xref: /openbmc/linux/drivers/fsi/fsi-core.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * FSI core driver
4  *
5  * Copyright (C) IBM Corporation 2016
6  *
7  * TODO:
8  *  - Rework topology
9  *  - s/chip_id/chip_loc
10  *  - s/cfam/chip (cfam_id -> chip_id etc...)
11  */
12 
13 #include <linux/crc4.h>
14 #include <linux/device.h>
15 #include <linux/fsi.h>
16 #include <linux/idr.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/slab.h>
20 #include <linux/bitops.h>
21 #include <linux/cdev.h>
22 #include <linux/fs.h>
23 #include <linux/uaccess.h>
24 
25 #include "fsi-master.h"
26 
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/fsi.h>
29 
30 #define FSI_SLAVE_CONF_NEXT_MASK	GENMASK(31, 31)
31 #define FSI_SLAVE_CONF_SLOTS_MASK	GENMASK(23, 16)
32 #define FSI_SLAVE_CONF_SLOTS_SHIFT	16
33 #define FSI_SLAVE_CONF_VERSION_MASK	GENMASK(15, 12)
34 #define FSI_SLAVE_CONF_VERSION_SHIFT	12
35 #define FSI_SLAVE_CONF_TYPE_MASK	GENMASK(11, 4)
36 #define FSI_SLAVE_CONF_TYPE_SHIFT	4
37 #define FSI_SLAVE_CONF_CRC_SHIFT	4
38 #define FSI_SLAVE_CONF_CRC_MASK		GENMASK(3, 0)
39 #define FSI_SLAVE_CONF_DATA_BITS	28
40 
41 #define FSI_PEEK_BASE			0x410
42 
43 static const int engine_page_size = 0x400;
44 
45 #define FSI_SLAVE_BASE			0x800
46 
47 /*
48  * FSI slave engine control register offsets
49  */
50 #define FSI_SMODE		0x0	/* R/W: Mode register */
51 #define FSI_SISC		0x8	/* R/W: Interrupt condition */
52 #define FSI_SSTAT		0x14	/* R  : Slave status */
53 #define FSI_SLBUS		0x30	/* W  : LBUS Ownership */
54 #define FSI_LLMODE		0x100	/* R/W: Link layer mode register */
55 
56 /*
57  * SMODE fields
58  */
59 #define FSI_SMODE_WSC		0x80000000	/* Warm start done */
60 #define FSI_SMODE_ECRC		0x20000000	/* Hw CRC check */
61 #define FSI_SMODE_SID_SHIFT	24		/* ID shift */
62 #define FSI_SMODE_SID_MASK	3		/* ID Mask */
63 #define FSI_SMODE_ED_SHIFT	20		/* Echo delay shift */
64 #define FSI_SMODE_ED_MASK	0xf		/* Echo delay mask */
65 #define FSI_SMODE_SD_SHIFT	16		/* Send delay shift */
66 #define FSI_SMODE_SD_MASK	0xf		/* Send delay mask */
67 #define FSI_SMODE_LBCRR_SHIFT	8		/* Clk ratio shift */
68 #define FSI_SMODE_LBCRR_MASK	0xf		/* Clk ratio mask */
69 
70 /*
71  * SLBUS fields
72  */
73 #define FSI_SLBUS_FORCE		0x80000000	/* Force LBUS ownership */
74 
75 /*
76  * LLMODE fields
77  */
78 #define FSI_LLMODE_ASYNC	0x1
79 
80 #define FSI_SLAVE_SIZE_23b		0x800000
81 
82 static DEFINE_IDA(master_ida);
83 
84 struct fsi_slave {
85 	struct device		dev;
86 	struct fsi_master	*master;
87 	struct cdev		cdev;
88 	int			cdev_idx;
89 	int			id;	/* FSI address */
90 	int			link;	/* FSI link# */
91 	u32			cfam_id;
92 	int			chip_id;
93 	uint32_t		size;	/* size of slave address space */
94 	u8			t_send_delay;
95 	u8			t_echo_delay;
96 };
97 
98 #define to_fsi_master(d) container_of(d, struct fsi_master, dev)
99 #define to_fsi_slave(d) container_of(d, struct fsi_slave, dev)
100 
101 static const int slave_retries = 2;
102 static int discard_errors;
103 
104 static dev_t fsi_base_dev;
105 static DEFINE_IDA(fsi_minor_ida);
106 #define FSI_CHAR_MAX_DEVICES	0x1000
107 
108 /* Legacy /dev numbering: 4 devices per chip, 16 chips */
109 #define FSI_CHAR_LEGACY_TOP	64
110 
111 static int fsi_master_read(struct fsi_master *master, int link,
112 		uint8_t slave_id, uint32_t addr, void *val, size_t size);
113 static int fsi_master_write(struct fsi_master *master, int link,
114 		uint8_t slave_id, uint32_t addr, const void *val, size_t size);
115 static int fsi_master_break(struct fsi_master *master, int link);
116 
117 /*
118  * fsi_device_read() / fsi_device_write() / fsi_device_peek()
119  *
120  * FSI endpoint-device support
121  *
122  * Read / write / peek accessors for a client
123  *
124  * Parameters:
125  * dev:  Structure passed to FSI client device drivers on probe().
126  * addr: FSI address of given device.  Client should pass in its base address
127  *       plus desired offset to access its register space.
128  * val:  For read/peek this is the value read at the specified address. For
129  *       write this is value to write to the specified address.
130  *       The data in val must be FSI bus endian (big endian).
131  * size: Size in bytes of the operation.  Sizes supported are 1, 2 and 4 bytes.
132  *       Addresses must be aligned on size boundaries or an error will result.
