xref: /openbmc/linux/drivers/fsi/fsi-core.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FSI core driver
4  *
5  * Copyright (C) IBM Corporation 2016
6  *
7  * TODO:
8  *  - Rework topology
9  *  - s/chip_id/chip_loc
10  *  - s/cfam/chip (cfam_id -> chip_id etc...)
11  */
12 
13 #include <linux/crc4.h>
14 #include <linux/device.h>
15 #include <linux/fsi.h>
16 #include <linux/idr.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/cdev.h>
22 #include <linux/fs.h>
23 #include <linux/uaccess.h>
24 
25 #include "fsi-master.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/fsi.h>
29 
30 #define FSI_SLAVE_CONF_NEXT_MASK	GENMASK(31, 31)
31 #define FSI_SLAVE_CONF_SLOTS_MASK	GENMASK(23, 16)
32 #define FSI_SLAVE_CONF_SLOTS_SHIFT	16
33 #define FSI_SLAVE_CONF_VERSION_MASK	GENMASK(15, 12)
34 #define FSI_SLAVE_CONF_VERSION_SHIFT	12
35 #define FSI_SLAVE_CONF_TYPE_MASK	GENMASK(11, 4)
36 #define FSI_SLAVE_CONF_TYPE_SHIFT	4
37 #define FSI_SLAVE_CONF_CRC_SHIFT	4
38 #define FSI_SLAVE_CONF_CRC_MASK		GENMASK(3, 0)
39 #define FSI_SLAVE_CONF_DATA_BITS	28
40 
41 #define FSI_PEEK_BASE			0x410
42 
43 static const int engine_page_size = 0x400;
44 
45 #define FSI_SLAVE_BASE			0x800
46 
47 /*
48  * FSI slave engine control register offsets
49  */
50 #define FSI_SMODE		0x0	/* R/W: Mode register */
51 #define FSI_SISC		0x8	/* R/W: Interrupt condition */
52 #define FSI_SSTAT		0x14	/* R  : Slave status */
53 #define FSI_LLMODE		0x100	/* R/W: Link layer mode register */
54 
55 /*
56  * SMODE fields
57  */
58 #define FSI_SMODE_WSC		0x80000000	/* Warm start done */
59 #define FSI_SMODE_ECRC		0x20000000	/* Hw CRC check */
60 #define FSI_SMODE_SID_SHIFT	24		/* ID shift */
61 #define FSI_SMODE_SID_MASK	3		/* ID Mask */
62 #define FSI_SMODE_ED_SHIFT	20		/* Echo delay shift */
63 #define FSI_SMODE_ED_MASK	0xf		/* Echo delay mask */
64 #define FSI_SMODE_SD_SHIFT	16		/* Send delay shift */
65 #define FSI_SMODE_SD_MASK	0xf		/* Send delay mask */
66 #define FSI_SMODE_LBCRR_SHIFT	8		/* Clk ratio shift */
67 #define FSI_SMODE_LBCRR_MASK	0xf		/* Clk ratio mask */
68 
69 /*
70  * LLMODE fields
71  */
72 #define FSI_LLMODE_ASYNC	0x1
73 
74 #define FSI_SLAVE_SIZE_23b		0x800000
75 
76 static DEFINE_IDA(master_ida);
77 
78 struct fsi_slave {
79 	struct device		dev;
80 	struct fsi_master	*master;
81 	struct cdev		cdev;
82 	int			cdev_idx;
83 	int			id;	/* FSI address */
84 	int			link;	/* FSI link# */
85 	u32			cfam_id;
86 	int			chip_id;
87 	uint32_t		size;	/* size of slave address space */
88 	u8			t_send_delay;
89 	u8			t_echo_delay;
90 };
91 
92 #define to_fsi_master(d) container_of(d, struct fsi_master, dev)
93 #define to_fsi_slave(d) container_of(d, struct fsi_slave, dev)
94 
95 static const int slave_retries = 2;
96 static int discard_errors;
97 
98 static dev_t fsi_base_dev;
99 static DEFINE_IDA(fsi_minor_ida);
100 #define FSI_CHAR_MAX_DEVICES	0x1000
101 
102 /* Legacy /dev numbering: 4 devices per chip, 16 chips */
103 #define FSI_CHAR_LEGACY_TOP	64
104 
105 static int fsi_master_read(struct fsi_master *master, int link,
106 		uint8_t slave_id, uint32_t addr, void *val, size_t size);
107 static int fsi_master_write(struct fsi_master *master, int link,
108 		uint8_t slave_id, uint32_t addr, const void *val, size_t size);
109 static int fsi_master_break(struct fsi_master *master, int link);
110 
111 /*
112  * fsi_device_read() / fsi_device_write() / fsi_device_peek()
113  *
114  * FSI endpoint-device support
115  *
116  * Read / write / peek accessors for a client
117  *
118  * Parameters:
119  * dev:  Structure passed to FSI client device drivers on probe().
120  * addr: FSI address of given device.  Client should pass in its base address
121  *       plus desired offset to access its register space.
122  * val:  For read/peek this is the value read at the specified address. For
123  *       write this is value to write to the specified address.
124  *       The data in val must be FSI bus endian (big endian).
125  * size: Size in bytes of the operation.  Sizes supported are 1, 2 and 4 bytes.
126  *       Addresses must be aligned on size boundaries or an error will result.
