 		memcpy_toio(master->cf_mem, data, size);
873 	}
874 
875 release_fw:
876 	release_firmware(fw);
877 	return rc;
878 }
879 
880 static int check_firmware_image(struct fsi_master_acf *master)
881 {
882 	uint32_t fw_vers, fw_api, fw_options;
883 
884 	fw_vers = ioread16be(master->cf_mem + HDR_OFFSET + HDR_FW_VERS);
885 	fw_api = ioread16be(master->cf_mem + HDR_OFFSET + HDR_API_VERS);
886 	fw_options = ioread32be(master->cf_mem + HDR_OFFSET + HDR_FW_OPTIONS);
887 	master->trace_enabled = !!(fw_options & FW_OPTION_TRACE_EN);
888 
889 	/* Check version and signature */
890 	dev_info(master->dev, "ColdFire initialized, firmware v%d API v%d.%d (trace %s)\n",
891 		 fw_vers, fw_api >> 8, fw_api & 0xff,
892 		 master->trace_enabled ? "enabled" : "disabled");
893 
894 	if ((fw_api >> 8) != API_VERSION_MAJ) {
895 		dev_err(master->dev, "Unsupported coprocessor API version !\n");
896 		return -ENODEV;
897 	}
898 
899 	return 0;
900 }
901 
902 static int copro_enable_sw_irq(struct fsi_master_acf *master)
903 {
904 	int timeout;
905 	uint32_t val;
906 
907 	/*
908 	 * Enable coprocessor interrupt input. I've had problems getting the
909 	 * value to stick, so try in a loop
910 	 */
911 	for (timeout = 0; timeout < 10; timeout++) {
912 		iowrite32(0x2, master->cvic + CVIC_EN_REG);
913 		val = ioread32(master->cvic + CVIC_EN_REG);
914 		if (val & 2)
915 			break;
916 		msleep(1);
917 	}
918 	if (!(val & 2)) {
919 		dev_err(master->dev, "Failed to enable coprocessor interrupt !\n");
920 		return -ENODEV;
921 	}
922 	return 0;
923 }
924 
925 static int fsi_master_acf_setup(struct fsi_master_acf *master)
926 {
927 	int timeout, rc;
928 	uint32_t val;
929 
930 	/* Make sure the ColdFire is stopped  */
931 	reset_cf(master);
932 
933 	/*
934 	 * Clear SRAM. This needs to happen before we setup the GPIOs
935 	 * as we might start trying to arbitrate as soon as that happens.
936 	 */
937 	memset_io(master->sram, 0, SRAM_SIZE);
938 
939 	/* Configure GPIOs */
940 	rc = setup_gpios_for_copro(master);
941 	if (rc)
942 		return rc;
943 
944 	/* Load the firmware into the reserved memory */
945 	rc = load_copro_firmware(master);
946 	if (rc)
947 		return rc;
948 
949 	/* Read signature and check versions */
950 	rc = check_firmware_image(master);
951 	if (rc)
952 		return rc;
953 
954 	/* Setup coldfire memory map */
955 	if (master->is_ast2500) {
956 		setup_ast2500_cf_maps(master);
957 		setup_ast2500_fw_config(master);
958 	} else {
959 		setup_ast2400_cf_maps(master);
960 		setup_ast2400_fw_config(master);
961 	}
962 
963 	/* Start the ColdFire */
964 	start_cf(master);
965 
966 	/* Wait for status register to indicate command completion
967 	 * which signals the initialization is complete
968 	 */
969 	for (timeout = 0; timeout < 10; timeout++) {
970 		val = ioread8(master->sram + CF_STARTED);
971 		if (val)
972 			break;
973 		msleep(1);
974 	}
975 	if (!val) {
976 		dev_err(master->dev, "Coprocessor startup timeout !\n");
977 		rc = -ENODEV;
978 		goto err;
979 	}
980 
981 	/* Configure echo & send delay */
982 	iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
983 	iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
984 
985 	/* Enable SW interrupt to copro if any */
986 	if (master->cvic) {
987 		rc = copro_enable_sw_irq(master);
988 		if (rc)
989 			goto err;
990 	}
991 	return 0;
992  err:
993 	/* An error occurred, don't leave the coprocessor running */
994 	reset_cf(master);
995 
996 	/* Release the GPIOs */
997 	release_copro_gpios(master);
998 
999 	return rc;
1000 }
1001 
1002 
1003 static void fsi_master_acf_terminate(struct fsi_master_acf *master)
1004 {
1005 	unsigned long flags;
1006 
1007 	/*
1008 	 * A GPIO arbitration requestion could come in while this is
1009 	 * happening. To avoid problems, we disable interrupts so it
1010 	 * cannot preempt us on this CPU
1011 	 */