133  */
134 int fsi_device_read(struct fsi_device *dev, uint32_t addr, void *val,
135 		size_t size)
136 {
137 	if (addr > dev->size || size > dev->size || addr > dev->size - size)
138 		return -EINVAL;
139 
140 	return fsi_slave_read(dev->slave, dev->addr + addr, val, size);
141 }
142 EXPORT_SYMBOL_GPL(fsi_device_read);
143 
144 int fsi_device_write(struct fsi_device *dev, uint32_t addr, const void *val,
145 		size_t size)
146 {
147 	if (addr > dev->size || size > dev->size || addr > dev->size - size)
148 		return -EINVAL;
149 
150 	return fsi_slave_write(dev->slave, dev->addr + addr, val, size);
151 }
152 EXPORT_SYMBOL_GPL(fsi_device_write);
153 
154 int fsi_device_peek(struct fsi_device *dev, void *val)
155 {
156 	uint32_t addr = FSI_PEEK_BASE + ((dev->unit - 2) * sizeof(uint32_t));
157 
158 	return fsi_slave_read(dev->slave, addr, val, sizeof(uint32_t));
159 }
160 
161 static void fsi_device_release(struct device *_device)
162 {
163 	struct fsi_device *device = to_fsi_dev(_device);
164 
165 	of_node_put(device->dev.of_node);
166 	kfree(device);
167 }
168 
169 static struct fsi_device *fsi_create_device(struct fsi_slave *slave)
170 {
171 	struct fsi_device *dev;
172 
173 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
174 	if (!dev)
175 		return NULL;
176 
177 	dev->dev.parent = &slave->dev;
178 	dev->dev.bus = &fsi_bus_type;
179 	dev->dev.release = fsi_device_release;
180 
181 	return dev;
182 }
183 
184 /* FSI slave support */
185 static int fsi_slave_calc_addr(struct fsi_slave *slave, uint32_t *addrp,
186 		uint8_t *idp)
187 {
188 	uint32_t addr = *addrp;
189 	uint8_t id = *idp;
190 
191 	if (addr > slave->size)
192 		return -EINVAL;
193 
194 	/* For 23 bit addressing, we encode the extra two bits in the slave
195 	 * id (and the slave's actual ID needs to be 0).
196 	 */
197 	if (addr > 0x1fffff) {
198 		if (slave->id != 0)
199 			return -EINVAL;
200 		id = (addr >> 21) & 0x3;
201 		addr &= 0x1fffff;
202 	}
203 
204 	*addrp = addr;
205 	*idp = id;
206 	return 0;
207 }
208 
209 static int fsi_slave_report_and_clear_errors(struct fsi_slave *slave)
210 {
211 	struct fsi_master *master = slave->master;
212 	__be32 irq, stat;
213 	int rc, link;
214 	uint8_t id;
215 
216 	link = slave->link;
217 	id = slave->id;
218 
219 	rc = fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
220 			&irq, sizeof(irq));
221 	if (rc)
222 		return rc;
223 
224 	rc =  fsi_master_read(master, link, id, FSI_SLAVE_BASE + FSI_SSTAT,
225 			&stat, sizeof(stat));
226 	if (rc)
227 		return rc;
228 
229 	dev_dbg(&slave->dev, "status: 0x%08x, sisc: 0x%08x\n",
230 			be32_to_cpu(stat), be32_to_cpu(irq));
231 
232 	/* clear interrupts */
233 	return fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SISC,
234 			&irq, sizeof(irq));
235 }
236 
237 /* Encode slave local bus echo delay */
238 static inline uint32_t fsi_smode_echodly(int x)
239 {
240 	return (x & FSI_SMODE_ED_MASK) << FSI_SMODE_ED_SHIFT;
241 }
242 
243 /* Encode slave local bus send delay */
244 static inline uint32_t fsi_smode_senddly(int x)
245 {
246 	return (x & FSI_SMODE_SD_MASK) << FSI_SMODE_SD_SHIFT;
247 }
248 
249 /* Encode slave local bus clock rate ratio */
250 static inline uint32_t fsi_smode_lbcrr(int x)
251 {
252 	return (x & FSI_SMODE_LBCRR_MASK) << FSI_SMODE_LBCRR_SHIFT;
253 }
254 
255 /* Encode slave ID */
256 static inline uint32_t fsi_smode_sid(int x)
257 {
258 	return (x & FSI_SMODE_SID_MASK) << FSI_SMODE_SID_SHIFT;
259 }
260 
261 static uint32_t fsi_slave_smode(int id, u8 t_senddly, u8 t_echodly)
262 {
263 	return FSI_SMODE_WSC | FSI_SMODE_ECRC
264 		| fsi_smode_sid(id)
265 		| fsi_smode_echodly(t_echodly - 1) | fsi_smode_senddly(t_senddly - 1)
266 		| fsi_smode_lbcrr(0x8);
267 }
268 
269 static int fsi_slave_set_smode(struct fsi_slave *slave)
270 {
271 	uint32_t smode;
272 	__be32 data;
273 
274 	/* set our smode register with the slave ID field to 0; this enables
275 	 * extended slave addressing
276 	 */
277 	smode = fsi_slave_smode(slave->id, slave->t_send_delay, slave->t_echo_delay);
278 	data = cpu_to_be32(smode);
279 
280 	return fsi_master_write(slave->master, slave->link, slave->id,
281 				FSI_SLAVE_BASE + FSI_SMODE,
282 				&data, sizeof(data));
283 }
284 
285 static int fsi_slave_handle_error(struct fsi_slave *slave, bool write,
286 				  uint32_t addr, size_t size)
287 {
288 	struct fsi_master *master = slave->master;
289 	int rc, link;
290 	uint32_t reg;
291 	uint8_t id, send_delay, echo_delay;
292 
293 	if (discard_errors)
294 		return -1;
295 
296 	link = slave->link;
297 	id = slave->id;
298 