127  */
128 int fsi_device_read(struct fsi_device *dev, uint32_t addr, void *val,
129 		size_t size)
130 {
131 	if (addr > dev->size || size > dev->size || addr > dev->size - size)
132 		return -EINVAL;
133 
134 	return fsi_slave_read(dev->slave, dev->addr + addr, val, size);
135 }
136 EXPORT_SYMBOL_GPL(fsi_device_read);
137 
138 int fsi_device_write(struct fsi_device *dev, uint32_t addr, const void *val,
139 		size_t size)
140 {
141 	if (addr > dev->size || size > dev->size || addr > dev->size - size)
142 		return -EINVAL;
143 
144 	return fsi_slave_write(dev->slave, dev->addr + addr, val, size);
145 }
146 EXPORT_SYMBOL_GPL(fsi_device_write);
147 
148 int fsi_device_peek(struct fsi_device *dev, void *val)
149 {
150 	uint32_t addr = FSI_PEEK_BASE + ((dev->unit - 2) * sizeof(uint32_t));
151 
152 	return fsi_slave_read(dev->slave, addr, val, sizeof(uint32_t));
153 }
154 
155 static void fsi_device_release(struct device *_device)
156 {
157 	struct fsi_device *device = to_fsi_dev(_device);
158 
159 	of_node_put(device->dev.of_node);
160 	kfree(device);
161 }
162 
163 static struct fsi_device *fsi_create_device(struct fsi_slave *slave)
164 {
165 	struct fsi_device *dev;
166 
167 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
168 	if (!dev)
169 		return NULL;
170 
171 	dev->dev.parent = &slave->dev;
172 	dev->dev.bus = &fsi_bus_type;
173 	dev->dev.release = fsi_device_release;
174 
175 	return dev;
176 }
177 
178 /* FSI slave support */
179 static int fsi_slave_calc_addr(struct fsi_slave *slave, uint32_t *addrp,
180 		uint8_t *idp)
181 {
182 	uint32_t addr = *addrp;
183 	uint8_t id = *idp;
184 
185 	if (addr > slave->size)
186 		return -EINVAL;
187 
188 	/* For 23 bit addressing, we encode the extra two bits in the slave
189 	 * id (and the slave's actual ID needs to be 0).
190 	 */
191 	if (addr > 0x1fffff) {
192 		if (slave->id != 0)
193 			return -EINVAL;
194 		id = (addr >> 21) & 0x3;
195 		addr &= 0x1fffff;
196 	}
197 
198 	*addrp = addr;
199 	*idp = id;
200 	return 0;
201 }
202 
203 static int fsi_slave_report_and_clear_errors(struct fsi_slave *slave)
204 {
205 	struct fsi_master *master = slave->master;
206 	__be32 irq, stat;
207 	int rc, link;
208 	uint8_t id;
209 
210 	link = slave->link;
211 	id = slave->id;
212 
213 	rc = fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
214 			&irq, sizeof(irq));
215 	if (rc)
216 		return rc;
217 
218 	rc =  fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SSTAT,
219 			&stat, sizeof(stat));
220 	if (rc)
221 		return rc;
222 
223 	dev_dbg(&slave->dev, "status: 0x%08x, sisc: 0x%08x\n",
224 			be32_to_cpu(stat), be32_to_cpu(irq));
225 
226 	/* clear interrupts */
227 	return fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
228 			&irq, sizeof(irq));
229 }
230 
231 /* Encode slave local bus echo delay */
232 static inline uint32_t fsi_smode_echodly(int x)
233 {
234 	return (x & FSI_SMODE_ED_MASK) << FSI_SMODE_ED_SHIFT;
235 }
236 
237 /* Encode slave local bus send delay */
238 static inline uint32_t fsi_smode_senddly(int x)
239 {
240 	return (x & FSI_SMODE_SD_MASK) << FSI_SMODE_SD_SHIFT;
241 }
242 
243 /* Encode slave local bus clock rate ratio */
244 static inline uint32_t fsi_smode_lbcrr(int x)
245 {
246 	return (x & FSI_SMODE_LBCRR_MASK) << FSI_SMODE_LBCRR_SHIFT;
247 }
248 
249 /* Encode slave ID */
250 static inline uint32_t fsi_smode_sid(int x)
251 {
252 	return (x & FSI_SMODE_SID_MASK) << FSI_SMODE_SID_SHIFT;
253 }
254 
255 static uint32_t fsi_slave_smode(int id, u8 t_senddly, u8 t_echodly)
256 {
257 	return FSI_SMODE_WSC | FSI_SMODE_ECRC
258 		| fsi_smode_sid(id)
259 		| fsi_smode_echodly(t_echodly - 1) | fsi_smode_senddly(t_senddly - 1)
260 		| fsi_smode_lbcrr(0x8);
261 }
262 
263 static int fsi_slave_set_smode(struct fsi_slave *slave)
264 {
265 	uint32_t smode;
266 	__be32 data;
267 
268 	/* set our smode register with the slave ID field to 0; this enables
269 	 * extended slave addressing
270 	 */
271 	smode = fsi_slave_smode(slave->id, slave->t_send_delay, slave->t_echo_delay);
272 	data = cpu_to_be32(smode);
273 
274 	return fsi_master_write(slave->master, slave->link, slave->id,
275 				FSI_SLAVE_BASE + FSI_SMODE,
276 				&data, sizeof(data));
277 }
278 
279 static int fsi_slave_handle_error(struct fsi_slave *slave, bool write,
280 				  uint32_t addr, size_t size)
281 {
282 	struct fsi_master *master = slave->master;
283 	int rc, link;
284 	uint32_t reg;
285 	uint8_t id, send_delay, echo_delay;
286 
287 	if (discard_errors)
288 		return -1;
289 
290 	link = slave->link;
291 	id = slave->id;
292 