1012 
1013 	local_irq_save(flags);
1014 
1015 	/* Stop the coprocessor */
1016 	reset_cf(master);
1017 
1018 	/* We mark the copro not-started */
1019 	iowrite32(0, master->sram + CF_STARTED);
1020 
1021 	/* We mark the ARB register as having given up arbitration to
1022 	 * deal with a potential race with the arbitration request
1023 	 */
1024 	iowrite8(ARB_ARM_ACK, master->sram + ARB_REG);
1025 
1026 	local_irq_restore(flags);
1027 
1028 	/* Return the GPIOs to the ARM */
1029 	release_copro_gpios(master);
1030 }
1031 
1032 static void fsi_master_acf_setup_external(struct fsi_master_acf *master)
1033 {
1034 	/* Setup GPIOs for external FSI master (FSP box) */
1035 	gpiod_direction_output(master->gpio_mux, 0);
1036 	gpiod_direction_output(master->gpio_trans, 0);
1037 	gpiod_direction_output(master->gpio_enable, 1);
1038 	gpiod_direction_input(master->gpio_clk);
1039 	gpiod_direction_input(master->gpio_data);
1040 }
1041 
1042 static int fsi_master_acf_link_enable(struct fsi_master *_master, int link,
1043 				      bool enable)
1044 {
1045 	struct fsi_master_acf *master = to_fsi_master_acf(_master);
1046 	int rc = -EBUSY;
1047 
1048 	if (link != 0)
1049 		return -ENODEV;
1050 
1051 	mutex_lock(&master->lock);
1052 	if (!master->external_mode) {
1053 		gpiod_set_value(master->gpio_enable, enable ? 1 : 0);
1054 		rc = 0;
1055 	}
1056 	mutex_unlock(&master->lock);
1057 
1058 	return rc;
1059 }
1060 
1061 static int fsi_master_acf_link_config(struct fsi_master *_master, int link,
1062 				      u8 t_send_delay, u8 t_echo_delay)
1063 {
1064 	struct fsi_master_acf *master = to_fsi_master_acf(_master);
1065 
1066 	if (link != 0)
1067 		return -ENODEV;
1068 
1069 	mutex_lock(&master->lock);
1070 	master->t_send_delay = t_send_delay;
1071 	master->t_echo_delay = t_echo_delay;
1072 	dev_dbg(master->dev, "Changing delays: send=%d echo=%d\n",
1073 		t_send_delay, t_echo_delay);
1074 	iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
1075 	iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
1076 	mutex_unlock(&master->lock);
1077 
1078 	return 0;
1079 }
1080 
1081 static ssize_t external_mode_show(struct device *dev,
1082 				  struct device_attribute *attr, char *buf)
1083 {
1084 	struct fsi_master_acf *master = dev_get_drvdata(dev);
1085 
1086 	return snprintf(buf, PAGE_SIZE - 1, "%u\n",
1087 			master->external_mode ? 1 : 0);
1088 }
1089 
1090 static ssize_t external_mode_store(struct device *dev,
1091 		struct device_attribute *attr, const char *buf, size_t count)
1092 {
1093 	struct fsi_master_acf *master = dev_get_drvdata(dev);
1094 	unsigned long val;
1095 	bool external_mode;
1096 	int err;
1097 
1098 	err = kstrtoul(buf, 0, &val);
1099 	if (err)
1100 		return err;
1101 
1102 	external_mode = !!val;
1103 
1104 	mutex_lock(&master->lock);
1105 
1106 	if (external_mode == master->external_mode) {
1107 		mutex_unlock(&master->lock);
1108 		return count;
1109 	}
1110 
1111 	master->external_mode = external_mode;
1112 	if (master->external_mode) {
1113 		fsi_master_acf_terminate(master);
1114 		fsi_master_acf_setup_external(master);
1115 	} else
1116 		fsi_master_acf_setup(master);
1117 
1118 	mutex_unlock(&master->lock);
1119 
1120 	fsi_master_rescan(&master->master);
1121 
1122 	return count;
1123 }
1124 
1125 static DEVICE_ATTR(external_mode, 0664,
1126 		external_mode_show, external_mode_store);
1127 
1128 static int fsi_master_acf_gpio_request(void *data)
1129 {
1130 	struct fsi_master_acf *master = data;
1131 	int timeout;
1132 	u8 val;
1133 
1134 	/* Note: This doesn't require holding out mutex */
1135 
1136 	/* Write reqest */
1137 	iowrite8(ARB_ARM_REQ, master->sram + ARB_REG);
1138 
1139 	/*
1140 	 * There is a race (which does happen at boot time) when we get an
1141 	 * arbitration request as we are either about to or just starting
1142 	 * the coprocessor.