299 	dev_dbg(&slave->dev, "handling error on %s to 0x%08x[%zd]",
300 			write ? "write" : "read", addr, size);
301 
302 	/* try a simple clear of error conditions, which may fail if we've lost
303 	 * communication with the slave
304 	 */
305 	rc = fsi_slave_report_and_clear_errors(slave);
306 	if (!rc)
307 		return 0;
308 
309 	/* send a TERM and retry */
310 	if (master->term) {
311 		rc = master->term(master, link, id);
312 		if (!rc) {
313 			rc = fsi_master_read(master, link, id, 0,
314 					&reg, sizeof(reg));
315 			if (!rc)
316 				rc = fsi_slave_report_and_clear_errors(slave);
317 			if (!rc)
318 				return 0;
319 		}
320 	}
321 
322 	send_delay = slave->t_send_delay;
323 	echo_delay = slave->t_echo_delay;
324 
325 	/* getting serious, reset the slave via BREAK */
326 	rc = fsi_master_break(master, link);
327 	if (rc)
328 		return rc;
329 
330 	slave->t_send_delay = send_delay;
331 	slave->t_echo_delay = echo_delay;
332 
333 	rc = fsi_slave_set_smode(slave);
334 	if (rc)
335 		return rc;
336 
337 	if (master->link_config)
338 		master->link_config(master, link,
339 				    slave->t_send_delay,
340 				    slave->t_echo_delay);
341 
342 	return fsi_slave_report_and_clear_errors(slave);
343 }
344 
345 int fsi_slave_read(struct fsi_slave *slave, uint32_t addr,
346 			void *val, size_t size)
347 {
348 	uint8_t id = slave->id;
349 	int rc, err_rc, i;
350 
351 	rc = fsi_slave_calc_addr(slave, &addr, &id);
352 	if (rc)
353 		return rc;
354 
355 	for (i = 0; i < slave_retries; i++) {
356 		rc = fsi_master_read(slave->master, slave->link,
357 				id, addr, val, size);
358 		if (!rc)
359 			break;
360 
361 		err_rc = fsi_slave_handle_error(slave, false, addr, size);
362 		if (err_rc)
363 			break;
364 	}
365 
366 	return rc;
367 }
368 EXPORT_SYMBOL_GPL(fsi_slave_read);
369 
370 int fsi_slave_write(struct fsi_slave *slave, uint32_t addr,
371 			const void *val, size_t size)
372 {
373 	uint8_t id = slave->id;
374 	int rc, err_rc, i;
375 
376 	rc = fsi_slave_calc_addr(slave, &addr, &id);
377 	if (rc)
378 		return rc;
379 
380 	for (i = 0; i < slave_retries; i++) {
381 		rc = fsi_master_write(slave->master, slave->link,
382 				id, addr, val, size);
383 		if (!rc)
384 			break;
385 
386 		err_rc = fsi_slave_handle_error(slave, true, addr, size);
387 		if (err_rc)
388 			break;
389 	}
390 
391 	return rc;
392 }
393 EXPORT_SYMBOL_GPL(fsi_slave_write);
394 
395 extern int fsi_slave_claim_range(struct fsi_slave *slave,
396 		uint32_t addr, uint32_t size)
397 {
398 	if (addr + size < addr)
399 		return -EINVAL;
400 
401 	if (addr + size > slave->size)
402 		return -EINVAL;
403 
404 	/* todo: check for overlapping claims */
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(fsi_slave_claim_range);
408 
409 extern void fsi_slave_release_range(struct fsi_slave *slave,
410 		uint32_t addr, uint32_t size)
411 {
412 }
413 EXPORT_SYMBOL_GPL(fsi_slave_release_range);
414 
415 static bool fsi_device_node_matches(struct device *dev, struct device_node *np,
416 		uint32_t addr, uint32_t size)
417 {
418 	unsigned int len, na, ns;
419 	const __be32 *prop;
420 	uint32_t psize;
421 
422 	na = of_n_addr_cells(np);
423 	ns = of_n_size_cells(np);
424 
425 	if (na != 1 || ns != 1)
426 		return false;
427 
428 	prop = of_get_property(np, "reg", &len);
429 	if (!prop || len != 8)
430 		return false;
431 
432 	if (of_read_number(prop, 1) != addr)
433 		return false;
434 
435 	psize = of_read_number(prop + 1, 1);
436 	if (psize != size) {
437 		dev_warn(dev,
438 			"node %s matches probed address, but not size (got 0x%x, expected 0x%x)",
439 			of_node_full_name(np), psize, size);
440 	}
441 
442 	return true;
443 }
444 
445 /* Find a matching node for the slave engine at @address, using @size bytes
446  * of space. Returns NULL if not found, or a matching node with refcount
447  * already incremented.
448  */
449 static struct device_node *fsi_device_find_of_node(struct fsi_device *dev)
450 {
451 	struct device_node *parent, *np;
452 
453 	parent = dev_of_node(&dev->slave->dev);
454 	if (!parent)
455 		return NULL;
456 
457 	for_each_child_of_node(parent, np) {
458 		if (fsi_device_node_matches(&dev->dev, np,
459 					dev->addr, dev->size))
460 			return np;
461 	}
462 
463 	return NULL;
464 }
465 
466 static int fsi_slave_scan(struct fsi_slave *slave)
467 {
468 	uint32_t engine_addr;
469 	int rc, i;
470 
471 	/*
472 	 * scan engines
473 	 *
474 	 * We keep the peek mode and slave engines for the core; so start
475 	 * at the third slot in the configuration table. We also need to
476 	 * skip the chip ID entry at the start of the address space.