293 	dev_dbg(&slave->dev, "handling error on %s to 0x%08x[%zd]",
294 			write ? "write" : "read", addr, size);
295 
296 	/* try a simple clear of error conditions, which may fail if we've lost
297 	 * communication with the slave
298 	 */
299 	rc = fsi_slave_report_and_clear_errors(slave);
300 	if (!rc)
301 		return 0;
302 
303 	/* send a TERM and retry */
304 	if (master->term) {
305 		rc = master->term(master, link, id);
306 		if (!rc) {
307 			rc = fsi_master_read(master, link, id, 0,
308 					&reg, sizeof(reg));
309 			if (!rc)
310 				rc = fsi_slave_report_and_clear_errors(slave);
311 			if (!rc)
312 				return 0;
313 		}
314 	}
315 
316 	send_delay = slave->t_send_delay;
317 	echo_delay = slave->t_echo_delay;
318 
319 	/* getting serious, reset the slave via BREAK */
320 	rc = fsi_master_break(master, link);
321 	if (rc)
322 		return rc;
323 
324 	slave->t_send_delay = send_delay;
325 	slave->t_echo_delay = echo_delay;
326 
327 	rc = fsi_slave_set_smode(slave);
328 	if (rc)
329 		return rc;
330 
331 	if (master->link_config)
332 		master->link_config(master, link,
333 				    slave->t_send_delay,
334 				    slave->t_echo_delay);
335 
336 	return fsi_slave_report_and_clear_errors(slave);
337 }
338 
339 int fsi_slave_read(struct fsi_slave *slave, uint32_t addr,
340 			void *val, size_t size)
341 {
342 	uint8_t id = slave->id;
343 	int rc, err_rc, i;
344 
345 	rc = fsi_slave_calc_addr(slave, &addr, &id);
346 	if (rc)
347 		return rc;
348 
349 	for (i = 0; i < slave_retries; i++) {
350 		rc = fsi_master_read(slave->master, slave->link,
351 				id, addr, val, size);
352 		if (!rc)
353 			break;
354 
355 		err_rc = fsi_slave_handle_error(slave, false, addr, size);
356 		if (err_rc)
357 			break;
358 	}
359 
360 	return rc;
361 }
362 EXPORT_SYMBOL_GPL(fsi_slave_read);
363 
364 int fsi_slave_write(struct fsi_slave *slave, uint32_t addr,
365 			const void *val, size_t size)
366 {
367 	uint8_t id = slave->id;
368 	int rc, err_rc, i;
369 
370 	rc = fsi_slave_calc_addr(slave, &addr, &id);
371 	if (rc)
372 		return rc;
373 
374 	for (i = 0; i < slave_retries; i++) {
375 		rc = fsi_master_write(slave->master, slave->link,
376 				id, addr, val, size);
377 		if (!rc)
378 			break;
379 
380 		err_rc = fsi_slave_handle_error(slave, true, addr, size);
381 		if (err_rc)
382 			break;
383 	}
384 
385 	return rc;
386 }
387 EXPORT_SYMBOL_GPL(fsi_slave_write);
388 
389 extern int fsi_slave_claim_range(struct fsi_slave *slave,
390 		uint32_t addr, uint32_t size)
391 {
392 	if (addr + size < addr)
393 		return -EINVAL;
394 
395 	if (addr + size > slave->size)
396 		return -EINVAL;
397 
398 	/* todo: check for overlapping claims */
399 	return 0;
400 }
401 EXPORT_SYMBOL_GPL(fsi_slave_claim_range);
402 
403 extern void fsi_slave_release_range(struct fsi_slave *slave,
404 		uint32_t addr, uint32_t size)
405 {
406 }
407 EXPORT_SYMBOL_GPL(fsi_slave_release_range);
408 
409 static bool fsi_device_node_matches(struct device *dev, struct device_node *np,
410 		uint32_t addr, uint32_t size)
411 {
412 	unsigned int len, na, ns;
413 	const __be32 *prop;
414 	uint32_t psize;
415 
416 	na = of_n_addr_cells(np);
417 	ns = of_n_size_cells(np);
418 
419 	if (na != 1 || ns != 1)
420 		return false;
421 
422 	prop = of_get_property(np, "reg", &len);
423 	if (!prop || len != 8)
424 		return false;
425 
426 	if (of_read_number(prop, 1) != addr)
427 		return false;
428 
429 	psize = of_read_number(prop + 1, 1);
430 	if (psize != size) {
431 		dev_warn(dev,
432 			"node %s matches probed address, but not size (got 0x%x, expected 0x%x)",
433 			of_node_full_name(np), psize, size);
434 	}
435 
436 	return true;
437 }
438 
439 /* Find a matching node for the slave engine at @address, using @size bytes
440  * of space. Returns NULL if not found, or a matching node with refcount
441  * already incremented.
442  */
443 static struct device_node *fsi_device_find_of_node(struct fsi_device *dev)
444 {
445 	struct device_node *parent, *np;
446 
447 	parent = dev_of_node(&dev->slave->dev);
448 	if (!parent)
449 		return NULL;
450 
451 	for_each_child_of_node(parent, np) {
452 		if (fsi_device_node_matches(&dev->dev, np,
453 					dev->addr, dev->size))
454 			return np;
455 	}
456 
457 	return NULL;
458 }
459 
460 static int fsi_slave_scan(struct fsi_slave *slave)
461 {
462 	uint32_t engine_addr;
463 	int rc, i;
464 
465 	/*
466 	 * scan engines
467 	 *
468 	 * We keep the peek mode and slave engines for the core; so start
469 	 * at the third slot in the configuration table. We also need to
470 	 * skip the chip ID entry at the start of the address space.