1143 	 *
1144 	 * To handle it, we first check if we are running. If not yet we
1145 	 * check whether the copro is started in the SCU.
1146 	 *
1147 	 * If it's not started, we can basically just assume we have arbitration
1148 	 * and return. Otherwise, we wait normally expecting for the arbitration
1149 	 * to eventually complete.
1150 	 */
1151 	if (ioread32(master->sram + CF_STARTED) == 0) {
1152 		unsigned int reg = 0;
1153 
1154 		regmap_read(master->scu, SCU_COPRO_CTRL, &reg);
1155 		if (!(reg & SCU_COPRO_CLK_EN))
1156 			return 0;
1157 	}
1158 
1159 	/* Ring doorbell if any */
1160 	if (master->cvic)
1161 		iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1162 
1163 	for (timeout = 0; timeout < 10000; timeout++) {
1164 		val = ioread8(master->sram + ARB_REG);
1165 		if (val != ARB_ARM_REQ)
1166 			break;
1167 		udelay(1);
1168 	}
1169 
1170 	/* If it failed, override anyway */
1171 	if (val != ARB_ARM_ACK)
1172 		dev_warn(master->dev, "GPIO request arbitration timeout\n");
1173 
1174 	return 0;
1175 }
1176 
1177 static int fsi_master_acf_gpio_release(void *data)
1178 {
1179 	struct fsi_master_acf *master = data;
1180 
1181 	/* Write release */
1182 	iowrite8(0, master->sram + ARB_REG);
1183 
1184 	/* Ring doorbell if any */
1185 	if (master->cvic)
1186 		iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1187 
1188 	return 0;
1189 }
1190 
1191 static void fsi_master_acf_release(struct device *dev)
1192 {
1193 	struct fsi_master_acf *master = to_fsi_master_acf(dev_to_fsi_master(dev));
1194 
1195 	/* Cleanup, stop coprocessor */
1196 	mutex_lock(&master->lock);
1197 	fsi_master_acf_terminate(master);
1198 	aspeed_gpio_copro_set_ops(NULL, NULL);
1199 	mutex_unlock(&master->lock);
1200 
1201 	/* Free resources */
1202 	gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1203 	of_node_put(dev_of_node(master->dev));
1204 
1205 	kfree(master);
1206 }
1207 
1208 static const struct aspeed_gpio_copro_ops fsi_master_acf_gpio_ops = {
1209 	.request_access = fsi_master_acf_gpio_request,
1210 	.release_access = fsi_master_acf_gpio_release,
1211 };
1212 
1213 static int fsi_master_acf_probe(struct platform_device *pdev)
1214 {
1215 	struct device_node *np, *mnode = dev_of_node(&pdev->dev);
1216 	struct genpool_data_fixed gpdf;
1217 	struct fsi_master_acf *master;
1218 	struct gpio_desc *gpio;
1219 	struct resource res;
1220 	uint32_t cf_mem_align;
1221 	int rc;
1222 
1223 	master = kzalloc(sizeof(*master), GFP_KERNEL);
1224 	if (!master)
1225 		return -ENOMEM;
1226 
1227 	master->dev = &pdev->dev;
1228 	master->master.dev.parent = master->dev;
1229 	master->last_addr = LAST_ADDR_INVALID;
1230 
1231 	/* AST2400 vs. AST2500 */
1232 	master->is_ast2500 = of_device_is_compatible(mnode, "aspeed,ast2500-cf-fsi-master");
1233 
1234 	/* Grab the SCU, we'll need to access it to configure the coprocessor */
1235 	if (master->is_ast2500)
1236 		master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2500-scu");
1237 	else
1238 		master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2400-scu");
1239 	if (IS_ERR(master->scu)) {
1240 		dev_err(&pdev->dev, "failed to find SCU regmap\n");
1241 		rc = PTR_ERR(master->scu);
1242 		goto err_free;
1243 	}
1244 
1245 	/* Grab all the GPIOs we need */
1246 	gpio = devm_gpiod_get(&pdev->dev, "clock", 0);
1247 	if (IS_ERR(gpio)) {
1248 		dev_err(&pdev->dev, "failed to get clock gpio\n");
1249 		rc = PTR_ERR(gpio);
1250 		goto err_free;
1251 	}
1252 	master->gpio_clk = gpio;
1253 
1254 	gpio = devm_gpiod_get(&pdev->dev, "data", 0);
1255 	if (IS_ERR(gpio)) {
1256 		dev_err(&pdev->dev, "failed to get data gpio\n");