477 	 */
478 	engine_addr = engine_page_size * 3;
479 	for (i = 2; i < engine_page_size / sizeof(uint32_t); i++) {
480 		uint8_t slots, version, type, crc;
481 		struct fsi_device *dev;
482 		uint32_t conf;
483 		__be32 data;
484 
485 		rc = fsi_slave_read(slave, (i + 1) * sizeof(data),
486 				&data, sizeof(data));
487 		if (rc) {
488 			dev_warn(&slave->dev,
489 				"error reading slave registers\n");
490 			return -1;
491 		}
492 		conf = be32_to_cpu(data);
493 
494 		crc = crc4(0, conf, 32);
495 		if (crc) {
496 			dev_warn(&slave->dev,
497 				"crc error in slave register at 0x%04x\n",
498 				i);
499 			return -1;
500 		}
501 
502 		slots = (conf & FSI_SLAVE_CONF_SLOTS_MASK)
503 			>> FSI_SLAVE_CONF_SLOTS_SHIFT;
504 		version = (conf & FSI_SLAVE_CONF_VERSION_MASK)
505 			>> FSI_SLAVE_CONF_VERSION_SHIFT;
506 		type = (conf & FSI_SLAVE_CONF_TYPE_MASK)
507 			>> FSI_SLAVE_CONF_TYPE_SHIFT;
508 
509 		/*
510 		 * Unused address areas are marked by a zero type value; this
511 		 * skips the defined address areas
512 		 */
513 		if (type != 0 && slots != 0) {
514 
515 			/* create device */
516 			dev = fsi_create_device(slave);
517 			if (!dev)
518 				return -ENOMEM;
519 
520 			dev->slave = slave;
521 			dev->engine_type = type;
522 			dev->version = version;
523 			dev->unit = i;
524 			dev->addr = engine_addr;
525 			dev->size = slots * engine_page_size;
526 
527 			dev_dbg(&slave->dev,
528 			"engine[%i]: type %x, version %x, addr %x size %x\n",
529 					dev->unit, dev->engine_type, version,
530 					dev->addr, dev->size);
531 
532 			dev_set_name(&dev->dev, "%02x:%02x:%02x:%02x",
533 					slave->master->idx, slave->link,
534 					slave->id, i - 2);
535 			dev->dev.of_node = fsi_device_find_of_node(dev);
536 
537 			rc = device_register(&dev->dev);
538 			if (rc) {
539 				dev_warn(&slave->dev, "add failed: %d\n", rc);
540 				put_device(&dev->dev);
541 			}
542 		}
543 
544 		engine_addr += slots * engine_page_size;
545 
546 		if (!(conf & FSI_SLAVE_CONF_NEXT_MASK))
547 			break;
548 	}
549 
550 	return 0;
551 }
552 
553 static unsigned long aligned_access_size(size_t offset, size_t count)
554 {
555 	unsigned long offset_unit, count_unit;
556 
557 	/* Criteria:
558 	 *
559 	 * 1. Access size must be less than or equal to the maximum access
560 	 *    width or the highest power-of-two factor of offset
561 	 * 2. Access size must be less than or equal to the amount specified by
562 	 *    count
563 	 *
564 	 * The access width is optimal if we can calculate 1 to be strictly
565 	 * equal while still satisfying 2.
566 	 */
567 
568 	/* Find 1 by the bottom bit of offset (with a 4 byte access cap) */
569 	offset_unit = BIT(__builtin_ctzl(offset | 4));
570 
571 	/* Find 2 by the top bit of count */
572 	count_unit = BIT(8 * sizeof(unsigned long) - 1 - __builtin_clzl(count));
573 
574 	/* Constrain the maximum access width to the minimum of both criteria */
575 	return BIT(__builtin_ctzl(offset_unit | count_unit));
576 }
577 
578 static ssize_t fsi_slave_sysfs_raw_read(struct file *file,
579 		struct kobject *kobj, struct bin_attribute *attr, char *buf,
580 		loff_t off, size_t count)
581 {
582 	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
583 	size_t total_len, read_len;
584 	int rc;
585 
586 	if (off < 0)
587 		return -EINVAL;
588 
589 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
590 		return -EINVAL;
591 
592 	for (total_len = 0; total_len < count; total_len += read_len) {
593 		read_len = aligned_access_size(off, count - total_len);
594 
595 		rc = fsi_slave_read(slave, off, buf + total_len, read_len);
596 		if (rc)
597 			return rc;
598 
599 		off += read_len;
600 	}
601 
602 	return count;
603 }
604 
605 static ssize_t fsi_slave_sysfs_raw_write(struct file *file,
606 		struct kobject *kobj, struct bin_attribute *attr,
607 		char *buf, loff_t off, size_t count)
608 {
609 	struct fsi_slave *slave = to_fsi_slave(kobj_to_dev(kobj));
610 	size_t total_len, write_len;
611 	int rc;
612 
613 	if (off < 0)
614 		return -EINVAL;
615 
616 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
617 		return -EINVAL;
618 
619 	for (total_len = 0; total_len < count; total_len += write_len) {
620 		write_len = aligned_access_size(off, count - total_len);
621 
622 		rc = fsi_slave_write(slave, off, buf + total_len, write_len);
623 		if (rc)
624 			return rc;
625 
626 		off += write_len;
627 	}
628 
629 	return count;
630 }
631 
632 static const struct bin_attribute fsi_slave_raw_attr = {
633 	.attr = {
634 		.name = "raw",
635 		.mode = 0600,
636 	},
637 	.size = 0,
638 	.read = fsi_slave_sysfs_raw_read,
639 	.write = fsi_slave_sysfs_raw_write,
640 };
641 
642 static void fsi_slave_release(struct device *dev)
643 {
644 	struct fsi_slave *slave = to_fsi_slave(dev);
645 
646 	fsi_free_minor(slave->dev.devt);
647 	of_node_put(dev->of_node);
648 	kfree(slave);
649 }
650 
651 static bool fsi_slave_node_matches(struct device_node *np,
652 		int link, uint8_t id)
653 {
654 	unsigned int len, na, ns;
655 	const __be32 *prop;
656 
657 	na = of_n_addr_cells(np);
658 	ns = of_n_size_cells(np);
659 
660 	/* Ensure we have the correct format for addresses and sizes in
661 	 * reg properties
662 	 */
663 	if (na != 2 || ns != 0)
664 		return false;
665 
666 	prop = of_get_property(np, "reg", &len);
667 	if (!prop || len != 8)
668 		return false;
669 
670 	return (of_read_number(prop, 1) == link) &&
671 		(of_read_number(prop + 1, 1) == id);
672 }
673 
674 /* Find a matching node for the slave at (link, id). Returns NULL if none
675  * found, or a matching node with refcount already incremented.