471 	 */
472 	engine_addr = engine_page_size * 3;
473 	for (i = 2; i < engine_page_size / sizeof(uint32_t); i++) {
474 		uint8_t slots, version, type, crc;
475 		struct fsi_device *dev;
476 		uint32_t conf;
477 		__be32 data;
478 
479 		rc = fsi_slave_read(slave, (i + 1) * sizeof(data),
480 				&data, sizeof(data));
481 		if (rc) {
482 			dev_warn(&slave->dev,
483 				"error reading slave registers\n");
484 			return -1;
485 		}
486 		conf = be32_to_cpu(data);
487 
488 		crc = crc4(0, conf, 32);
489 		if (crc) {
490 			dev_warn(&slave->dev,
491 				"crc error in slave register at 0x%04x\n",
492 				i);
493 			return -1;
494 		}
495 
496 		slots = (conf & FSI_SLAVE_CONF_SLOTS_MASK)
497 			>> FSI_SLAVE_CONF_SLOTS_SHIFT;
498 		version = (conf & FSI_SLAVE_CONF_VERSION_MASK)
499 			>> FSI_SLAVE_CONF_VERSION_SHIFT;
500 		type = (conf & FSI_SLAVE_CONF_TYPE_MASK)
501 			>> FSI_SLAVE_CONF_TYPE_SHIFT;
502 
503 		/*
504 		 * Unused address areas are marked by a zero type value; this
505 		 * skips the defined address areas
506 		 */
507 		if (type != 0 && slots != 0) {
508 
509 			/* create device */
510 			dev = fsi_create_device(slave);
511 			if (!dev)
512 				return -ENOMEM;
513 
514 			dev->slave = slave;
515 			dev->engine_type = type;
516 			dev->version = version;
517 			dev->unit = i;
518 			dev->addr = engine_addr;
519 			dev->size = slots * engine_page_size;
520 
521 			dev_dbg(&slave->dev,
522 			"engine[%i]: type %x, version %x, addr %x size %x\n",
523 					dev->unit, dev->engine_type, version,
524 					dev->addr, dev->size);
525 
526 			dev_set_name(&dev->dev, "%02x:%02x:%02x:%02x",
527 					slave->master->idx, slave->link,
528 					slave->id, i - 2);
529 			dev->dev.of_node = fsi_device_find_of_node(dev);
530 
531 			rc = device_register(&dev->dev);
532 			if (rc) {
533 				dev_warn(&slave->dev, "add failed: %d\n", rc);
534 				put_device(&dev->dev);
535 			}
536 		}
537 
538 		engine_addr += slots * engine_page_size;
539 
540 		if (!(conf & FSI_SLAVE_CONF_NEXT_MASK))
541 			break;
542 	}
543 
544 	return 0;
545 }
546 
547 static unsigned long aligned_access_size(size_t offset, size_t count)
548 {
549 	unsigned long offset_unit, count_unit;
550 
551 	/* Criteria:
552 	 *
553 	 * 1. Access size must be less than or equal to the maximum access
554 	 *    width or the highest power-of-two factor of offset
555 	 * 2. Access size must be less than or equal to the amount specified by
556 	 *    count
557 	 *
558 	 * The access width is optimal if we can calculate 1 to be strictly
559 	 * equal while still satisfying 2.
560 	 */
561 
562 	/* Find 1 by the bottom bit of offset (with a 4 byte access cap) */
563 	offset_unit = BIT(__builtin_ctzl(offset | 4));
564 
565 	/* Find 2 by the top bit of count */
566 	count_unit = BIT(8 * sizeof(unsigned long) - 1 - __builtin_clzl(count));
567 
568 	/* Constrain the maximum access width to the minimum of both criteria */
569 	return BIT(__builtin_ctzl(offset_unit | count_unit));
570 }
571 
572 static ssize_t fsi_slave_sysfs_raw_read(struct file *file,
573 		struct kobject *kobj, struct bin_attribute *attr, char *buf,
574 		loff_t off, size_t count)
575 {
576 	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
577 	size_t total_len, read_len;
578 	int rc;
579 
580 	if (off < 0)
581 		return -EINVAL;
582 
583 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
584 		return -EINVAL;
585 
586 	for (total_len = 0; total_len < count; total_len += read_len) {
587 		read_len = aligned_access_size(off, count - total_len);
588 
589 		rc = fsi_slave_read(slave, off, buf + total_len, read_len);
590 		if (rc)
591 			return rc;
592 
593 		off += read_len;
594 	}
595 
596 	return count;
597 }
598 
599 static ssize_t fsi_slave_sysfs_raw_write(struct file *file,
600 		struct kobject *kobj, struct bin_attribute *attr,
601 		char *buf, loff_t off, size_t count)
602 {
603 	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
604 	size_t total_len, write_len;
605 	int rc;
606 
607 	if (off < 0)
608 		return -EINVAL;
609 
610 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
611 		return -EINVAL;
612 
613 	for (total_len = 0; total_len < count; total_len += write_len) {
614 		write_len = aligned_access_size(off, count - total_len);
615 
616 		rc = fsi_slave_write(slave, off, buf + total_len, write_len);
617 		if (rc)
618 			return rc;
619 
620 		off += write_len;
621 	}
622 
623 	return count;
624 }
625 
626 static const struct bin_attribute fsi_slave_raw_attr = {
627 	.attr = {
628 		.name = "raw",
629 		.mode = 0600,
630 	},
631 	.size = 0,
632 	.read = fsi_slave_sysfs_raw_read,
633 	.write = fsi_slave_sysfs_raw_write,
634 };
635 
636 static void fsi_slave_release(struct device *dev)
637 {
638 	struct fsi_slave *slave = to_fsi_slave(dev);
639 
640 	fsi_free_minor(slave->dev.devt);
641 	of_node_put(dev->of_node);
642 	kfree(slave);
643 }
644 
645 static bool fsi_slave_node_matches(struct device_node *np,
646 		int link, uint8_t id)
647 {
648 	unsigned int len, na, ns;
649 	const __be32 *prop;
650 
651 	na = of_n_addr_cells(np);
652 	ns = of_n_size_cells(np);
653 
654 	/* Ensure we have the correct format for addresses and sizes in
655 	 * reg properties
656 	 */
657 	if (na != 2 || ns != 0)
658 		return false;
659 
660 	prop = of_get_property(np, "reg", &len);
661 	if (!prop || len != 8)
662 		return false;
663 
664 	return (of_read_number(prop, 1) == link) &&
665 		(of_read_number(prop + 1, 1) == id);
666 }
667 
668 /* Find a matching node for the slave at (link, id). Returns NULL if none
669  * found, or a matching node with refcount already incremented.