1257 		rc = PTR_ERR(gpio);
1258 		goto err_free;
1259 	}
1260 	master->gpio_data = gpio;
1261 
1262 	/* Optional GPIOs */
1263 	gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0);
1264 	if (IS_ERR(gpio)) {
1265 		dev_err(&pdev->dev, "failed to get trans gpio\n");
1266 		rc = PTR_ERR(gpio);
1267 		goto err_free;
1268 	}
1269 	master->gpio_trans = gpio;
1270 
1271 	gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0);
1272 	if (IS_ERR(gpio)) {
1273 		dev_err(&pdev->dev, "failed to get enable gpio\n");
1274 		rc = PTR_ERR(gpio);
1275 		goto err_free;
1276 	}
1277 	master->gpio_enable = gpio;
1278 
1279 	gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0);
1280 	if (IS_ERR(gpio)) {
1281 		dev_err(&pdev->dev, "failed to get mux gpio\n");
1282 		rc = PTR_ERR(gpio);
1283 		goto err_free;
1284 	}
1285 	master->gpio_mux = gpio;
1286 
1287 	/* Grab the reserved memory region (use DMA API instead ?) */
1288 	np = of_parse_phandle(mnode, "memory-region", 0);
1289 	if (!np) {
1290 		dev_err(&pdev->dev, "Didn't find reserved memory\n");
1291 		rc = -EINVAL;
1292 		goto err_free;
1293 	}
1294 	rc = of_address_to_resource(np, 0, &res);
1295 	of_node_put(np);
1296 	if (rc) {
1297 		dev_err(&pdev->dev, "Couldn't address to resource for reserved memory\n");
1298 		rc = -ENOMEM;
1299 		goto err_free;
1300 	}
1301 	master->cf_mem_size = resource_size(&res);
1302 	master->cf_mem_addr = (uint32_t)res.start;
1303 	cf_mem_align = master->is_ast2500 ? 0x00100000 : 0x00200000;
1304 	if (master->cf_mem_addr & (cf_mem_align - 1)) {
1305 		dev_err(&pdev->dev, "Reserved memory has insufficient alignment\n");
1306 		rc = -ENOMEM;
1307 		goto err_free;
1308 	}
1309 	master->cf_mem = devm_ioremap_resource(&pdev->dev, &res);
1310  	if (IS_ERR(master->cf_mem)) {
1311 		rc = PTR_ERR(master->cf_mem);
1312  		goto err_free;
1313 	}
1314 	dev_dbg(&pdev->dev, "DRAM allocation @%x\n", master->cf_mem_addr);
1315 
1316 	/* AST2500 has a SW interrupt to the coprocessor */
1317 	if (master->is_ast2500) {
1318 		/* Grab the CVIC (ColdFire interrupts controller) */
1319 		np = of_parse_phandle(mnode, "aspeed,cvic", 0);
1320 		if (!np) {
1321 			dev_err(&pdev->dev, "Didn't find CVIC\n");
1322 			rc = -EINVAL;
1323 			goto err_free;
1324 		}
1325 		master->cvic = devm_of_iomap(&pdev->dev, np, 0, NULL);
1326 		if (IS_ERR(master->cvic)) {
1327 			rc = PTR_ERR(master->cvic);
1328 			dev_err(&pdev->dev, "Error %d mapping CVIC\n", rc);
1329 			goto err_free;
1330 		}
1331 		rc = of_property_read_u32(np, "copro-sw-interrupts",
1332 					  &master->cvic_sw_irq);
1333 		if (rc) {
1334 			dev_err(&pdev->dev, "Can't find coprocessor SW interrupt\n");
1335 			goto err_free;
1336 		}
1337 	}
1338 
1339 	/* Grab the SRAM */
1340 	master->sram_pool = of_gen_pool_get(dev_of_node(&pdev->dev), "aspeed,sram", 0);
1341 	if (!master->sram_pool) {
1342 		rc = -ENODEV;
1343 		dev_err(&pdev->dev, "Can't find sram pool\n");
1344 		goto err_free;
1345 	}
1346 
1347 	/* Current microcode only deals with fixed location in SRAM */
1348 	gpdf.offset = 0;
1349 	master->sram = (void __iomem *)gen_pool_alloc_algo(master->sram_pool, SRAM_SIZE,
1350 							   gen_pool_fixed_alloc, &gpdf);
1351 	if (!master->sram) {
1352 		rc = -ENOMEM;
1353 		dev_err(&pdev->dev, "Failed to allocate sram from pool\n");
1354 		goto err_free;
1355 	}
1356 	dev_dbg(&pdev->dev, "SRAM allocation @%lx\n",
1357 		(unsigned long)gen_pool_virt_to_phys(master->sram_pool,
1358 						     (unsigned long)master->sram));
1359 
1360 	/*
1361 	 * Hookup with the GPIO driver for arbitration of GPIO banks
1362 	 * ownership.