676  */
677 static struct device_node *fsi_slave_find_of_node(struct fsi_master *master,
678 		int link, uint8_t id)
679 {
680 	struct device_node *parent, *np;
681 
682 	parent = dev_of_node(&master->dev);
683 	if (!parent)
684 		return NULL;
685 
686 	for_each_child_of_node(parent, np) {
687 		if (fsi_slave_node_matches(np, link, id))
688 			return np;
689 	}
690 
691 	return NULL;
692 }
693 
694 static ssize_t cfam_read(struct file *filep, char __user *buf, size_t count,
695 			 loff_t *offset)
696 {
697 	struct fsi_slave *slave = filep->private_data;
698 	size_t total_len, read_len;
699 	loff_t off = *offset;
700 	ssize_t rc;
701 
702 	if (off < 0)
703 		return -EINVAL;
704 
705 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
706 		return -EINVAL;
707 
708 	for (total_len = 0; total_len < count; total_len += read_len) {
709 		__be32 data;
710 
711 		read_len = min_t(size_t, count, 4);
712 		read_len -= off & 0x3;
713 
714 		rc = fsi_slave_read(slave, off, &data, read_len);
715 		if (rc)
716 			goto fail;
717 		rc = copy_to_user(buf + total_len, &data, read_len);
718 		if (rc) {
719 			rc = -EFAULT;
720 			goto fail;
721 		}
722 		off += read_len;
723 	}
724 	rc = count;
725  fail:
726 	*offset = off;
727 	return count;
728 }
729 
730 static ssize_t cfam_write(struct file *filep, const char __user *buf,
731 			  size_t count, loff_t *offset)
732 {
733 	struct fsi_slave *slave = filep->private_data;
734 	size_t total_len, write_len;
735 	loff_t off = *offset;
736 	ssize_t rc;
737 
738 
739 	if (off < 0)
740 		return -EINVAL;
741 
742 	if (off > 0xffffffff || count > 0xffffffff || off + count > 0xffffffff)
743 		return -EINVAL;
744 
745 	for (total_len = 0; total_len < count; total_len += write_len) {
746 		__be32 data;
747 
748 		write_len = min_t(size_t, count, 4);
749 		write_len -= off & 0x3;
750 
751 		rc = copy_from_user(&data, buf + total_len, write_len);
752 		if (rc) {
753 			rc = -EFAULT;
754 			goto fail;
755 		}
756 		rc = fsi_slave_write(slave, off, &data, write_len);
757 		if (rc)
758 			goto fail;
759 		off += write_len;
760 	}
761 	rc = count;
762  fail:
763 	*offset = off;
764 	return count;
765 }
766 
767 static loff_t cfam_llseek(struct file *file, loff_t offset, int whence)
768 {
769 	switch (whence) {
770 	case SEEK_CUR:
771 		break;
772 	case SEEK_SET:
773 		file->f_pos = offset;
774 		break;
775 	default:
776 		return -EINVAL;
777 	}
778 
779 	return offset;
780 }
781 
782 static int cfam_open(struct inode *inode, struct file *file)
783 {
784 	struct fsi_slave *slave = container_of(inode->i_cdev, struct fsi_slave, cdev);
785 
786 	file->private_data = slave;
787 
788 	return 0;
789 }
790 
791 static const struct file_operations cfam_fops = {
792 	.owner		= THIS_MODULE,
793 	.open		= cfam_open,
794 	.llseek		= cfam_llseek,
795 	.read		= cfam_read,
796 	.write		= cfam_write,
797 };
798 
799 static ssize_t send_term_store(struct device *dev,
800 			       struct device_attribute *attr,
801 			       const char *buf, size_t count)
802 {
803 	struct fsi_slave *slave = to_fsi_slave(dev);
804 	struct fsi_master *master = slave->master;
805 
806 	if (!master->term)
807 		return -ENODEV;
808 
809 	master->term(master, slave->link, slave->id);
810 	return count;
811 }
812 
813 static DEVICE_ATTR_WO(send_term);
814 
815 static ssize_t slave_send_echo_show(struct device *dev,
816 				    struct device_attribute *attr,
817 				    char *buf)
818 {
819 	struct fsi_slave *slave = to_fsi_slave(dev);
820 
821 	return sprintf(buf, "%u\n", slave->t_send_delay);
822 }
823 
824 static ssize_t slave_send_echo_store(struct device *dev,
825 		struct device_attribute *attr, const char *buf, size_t count)
826 {
827 	struct fsi_slave *slave = to_fsi_slave(dev);
828 	struct fsi_master *master = slave->master;
829 	unsigned long val;
830 	int rc;
831 
832 	if (kstrtoul(buf, 0, &val) < 0)
833 		return -EINVAL;
834 
835 	if (val < 1 || val > 16)
836 		return -EINVAL;
837 
838 	if (!master->link_config)
839 		return -ENXIO;
840 
841 	/* Current HW mandates that send and echo delay are identical */
842 	slave->t_send_delay = val;
843 	slave->t_echo_delay = val;
844 
845 	rc = fsi_slave_set_smode(slave);
846 	if (rc < 0)
847 		return rc;
848 	if (master->link_config)
849 		master->link_config(master, slave->link,
850 				    slave->t_send_delay,
851 				    slave->t_echo_delay);
852 
853 	return count;
854 }
855 
856 static DEVICE_ATTR(send_echo_delays, 0600,
857 		   slave_send_echo_show, slave_send_echo_store);
858 
859 static ssize_t chip_id_show(struct device *dev,
860 			    struct device_attribute *attr,
861 			    char *buf)
862 {
863 	struct fsi_slave *slave = to_fsi_slave(dev);
864 
865 	return sprintf(buf, "%d\n", slave->chip_id);
866 }
867 
868 static DEVICE_ATTR_RO(chip_id);
869 
870 static ssize_t cfam_id_show(struct device *dev,
871 			    struct device_attribute *attr,
872 			    char *buf)
873 {
874 	struct fsi_slave *slave = to_fsi_slave(dev);
875 
876 	return sprintf(buf, "0x%x\n", slave->cfam_id);
877 }
878 
879 static DEVICE_ATTR_RO(cfam_id);
880 
881 static struct attribute *cfam_attr[] = {
882 	&dev_attr_send_echo_delays.attr,
883 	&dev_attr_chip_id.attr,
884 	&dev_attr_cfam_id.attr,
885 	&dev_attr_send_term.attr,
886 	NULL,
887 };
888 
889 static const struct attribute_group cfam_attr_group = {
890 	.attrs = cfam_attr,
891 };
892 
893 static const struct attribute_group *cfam_attr_groups[] = {
894 	&cfam_attr_group,
895 	NULL,
896 };
897 
898 static char *cfam_devnode(struct device *dev, umode_t *mode,
899 			  kuid_t *uid, kgid_t *gid)
900 {
901 	struct fsi_slave *slave = to_fsi_slave(dev);
902 
903 #ifdef CONFIG_FSI_NEW_DEV_NODE
904 	return kasprintf(GFP_KERNEL, "fsi/cfam%d", slave->cdev_idx);