670  */
671 static struct device_node *fsi_slave_find_of_node(struct fsi_master *master,
672 		int link, uint8_t id)
673 {
674 	struct device_node *parent, *np;
675 
676 	parent = dev_of_node(&master->dev);
677 	if (!parent)
678 		return NULL;
679 
680 	for_each_child_of_node(parent, np) {
681 		if (fsi_slave_node_matches(np, link, id))
682 			return np;
683 	}
684 
685 	return NULL;
686 }
687 
688 static ssize_t cfam_read(struct file *filep, char __user *buf, size_t count,
689 			 loff_t *offset)
690 {
691 	struct fsi_slave *slave = filep->private_data;
692 	size_t total_len, read_len;
693 	loff_t off = *offset;
694 	ssize_t rc;
695 
696 	if (off < 0)
697 		return -EINVAL;
698 
699 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
700 		return -EINVAL;
701 
702 	for (total_len = 0; total_len < count; total_len += read_len) {
703 		__be32 data;
704 
705 		read_len = min_t(size_t, count, 4);
706 		read_len -= off & 0x3;
707 
708 		rc = fsi_slave_read(slave, off, &data, read_len);
709 		if (rc)
710 			goto fail;
711 		rc = copy_to_user(buf + total_len, &data, read_len);
712 		if (rc) {
713 			rc = -EFAULT;
714 			goto fail;
715 		}
716 		off += read_len;
717 	}
718 	rc = count;
719  fail:
720 	*offset = off;
721 	return count;
722 }
723 
724 static ssize_t cfam_write(struct file *filep, const char __user *buf,
725 			  size_t count, loff_t *offset)
726 {
727 	struct fsi_slave *slave = filep->private_data;
728 	size_t total_len, write_len;
729 	loff_t off = *offset;
730 	ssize_t rc;
731 
732 
733 	if (off < 0)
734 		return -EINVAL;
735 
736 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
737 		return -EINVAL;
738 
739 	for (total_len = 0; total_len < count; total_len += write_len) {
740 		__be32 data;
741 
742 		write_len = min_t(size_t, count, 4);
743 		write_len -= off & 0x3;
744 
745 		rc = copy_from_user(&data, buf + total_len, write_len);
746 		if (rc) {
747 			rc = -EFAULT;
748 			goto fail;
749 		}
750 		rc = fsi_slave_write(slave, off, &data, write_len);
751 		if (rc)
752 			goto fail;
753 		off += write_len;
754 	}
755 	rc = count;
756  fail:
757 	*offset = off;
758 	return count;
759 }
760 
761 static loff_t cfam_llseek(struct file *file, loff_t offset, int whence)
762 {
763 	switch (whence) {
764 	case SEEK_CUR:
765 		break;
766 	case SEEK_SET:
767 		file->f_pos = offset;
768 		break;
769 	default:
770 		return -EINVAL;
771 	}
772 
773 	return offset;
774 }
775 
776 static int cfam_open(struct inode *inode, struct file *file)
777 {
778 	struct fsi_slave *slave = container_of(inode->i_cdev, struct fsi_slave, cdev);
779 
780 	file->private_data = slave;
781 
782 	return 0;
783 }
784 
785 static const struct file_operations cfam_fops = {
786 	.owner		= THIS_MODULE,
787 	.open		= cfam_open,
788 	.llseek		= cfam_llseek,
789 	.read		= cfam_read,
790 	.write		= cfam_write,
791 };
792 
793 static ssize_t send_term_store(struct device *dev,
794 			       struct device_attribute *attr,
795 			       const char *buf, size_t count)
796 {
797 	struct fsi_slave *slave = to_fsi_slave(dev);
798 	struct fsi_master *master = slave->master;
799 
800 	if (!master->term)
801 		return -ENODEV;
802 
803 	master->term(master, slave->link, slave->id);
804 	return count;
805 }
806 
807 static DEVICE_ATTR_WO(send_term);
808 
809 static ssize_t slave_send_echo_show(struct device *dev,
810 				    struct device_attribute *attr,
811 				    char *buf)
812 {
813 	struct fsi_slave *slave = to_fsi_slave(dev);
814 
815 	return sprintf(buf, "%u\n", slave->t_send_delay);
816 }
817 
818 static ssize_t slave_send_echo_store(struct device *dev,
819 		struct device_attribute *attr, const char *buf, size_t count)
820 {
821 	struct fsi_slave *slave = to_fsi_slave(dev);
822 	struct fsi_master *master = slave->master;
823 	unsigned long val;
824 	int rc;
825 
826 	if (kstrtoul(buf, 0, &val) < 0)
827 		return -EINVAL;
828 
829 	if (val < 1 || val > 16)
830 		return -EINVAL;
831 
832 	if (!master->link_config)
833 		return -ENXIO;
834 
835 	/* Current HW mandates that send and echo delay are identical */
836 	slave->t_send_delay = val;
837 	slave->t_echo_delay = val;
838 
839 	rc = fsi_slave_set_smode(slave);
840 	if (rc < 0)
841 		return rc;
842 	if (master->link_config)
843 		master->link_config(master, slave->link,
844 				    slave->t_send_delay,
845 				    slave->t_echo_delay);
846 
847 	return count;
848 }
849 
850 static DEVICE_ATTR(send_echo_delays, 0600,
851 		   slave_send_echo_show, slave_send_echo_store);
852 
853 static ssize_t chip_id_show(struct device *dev,
854 			    struct device_attribute *attr,
855 			    char *buf)
856 {
857 	struct fsi_slave *slave = to_fsi_slave(dev);
858 
859 	return sprintf(buf, "%d\n", slave->chip_id);