1363 	 */
1364 	aspeed_gpio_copro_set_ops(&fsi_master_acf_gpio_ops, master);
1365 
1366 	/* Default FSI command delays */
1367 	master->t_send_delay = FSI_SEND_DELAY_CLOCKS;
1368 	master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS;
1369 	master->master.n_links = 1;
1370 	if (master->is_ast2500)
1371 		master->master.flags = FSI_MASTER_FLAG_SWCLOCK;
1372 	master->master.read = fsi_master_acf_read;
1373 	master->master.write = fsi_master_acf_write;
1374 	master->master.term = fsi_master_acf_term;
1375 	master->master.send_break = fsi_master_acf_break;
1376 	master->master.link_enable = fsi_master_acf_link_enable;
1377 	master->master.link_config = fsi_master_acf_link_config;
1378 	master->master.dev.of_node = of_node_get(dev_of_node(master->dev));
1379 	master->master.dev.release = fsi_master_acf_release;
1380 	platform_set_drvdata(pdev, master);
1381 	mutex_init(&master->lock);
1382 
1383 	mutex_lock(&master->lock);
1384 	rc = fsi_master_acf_setup(master);
1385 	mutex_unlock(&master->lock);
1386 	if (rc)
1387 		goto release_of_dev;
1388 
1389 	rc = device_create_file(&pdev->dev, &dev_attr_external_mode);
1390 	if (rc)
1391 		goto stop_copro;
1392 
1393 	rc = fsi_master_register(&master->master);
1394 	if (!rc)
1395 		return 0;
1396 
1397 	device_remove_file(master->dev, &dev_attr_external_mode);
1398 	put_device(&master->master.dev);
1399 	return rc;
1400 
1401  stop_copro:
1402 	fsi_master_acf_terminate(master);
1403  release_of_dev:
1404 	aspeed_gpio_copro_set_ops(NULL, NULL);
1405 	gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1406 	of_node_put(dev_of_node(master->dev));
1407  err_free:
1408 	kfree(master);
1409 	return rc;
1410 }
1411 
1412 
1413 static int fsi_master_acf_remove(struct platform_device *pdev)
1414 {
1415 	struct fsi_master_acf *master = platform_get_drvdata(pdev);
1416 
1417 	device_remove_file(master->dev, &dev_attr_external_mode);
1418 
1419 	fsi_master_unregister(&master->master);
1420 
1421 	return 0;
1422 }
1423 
1424 static const struct of_device_id fsi_master_acf_match[] = {
1425 	{ .compatible = "aspeed,ast2400-cf-fsi-master" },
1426 	{ .compatible = "aspeed,ast2500-cf-fsi-master" },
1427 	{ },
1428 };
1429 MODULE_DEVICE_TABLE(of, fsi_master_acf_match);
1430 
1431 static struct platform_driver fsi_master_acf = {
1432 	.driver = {
1433 		.name		= "fsi-master-acf",
1434 		.of_match_table	= fsi_master_acf_match,
1435 	},
1436 	.probe	= fsi_master_acf_probe,
1437 	.remove = fsi_master_acf_remove,
1438 };
1439 
1440 module_platform_driver(fsi_master_acf);
1441 MODULE_LICENSE("GPL");
1442