905 #else
906 	return kasprintf(GFP_KERNEL, "cfam%d", slave->cdev_idx);
907 #endif
908 }
909 
910 static const struct device_type cfam_type = {
911 	.name = "cfam",
912 	.devnode = cfam_devnode,
913 	.groups = cfam_attr_groups
914 };
915 
916 static char *fsi_cdev_devnode(struct device *dev, umode_t *mode,
917 			      kuid_t *uid, kgid_t *gid)
918 {
919 #ifdef CONFIG_FSI_NEW_DEV_NODE
920 	return kasprintf(GFP_KERNEL, "fsi/%s", dev_name(dev));
921 #else
922 	return kasprintf(GFP_KERNEL, "%s", dev_name(dev));
923 #endif
924 }
925 
926 const struct device_type fsi_cdev_type = {
927 	.name = "fsi-cdev",
928 	.devnode = fsi_cdev_devnode,
929 };
930 EXPORT_SYMBOL_GPL(fsi_cdev_type);
931 
932 /* Backward compatible /dev/ numbering in "old style" mode */
933 static int fsi_adjust_index(int index)
934 {
935 #ifdef CONFIG_FSI_NEW_DEV_NODE
936 	return index;
937 #else
938 	return index + 1;
939 #endif
940 }
941 
942 static int __fsi_get_new_minor(struct fsi_slave *slave, enum fsi_dev_type type,
943 			       dev_t *out_dev, int *out_index)
944 {
945 	int cid = slave->chip_id;
946 	int id;
947 
948 	/* Check if we qualify for legacy numbering */
949 	if (cid >= 0 && cid < 16 && type < 4) {
950 		/* Try reserving the legacy number */
951 		id = (cid << 4) | type;
952 		id = ida_simple_get(&fsi_minor_ida, id, id + 1, GFP_KERNEL);
953 		if (id >= 0) {
954 			*out_index = fsi_adjust_index(cid);
955 			*out_dev = fsi_base_dev + id;
956 			return 0;
957 		}
958 		/* Other failure */
959 		if (id != -ENOSPC)
960 			return id;
961 		/* Fallback to non-legacy allocation */
962 	}
963 	id = ida_simple_get(&fsi_minor_ida, FSI_CHAR_LEGACY_TOP,
964 			    FSI_CHAR_MAX_DEVICES, GFP_KERNEL);
965 	if (id < 0)
966 		return id;
967 	*out_index = fsi_adjust_index(id);
968 	*out_dev = fsi_base_dev + id;
969 	return 0;
970 }
971 
972 int fsi_get_new_minor(struct fsi_device *fdev, enum fsi_dev_type type,
973 		      dev_t *out_dev, int *out_index)
974 {
975 	return __fsi_get_new_minor(fdev->slave, type, out_dev, out_index);
976 }
977 EXPORT_SYMBOL_GPL(fsi_get_new_minor);
978 
979 void fsi_free_minor(dev_t dev)
980 {
981 	ida_simple_remove(&fsi_minor_ida, MINOR(dev));
982 }
983 EXPORT_SYMBOL_GPL(fsi_free_minor);
984 
985 static int fsi_slave_init(struct fsi_master *master, int link, uint8_t id)
986 {
987 	uint32_t cfam_id;
988 	struct fsi_slave *slave;
989 	uint8_t crc;
990 	__be32 data, llmode, slbus;
991 	int rc;
992 
993 	/* Currently, we only support single slaves on a link, and use the
994 	 * full 23-bit address range
995 	 */
996 	if (id != 0)
997 		return -EINVAL;
998 
999 	rc = fsi_master_read(master, link, id, 0, &data, sizeof(data));
1000 	if (rc) {
1001 		dev_dbg(&master->dev, "can't read slave %02x:%02x %d\n",
1002 				link, id, rc);
1003 		return -ENODEV;
1004 	}
1005 	cfam_id = be32_to_cpu(data);
1006 
1007 	crc = crc4(0, cfam_id, 32);
1008 	if (crc) {
1009 		dev_warn(&master->dev, "slave %02x:%02x invalid cfam id CRC!\n",
1010 				link, id);
1011 		return -EIO;
1012 	}
1013 
1014 	dev_dbg(&master->dev, "fsi: found chip %08x at %02x:%02x:%02x\n",
1015 			cfam_id, master->idx, link, id);
1016 
1017 	/* If we're behind a master that doesn't provide a self-running bus
1018 	 * clock, put the slave into async mode
1019 	 */
1020 	if (master->flags & FSI_MASTER_FLAG_SWCLOCK) {
1021 		llmode = cpu_to_be32(FSI_LLMODE_ASYNC);
1022 		rc = fsi_master_write(master, link, id,
1023 				FSI_SLAVE_BASE + FSI_LLMODE,
1024 				&llmode, sizeof(llmode));
1025 		if (rc)
1026 			dev_warn(&master->dev,
1027 				"can't set llmode on slave:%02x:%02x %d\n",
1028 				link, id, rc);
1029 	}
1030 
1031 	/* We can communicate with a slave; create the slave device and
1032 	 * register.
1033 	 */
1034 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
1035 	if (!slave)
1036 		return -ENOMEM;
1037 
1038 	dev_set_name(&slave->dev, "slave@%02x:%02x", link, id);
1039 	slave->dev.type = &cfam_type;
1040 	slave->dev.parent = &master->dev;
1041 	slave->dev.of_node = fsi_slave_find_of_node(master, link, id);
1042 	slave->dev.release = fsi_slave_release;
1043 	device_initialize(&slave->dev);
1044 	slave->cfam_id = cfam_id;
1045 	slave->master = master;
1046 	slave->link = link;
1047 	slave->id = id;
1048 	slave->size = FSI_SLAVE_SIZE_23b;
1049 	slave->t_send_delay = 16;
1050 	slave->t_echo_delay = 16;
1051 
1052 	/* Get chip ID if any */
1053 	slave->chip_id = -1;
1054 	if (slave->dev.of_node) {
1055 		uint32_t prop;
1056 		if (!of_property_read_u32(slave->dev.of_node, "chip-id", &prop))
1057 			slave->chip_id = prop;
1058 
1059 	}
1060 
1061 	slbus = cpu_to_be32(FSI_SLBUS_FORCE);
1062 	rc = fsi_master_write(master, link, id, FSI_SLAVE_BASE + FSI_SLBUS,
1063 			      &slbus, sizeof(slbus));
1064 	if (rc)
1065 		dev_warn(&master->dev,
1066 			 "can't set slbus on slave:%02x:%02x %d\n", link, id,
1067 			 rc);
1068 
1069 	rc = fsi_slave_set_smode(slave);
1070 	if (rc) {
1071 		dev_warn(&master->dev,
1072 				"can't set smode on slave:%02x:%02x %d\n",
1073 				link, id, rc);
1074 		goto err_free;
1075 	}
1076 
1077 	/* Allocate a minor in the FSI space */
1078 	rc = __fsi_get_new_minor(slave, fsi_dev_cfam, &slave->dev.devt,
1079 				 &slave->cdev_idx);
1080 	if (rc)
1081 		goto err_free;
1082 
1083 	/* Create chardev for userspace access */
1084 	cdev_init(&slave->cdev, &cfam_fops);
1085 	rc = cdev_device_add(&slave->cdev, &slave->dev);
1086 	if (rc) {
1087 		dev_err(&slave->dev, "Error %d creating slave device\n", rc);
1088 		goto err_free_ida;
1089 	}
1090 
1091 	/* Now that we have the cdev registered with the core, any fatal
1092 	 * failures beyond this point will need to clean up through
1093 	 * cdev_device_del(). Fortunately though, nothing past here is fatal.