860 }
861 
862 static DEVICE_ATTR_RO(chip_id);
863 
864 static ssize_t cfam_id_show(struct device *dev,
865 			    struct device_attribute *attr,
866 			    char *buf)
867 {
868 	struct fsi_slave *slave = to_fsi_slave(dev);
869 
870 	return sprintf(buf, "0x%x\n", slave->cfam_id);
871 }
872 
873 static DEVICE_ATTR_RO(cfam_id);
874 
875 static struct attribute *cfam_attr[] = {
876 	&dev_attr_send_echo_delays.attr,
877 	&dev_attr_chip_id.attr,
878 	&dev_attr_cfam_id.attr,
879 	&dev_attr_send_term.attr,
880 	NULL,
881 };
882 
883 static const struct attribute_group cfam_attr_group = {
884 	.attrs = cfam_attr,
885 };
886 
887 static const struct attribute_group *cfam_attr_groups[] = {
888 	&cfam_attr_group,
889 	NULL,
890 };
891 
892 static char *cfam_devnode(struct device *dev, umode_t *mode,
893 			  kuid_t *uid, kgid_t *gid)
894 {
895 	struct fsi_slave *slave = to_fsi_slave(dev);
896 
897 #ifdef CONFIG_FSI_NEW_DEV_NODE
898 	return kasprintf(GFP_KERNEL, "fsi/cfam%d", slave->cdev_idx);
899 #else
900 	return kasprintf(GFP_KERNEL, "cfam%d", slave->cdev_idx);
901 #endif
902 }
903 
904 static const struct device_type cfam_type = {
905 	.name = "cfam",
906 	.devnode = cfam_devnode,
907 	.groups = cfam_attr_groups
908 };
909 
910 static char *fsi_cdev_devnode(struct device *dev, umode_t *mode,
911 			      kuid_t *uid, kgid_t *gid)
912 {
913 #ifdef CONFIG_FSI_NEW_DEV_NODE
914 	return kasprintf(GFP_KERNEL, "fsi/%s", dev_name(dev));
915 #else
916 	return kasprintf(GFP_KERNEL, "%s", dev_name(dev));
917 #endif
918 }
919 
920 const struct device_type fsi_cdev_type = {
921 	.name = "fsi-cdev",
922 	.devnode = fsi_cdev_devnode,
923 };
924 EXPORT_SYMBOL_GPL(fsi_cdev_type);
925 
926 /* Backward compatible /dev/ numbering in "old style" mode */
927 static int fsi_adjust_index(int index)
928 {
929 #ifdef CONFIG_FSI_NEW_DEV_NODE
930 	return index;
931 #else
932 	return index + 1;
933 #endif
934 }
935 
936 static int __fsi_get_new_minor(struct fsi_slave *slave, enum fsi_dev_type type,
937 			       dev_t *out_dev, int *out_index)
938 {
939 	int cid = slave->chip_id;
940 	int id;
941 
942 	/* Check if we qualify for legacy numbering */
943 	if (cid >= 0 && cid < 16 && type < 4) {
944 		/* Try reserving the legacy number */
945 		id = (cid << 4) | type;
946 		id = ida_simple_get(&fsi_minor_ida, id, id + 1, GFP_KERNEL);
947 		if (id >= 0) {
948 			*out_index = fsi_adjust_index(cid);
949 			*out_dev = fsi_base_dev + id;
950 			return 0;
951 		}
952 		/* Other failure */
953 		if (id != -ENOSPC)
954 			return id;
955 		/* Fallback to non-legacy allocation */
956 	}
957 	id = ida_simple_get(&fsi_minor_ida, FSI_CHAR_LEGACY_TOP,
958 			    FSI_CHAR_MAX_DEVICES, GFP_KERNEL);
959 	if (id < 0)
960 		return id;
961 	*out_index = fsi_adjust_index(id);
962 	*out_dev = fsi_base_dev + id;
963 	return 0;
964 }
965 
966 int fsi_get_new_minor(struct fsi_device *fdev, enum fsi_dev_type type,
967 		      dev_t *out_dev, int *out_index)
968 {
969 	return __fsi_get_new_minor(fdev->slave, type, out_dev, out_index);
970 }
971 EXPORT_SYMBOL_GPL(fsi_get_new_minor);
972 
973 void fsi_free_minor(dev_t dev)
974 {
975 	ida_simple_remove(&fsi_minor_ida, MINOR(dev));
976 }
977 EXPORT_SYMBOL_GPL(fsi_free_minor);
978 
979 static int fsi_slave_init(struct fsi_master *master, int link, uint8_t id)
980 {
981 	uint32_t cfam_id;
982 	struct fsi_slave *slave;
983 	uint8_t crc;
984 	__be32 data, llmode;
985 	int rc;
986 
987 	/* Currently, we only support single slaves on a link, and use the
988 	 * full 23-bit address range
989 	 */
990 	if (id != 0)
991 		return -EINVAL;
992 
993 	rc = fsi_master_read(master, link, id, 0, &data, sizeof(data));
994 	if (rc) {
995 		dev_dbg(&master->dev, "can't read slave %02x:%02x %d\n",
996 				link, id, rc);
997 		return -ENODEV;
998 	}
999 	cfam_id = be32_to_cpu(data);
1000 
1001 	crc = crc4(0, cfam_id, 32);
1002 	if (crc) {
1003 		dev_warn(&master->dev, "slave %02x:%02x invalid cfam id CRC!\n",
1004 				link, id);
1005 		return -EIO;
1006 	}
1007 
1008 	dev_dbg(&master->dev, "fsi: found chip %08x at %02x:%02x:%02x\n",
1009 			cfam_id, master->idx, link, id);
1010 
1011 	/* If we're behind a master that doesn't provide a self-running bus
1012 	 * clock, put the slave into async mode
1013 	 */
1014 	if (master->flags & FSI_MASTER_FLAG_SWCLOCK) {
1015 		llmode = cpu_to_be32(FSI_LLMODE_ASYNC);
1016 		rc = fsi_master_write(master, link, id,
1017 				FSI_SLAVE_BASE + FSI_LLMODE,
1018 				&llmode, sizeof(llmode));
1019 		if (rc)
1020 			dev_warn(&master->dev,
1021 				"can't set llmode on slave:%02x:%02x %d\n",
1022 				link, id, rc);
1023 	}
1024 
1025 	/* We can communicate with a slave; create the slave device and
1026 	 * register.