1094 	 */
1095 
1096 	if (master->link_config)
1097 		master->link_config(master, link,
1098 				    slave->t_send_delay,
1099 				    slave->t_echo_delay);
1100 
1101 	/* Legacy raw file -> to be removed */
1102 	rc = device_create_bin_file(&slave->dev, &fsi_slave_raw_attr);
1103 	if (rc)
1104 		dev_warn(&slave->dev, "failed to create raw attr: %d\n", rc);
1105 
1106 
1107 	rc = fsi_slave_scan(slave);
1108 	if (rc)
1109 		dev_dbg(&master->dev, "failed during slave scan with: %d\n",
1110 				rc);
1111 
1112 	return 0;
1113 
1114 err_free_ida:
1115 	fsi_free_minor(slave->dev.devt);
1116 err_free:
1117 	of_node_put(slave->dev.of_node);
1118 	kfree(slave);
1119 	return rc;
1120 }
1121 
1122 /* FSI master support */
1123 static int fsi_check_access(uint32_t addr, size_t size)
1124 {
1125 	if (size == 4) {
1126 		if (addr & 0x3)
1127 			return -EINVAL;
1128 	} else if (size == 2) {
1129 		if (addr & 0x1)
1130 			return -EINVAL;
1131 	} else if (size != 1)
1132 		return -EINVAL;
1133 
1134 	return 0;
1135 }
1136 
1137 static int fsi_master_read(struct fsi_master *master, int link,
1138 		uint8_t slave_id, uint32_t addr, void *val, size_t size)
1139 {
1140 	int rc;
1141 
1142 	trace_fsi_master_read(master, link, slave_id, addr, size);
1143 
1144 	rc = fsi_check_access(addr, size);
1145 	if (!rc)
1146 		rc = master->read(master, link, slave_id, addr, val, size);
1147 
1148 	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1149 			false, val, rc);
1150 
1151 	return rc;
1152 }
1153 
1154 static int fsi_master_write(struct fsi_master *master, int link,
1155 		uint8_t slave_id, uint32_t addr, const void *val, size_t size)
1156 {
1157 	int rc;
1158 
1159 	trace_fsi_master_write(master, link, slave_id, addr, size, val);
1160 
1161 	rc = fsi_check_access(addr, size);
1162 	if (!rc)
1163 		rc = master->write(master, link, slave_id, addr, val, size);
1164 
1165 	trace_fsi_master_rw_result(master, link, slave_id, addr, size,
1166 			true, val, rc);
1167 
1168 	return rc;
1169 }
1170 
1171 static int fsi_master_link_disable(struct fsi_master *master, int link)
1172 {
1173 	if (master->link_enable)
1174 		return master->link_enable(master, link, false);
1175 
1176 	return 0;
1177 }
1178 
1179 static int fsi_master_link_enable(struct fsi_master *master, int link)
1180 {
1181 	if (master->link_enable)
1182 		return master->link_enable(master, link, true);
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Issue a break command on this link
1189  */
1190 static int fsi_master_break(struct fsi_master *master, int link)
1191 {
1192 	int rc = 0;
1193 
1194 	trace_fsi_master_break(master, link);
1195 
1196 	if (master->send_break)
1197 		rc = master->send_break(master, link);
1198 	if (master->link_config)
1199 		master->link_config(master, link, 16, 16);
1200 
1201 	return rc;
1202 }
1203 
1204 static int fsi_master_scan(struct fsi_master *master)
1205 {
1206 	int link, rc;
1207 
1208 	for (link = 0; link < master->n_links; link++) {
1209 		rc = fsi_master_link_enable(master, link);
1210 		if (rc) {
1211 			dev_dbg(&master->dev,
1212 				"enable link %d failed: %d\n", link, rc);
1213 			continue;
1214 		}
1215 		rc = fsi_master_break(master, link);
1216 		if (rc) {
1217 			fsi_master_link_disable(master, link);
1218 			dev_dbg(&master->dev,
1219 				"break to link %d failed: %d\n", link, rc);
1220 			continue;
1221 		}
1222 
1223 		rc = fsi_slave_init(master, link, 0);
1224 		if (rc)
1225 			fsi_master_link_disable(master, link);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static int fsi_slave_remove_device(struct device *dev, void *arg)
1232 {
1233 	device_unregister(dev);
1234 	return 0;
1235 }
1236 
1237 static int fsi_master_remove_slave(struct device *dev, void *arg)
1238 {
1239 	struct fsi_slave *slave = to_fsi_slave(dev);
1240 
1241 	device_for_each_child(dev, NULL, fsi_slave_remove_device);
1242 	cdev_device_del(&slave->cdev, &slave->dev);
1243 	put_device(dev);
1244 	return 0;
1245 }
1246 
1247 static void fsi_master_unscan(struct fsi_master *master)
1248 {
1249 	device_for_each_child(&master->dev, NULL, fsi_master_remove_slave);
1250 }
1251 
1252 int fsi_master_rescan(struct fsi_master *master)
1253 {
1254 	int rc;
1255 
1256 	mutex_lock(&master->scan_lock);
1257 	fsi_master_unscan(master);
1258 	rc = fsi_master_scan(master);
1259 	mutex_unlock(&master->scan_lock);
1260 
1261 	return rc;
1262 }
1263 EXPORT_SYMBOL_GPL(fsi_master_rescan);
1264 
1265 static ssize_t master_rescan_store(struct device *dev,
1266 		struct device_attribute *attr, const char *buf, size_t count)
1267 {
1268 	struct fsi_master *master = to_fsi_master(dev);
1269 	int rc;
1270 
1271 	rc = fsi_master_rescan(master);
1272 	if (rc < 0)
1273 		return rc;
1274 
1275 	return count;
1276 }
1277 
1278 static DEVICE_ATTR(rescan, 0200, NULL, master_rescan_store);
1279 
1280 static ssize_t master_break_store(struct device *dev,
1281 		struct device_attribute *attr, const char *buf, size_t count)
1282 {
1283 	struct fsi_master *master = to_fsi_master(dev);
1284 
1285 	fsi_master_break(master, 0);
1286 
1287 	return count;
1288 }
1289 
1290 static DEVICE_ATTR(break, 0200, NULL, master_break_store);
1291 
1292 static struct attribute *master_attrs[] = {
1293 	&dev_attr_break.attr,
1294 	&dev_attr_rescan.attr,
1295 	NULL
1296 };
1297 
1298 ATTRIBUTE_GROUPS(master);
1299 
1300 static struct class fsi_master_class = {
1301 	.name = "fsi-master",
1302 	.dev_groups = master_groups,
1303 };
1304 
1305 int fsi_master_register(struct fsi_master *master)
1306 {
1307 	int rc;
1308 	struct device_node *np;
1309 
1310 	mutex_init(&master->scan_lock);
1311 	master->idx = ida_simple_get(&master_ida, 0, INT_MAX, GFP_KERNEL);
1312 	dev_set_name(&master->dev, "fsi%d", master->idx);
1313 	master->dev.class = &fsi_master_class;
1314 
1315 	rc = device_register(&master->dev);
1316 	if (rc) {
1317 		ida_simple_remove(&master_ida, master->idx);
1318 		return rc;
1319 	}
1320 
1321 	np = dev_of_node(&master->dev);
1322 	if (!of_property_read_bool(np, "no-scan-on-init")) {
1323 		mutex_lock(&master->scan_lock);
1324 		fsi_master_scan(master);
1325 		mutex_unlock(&master->scan_lock);
1326 	}
1327 
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL_GPL(fsi_master_register);
1331 
1332 void fsi_master_unregister(struct fsi_master *master)
1333 {
1334 	if (master->idx >= 0) {
1335 		ida_simple_remove(&master_ida, master->idx);
1336 		master->idx = -1;
1337 	}
1338 
1339 	mutex_lock(&master->scan_lock);
1340 	fsi_master_unscan(master);
1341 	mutex_unlock(&master->scan_lock);
1342 	device_unregister(&master->dev);
1343 }
1344 EXPORT_SYMBOL_GPL(fsi_master_unregister);
1345 
1346 /* FSI core & Linux bus type definitions */
1347 
1348 static int fsi_bus_match(struct device *dev, struct device_driver *drv)
1349 {
1350 	struct fsi_device *fsi_dev = to_fsi_dev(dev);
1351 	struct fsi_driver *fsi_drv = to_fsi_drv(drv);
1352 	const struct fsi_device_id *id;
1353 
1354 	if (!fsi_drv->id_table)
1355 		return 0;
1356 
1357 	for (id = fsi_drv->id_table; id->engine_type; id++) {
1358 		if (id->engine_type != fsi_dev->engine_type)
1359 			continue;
1360 		if (id->version == FSI_VERSION_ANY ||
1361 				id->version == fsi_dev->version)
1362 			return 1;
1363 	}
1364 
1365 	return 0;
1366 }
1367 
1368 int fsi_driver_register(struct fsi_driver *fsi_drv)
1369 {
1370 	if (!fsi_drv)
1371 		return -EINVAL;
1372 	if (!fsi_drv->id_table)
1373 		return -EINVAL;
1374 
1375 	return driver_register(&fsi_drv->drv);
1376 }
1377 EXPORT_SYMBOL_GPL(fsi_driver_register);
1378 
1379 void fsi_driver_unregister(struct fsi_driver *fsi_drv)
1380 {
1381 	driver_unregister(&fsi_drv->drv);
1382 }
1383 EXPORT_SYMBOL_GPL(fsi_driver_unregister);
1384 
1385 struct bus_type fsi_bus_type = {
1386 	.name		= "fsi",
1387 	.match		= fsi_bus_match,
1388 };
1389 EXPORT_SYMBOL_GPL(fsi_bus_type);
1390 
1391 static int __init fsi_init(void)
1392 {
1393 	int rc;
1394 
1395 	rc = alloc_chrdev_region(&fsi_base_dev, 0, FSI_CHAR_MAX_DEVICES, "fsi");
1396 	if (rc)
1397 		return rc;
1398 	rc = bus_register(&fsi_bus_type);
1399 	if (rc)
1400 		goto fail_bus;
1401 
1402 	rc = class_register(&fsi_master_class);
1403 	if (rc)
1404 		goto fail_class;
1405 
1406 	return 0;
1407 
1408  fail_class:
1409 	bus_unregister(&fsi_bus_type);
1410  fail_bus:
1411 	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1412 	return rc;
1413 }
1414 postcore_initcall(fsi_init);
1415 
1416 static void fsi_exit(void)
1417 {
1418 	class_unregister(&fsi_master_class);
1419 	bus_unregister(&fsi_bus_type);
1420 	unregister_chrdev_region(fsi_base_dev, FSI_CHAR_MAX_DEVICES);
1421 	ida_destroy(&fsi_minor_ida);
1422 }
1423 module_exit(fsi_exit);
1424 module_param(discard_errors, int, 0664);
1425 MODULE_LICENSE("GPL");
1426 MODULE_PARM_DESC(discard_errors, "Don't invoke error handling on bus accesses");
1427