1027 	 */
1028 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
1029 	if (!slave)
1030 		return -ENOMEM;
1031 
1032 	dev_set_name(&slave->dev, "slave@%02x:%02x", link, id);
1033 	slave->dev.type = &cfam_type;
1034 	slave->dev.parent = &master->dev;
1035 	slave->dev.of_node = fsi_slave_find_of_node(master, link, id);
1036 	slave->dev.release = fsi_slave_release;
1037 	device_initialize(&slave->dev);
1038 	slave->cfam_id = cfam_id;
1039 	slave->master = master;
1040 	slave->link = link;
1041 	slave->id = id;
1042 	slave->size = FSI_SLAVE_SIZE_23b;
1043 	slave->t_send_delay = 16;
1044 	slave->t_echo_delay = 16;
1045 
1046 	/* Get chip ID if any */
1047 	slave->chip_id = -1;
1048 	if (slave->dev.of_node) {
1049 		uint32_t prop;
1050 		if (!of_property_read_u32(slave->dev.of_node, "chip-id", &prop))
1051 			slave->chip_id = prop;
1052 
1053 	}
1054 
1055 	rc = fsi_slave_set_smode(slave);
1056 	if (rc) {
1057 		dev_warn(&master->dev,
1058 				"can't set smode on slave:%02x:%02x %d\n",
1059 				link, id, rc);
1060 		goto err_free;
1061 	}
1062 
1063 	/* Allocate a minor in the FSI space */
1064 	rc = __fsi_get_new_minor(slave, fsi_dev_cfam, &slave->dev.devt,
1065 				 &slave->cdev_idx);
1066 	if (rc)
1067 		goto err_free;
1068 
1069 	/* Create chardev for userspace access */
1070 	cdev_init(&slave->cdev, &cfam_fops);
1071 	rc = cdev_device_add(&slave->cdev, &slave->dev);
1072 	if (rc) {
1073 		dev_err(&slave->dev, "Error %d creating slave device\n", rc);
1074 		goto err_free_ida;
1075 	}
1076 
1077 	/* Now that we have the cdev registered with the core, any fatal
1078 	 * failures beyond this point will need to clean up through
1079 	 * cdev_device_del(). Fortunately though, nothing past here is fatal.
1080 	 */
1081 
1082 	if (master->link_config)
1083 		master->link_config(master, link,
1084 				    slave->t_send_delay,
1085 				    slave->t_echo_delay);
1086 
1087 	/* Legacy raw file -> to be removed */
1088 	rc = device_create_bin_file(&slave->dev, &fsi_slave_raw_attr);
1089 	if (rc)
1090 		dev_warn(&slave->dev, "failed to create raw attr: %d\n", rc);
1091 
1092 
1093 	rc = fsi_slave_scan(slave);
1094 	if (rc)
1095 		dev_dbg(&master->dev, "failed during slave scan with: %d\n",
1096 				rc);
1097 
1098 	return 0;
1099 
1100 err_free_ida:
1101 	fsi_free_minor(slave->dev.devt);
1102 err_free:
1103 	of_node_put(slave->dev.of_node);
1104 	kfree(slave);
1105 	return rc;
1106 }
1107 
1108 /* FSI master support */
1109 static int fsi_check_access(uint32_t addr, size_t size)
1110 {
1111 	if (size == 4) {
1112 		if (addr & 0x3)
1113 			return -EINVAL;
1114 	} else if (size == 2) {
1115 		if (addr & 0x1)
1116 			return -EINVAL;
1117 	} else if (size != 1)
1118 		return -EINVAL;
1119 
1120 	return 0;
1121 }
1122 
1123 static int fsi_master_read(struct fsi_master *master, int link,
1124 		uint8_t slave_id, uint32_t addr, void *val, size_t size)
1125 {
1126 	int rc;
1127 
1128 	trace_fsi_master_read(master, link, slave_id, addr, size);
1129 
1130 	rc = fsi_check_access(addr, size);
1131 	if (!rc)
1132 		rc = master->read(master, link, slave_id, addr, val, size);
1133 
1134 	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1135 			false, val, rc);
1136 
1137 	return rc;
1138 }
1139 
1140 static int fsi_master_write(struct fsi_master *master, int link,
1141 		uint8_t slave_id, uint32_t addr, const void *val, size_t size)
1142 {
1143 	int rc;
1144 
1145 	trace_fsi_master_write(master, link, slave_id, addr, size, val);
1146 
1147 	rc = fsi_check_access(addr, size);
1148 	if (!rc)
1149 		rc = master->write(master, link, slave_id, addr, val, size);
1150 
1151 	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1152 			true, val, rc);
1153 
1154 	return rc;
1155 }
1156 
1157 static int fsi_master_link_enable(struct fsi_master *master, int link)
1158 {
1159 	if (master->link_enable)
1160 		return master->link_enable(master, link);
1161 
1162 	return 0;
1163 }
1164 
1165 /*
1166  * Issue a break command on this link
1167  */
1168 static int fsi_master_break(struct fsi_master *master, int link)
1169 {
1170 	int rc = 0;
1171 
1172 	trace_fsi_master_break(master, link);
1173 
1174 	if (master->send_break)
1175 		rc = master->send_break(master, link);
1176 	if (master->link_config)
1177 		master->link_config(master, link, 16, 16);
1178 
1179 	return rc;
1180 }
1181 
1182 static int fsi_master_scan(struct fsi_master *master)
1183 {
1184 	int link, rc;
1185 
1186 	for (link = 0; link < master->n_links; link++) {
1187 		rc = fsi_master_link_enable(master, link);
1188 		if (rc) {
1189 			dev_dbg(&master->dev,
1190 				"enable link %d failed: %d\n", link, rc);
1191 			continue;
1192 		}
1193 		rc = fsi_master_break(master, link);
1194 		if (rc) {
1195 			dev_dbg(&master->dev,
1196 				"break to link %d failed: %d\n", link, rc);
1197 			continue;
1198 		}
1199 
1200 		fsi_slave_init(master, link, 0);
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 static int fsi_slave_remove_device(struct device *dev, void *arg)
1207 {
1208 	device_unregister(dev);
1209 	return 0;
1210 }
1211 
1212 static int fsi_master_remove_slave(struct device *dev, void *arg)
1213 {
1214 	struct fsi_slave *slave = to_fsi_slave(dev);
1215 
1216 	device_for_each_child(dev, NULL, fsi_slave_remove_device);
1217 	cdev_device_del(&slave->cdev, &slave->dev);
1218 	put_device(dev);
1219 	return 0;
1220 }
1221 
1222 static void fsi_master_unscan(struct fsi_master *master)
1223 {
1224 	device_for_each_child(&master->dev, NULL, fsi_master_remove_slave);
1225 }
1226 
1227 int fsi_master_rescan(struct fsi_master *master)
1228 {
1229 	int rc;
1230 
1231 	mutex_lock(&master->scan_lock);
1232 	fsi_master_unscan(master);
1233 	rc = fsi_master_scan(master);
1234 	mutex_unlock(&master->scan_lock);
1235 
1236 	return rc;
1237 }
1238 EXPORT_SYMBOL_GPL(fsi_master_rescan);
1239 
1240 static ssize_t master_rescan_store(struct device *dev,
1241 		struct device_attribute *attr, const char *buf, size_t count)
1242 {
1243 	struct fsi_master *master = to_fsi_master(dev);
1244 	int rc;
1245 
1246 	rc = fsi_master_rescan(master);
1247 	if (rc < 0)
1248 		return rc;
1249 
1250 	return count;
1251 }
1252 
1253 static DEVICE_ATTR(rescan, 0200, NULL, master_rescan_store);
1254 
1255 static ssize_t master_break_store(struct device *dev,
1256 		struct device_attribute *attr, const char *buf, size_t count)
1257 {
1258 	struct fsi_master *master = to_fsi_master(dev);
1259 
1260 	fsi_master_break(master, 0);
1261 
1262 	return count;
1263 }
1264 
1265 static DEVICE_ATTR(break, 0200, NULL, master_break_store);
1266 
1267 static struct attribute *master_attrs[] = {
1268 	&dev_attr_break.attr,
1269 	&dev_attr_rescan.attr,
1270 	NULL
1271 };
1272 
1273 ATTRIBUTE_GROUPS(master);
1274 
1275 static struct class fsi_master_class = {
1276 	.name = "fsi-master",
1277 	.dev_groups = master_groups,
1278 };
1279 
1280 int fsi_master_register(struct fsi_master *master)
1281 {
1282 	int rc;
1283 	struct device_node *np;
1284 
1285 	mutex_init(&master->scan_lock);
1286 	master->idx = ida_simple_get(&master_ida, 0, INT_MAX, GFP_KERNEL);
1287 	dev_set_name(&master->dev, "fsi%d", master->idx);
1288 	master->dev.class = &fsi_master_class;
1289 
1290 	rc = device_register(&master->dev);
1291 	if (rc) {
1292 		ida_simple_remove(&master_ida, master->idx);
1293 		return rc;
1294 	}
1295 
1296 	np = dev_of_node(&master->dev);
1297 	if (!of_property_read_bool(np, "no-scan-on-init")) {
1298 		mutex_lock(&master->scan_lock);
1299 		fsi_master_scan(master);
1300 		mutex_unlock(&master->scan_lock);
1301 	}
1302 
1303 	return 0;
1304 }
1305 EXPORT_SYMBOL_GPL(fsi_master_register);
1306 
1307 void fsi_master_unregister(struct fsi_master *master)
1308 {
1309 	if (master->idx >= 0) {
1310 		ida_simple_remove(&master_ida, master->idx);
1311 		master->idx = -1;
1312 	}
1313 
1314 	mutex_lock(&master->scan_lock);
1315 	fsi_master_unscan(master);
1316 	mutex_unlock(&master->scan_lock);
1317 	device_unregister(&master->dev);
1318 }
1319 EXPORT_SYMBOL_GPL(fsi_master_unregister);
1320 
1321 /* FSI core & Linux bus type definitions */
1322 
1323 static int fsi_bus_match(struct device *dev, struct device_driver *drv)
1324 {
1325 	struct fsi_device *fsi_dev = to_fsi_dev(dev);
1326 	struct fsi_driver *fsi_drv = to_fsi_drv(drv);
1327 	const struct fsi_device_id *id;
1328 
1329 	if (!fsi_drv->id_table)
1330 		return 0;
1331 
1332 	for (id = fsi_drv->id_table; id->engine_type; id++) {
1333 		if (id->engine_type != fsi_dev->engine_type)
1334 			continue;
1335 		if (id->version == FSI_VERSION_ANY ||
1336 				id->version == fsi_dev->version)
1337 			return 1;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 int fsi_driver_register(struct fsi_driver *fsi_drv)
1344 {
1345 	if (!fsi_drv)
1346 		return -EINVAL;
1347 	if (!fsi_drv->id_table)
1348 		return -EINVAL;
1349 
1350 	return driver_register(&fsi_drv->drv);
1351 }
1352 EXPORT_SYMBOL_GPL(fsi_driver_register);
1353 
1354 void fsi_driver_unregister(struct fsi_driver *fsi_drv)
1355 {
1356 	driver_unregister(&fsi_drv->drv);
1357 }
1358 EXPORT_SYMBOL_GPL(fsi_driver_unregister);
1359 
1360 struct bus_type fsi_bus_type = {
1361 	.name		= "fsi",
1362 	.match		= fsi_bus_match,
1363 };
1364 EXPORT_SYMBOL_GPL(fsi_bus_type);
1365 
1366 static int __init fsi_init(void)
1367 {
1368 	int rc;
1369 
1370 	rc = alloc_chrdev_region(&fsi_base_dev, 0, FSI_CHAR_MAX_DEVICES, "fsi");
1371 	if (rc)
1372 		return rc;
1373 	rc = bus_register(&fsi_bus_type);
1374 	if (rc)
1375 		goto fail_bus;
1376 
1377 	rc = class_register(&fsi_master_class);
1378 	if (rc)
1379 		goto fail_class;
1380 
1381 	return 0;
1382 
1383  fail_class:
1384 	bus_unregister(&fsi_bus_type);
1385  fail_bus:
1386 	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1387 	return rc;
1388 }
1389 postcore_initcall(fsi_init);
1390 
1391 static void fsi_exit(void)
1392 {
1393 	class_unregister(&fsi_master_class);
1394 	bus_unregister(&fsi_bus_type);
1395 	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1396 	ida_destroy(&fsi_minor_ida);
1397 }
1398 module_exit(fsi_exit);
1399 module_param(discard_errors, int, 0664);
1400 MODULE_LICENSE("GPL");
1401 MODULE_PARM_DESC(discard_errors, "Don't invoke error handling on bus accesses");
1402