1 /* 2 * Copyright (c) 2011-2015 Xilinx Inc. 3 * Copyright (c) 2015, National Instruments Corp. 4 * 5 * FPGA Manager Driver for Xilinx Zynq, heavily based on xdevcfg driver 6 * in their vendor tree. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; version 2 of the License. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/clk.h> 19 #include <linux/completion.h> 20 #include <linux/delay.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/fpga/fpga-mgr.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/iopoll.h> 26 #include <linux/module.h> 27 #include <linux/mfd/syscon.h> 28 #include <linux/of_address.h> 29 #include <linux/of_irq.h> 30 #include <linux/pm.h> 31 #include <linux/regmap.h> 32 #include <linux/string.h> 33 #include <linux/scatterlist.h> 34 35 /* Offsets into SLCR regmap */ 36 37 /* FPGA Software Reset Control */ 38 #define SLCR_FPGA_RST_CTRL_OFFSET 0x240 39 /* Level Shifters Enable */ 40 #define SLCR_LVL_SHFTR_EN_OFFSET 0x900 41 42 /* Constant Definitions */ 43 44 /* Control Register */ 45 #define CTRL_OFFSET 0x00 46 /* Lock Register */ 47 #define LOCK_OFFSET 0x04 48 /* Interrupt Status Register */ 49 #define INT_STS_OFFSET 0x0c 50 /* Interrupt Mask Register */ 51 #define INT_MASK_OFFSET 0x10 52 /* Status Register */ 53 #define STATUS_OFFSET 0x14 54 /* DMA Source Address Register */ 55 #define DMA_SRC_ADDR_OFFSET 0x18 56 /* DMA Destination Address Reg */ 57 #define DMA_DST_ADDR_OFFSET 0x1c 58 /* DMA Source Transfer Length */ 59 #define DMA_SRC_LEN_OFFSET 0x20 60 /* DMA Destination Transfer */ 61 #define DMA_DEST_LEN_OFFSET 0x24 62 /* Unlock Register */ 63 #define UNLOCK_OFFSET 0x34 64 /* Misc. Control Register */ 65 #define MCTRL_OFFSET 0x80 66 67 /* Control Register Bit definitions */ 68 69 /* Signal to reset FPGA */ 70 #define CTRL_PCFG_PROG_B_MASK BIT(30) 71 /* Enable PCAP for PR */ 72 #define CTRL_PCAP_PR_MASK BIT(27) 73 /* Enable PCAP */ 74 #define CTRL_PCAP_MODE_MASK BIT(26) 75 /* Lower rate to allow decrypt on the fly */ 76 #define CTRL_PCAP_RATE_EN_MASK BIT(25) 77 /* System booted in secure mode */ 78 #define CTRL_SEC_EN_MASK BIT(7) 79 80 /* Miscellaneous Control Register bit definitions */ 81 /* Internal PCAP loopback */ 82 #define MCTRL_PCAP_LPBK_MASK BIT(4) 83 84 /* Status register bit definitions */ 85 86 /* FPGA init status */ 87 #define STATUS_DMA_Q_F BIT(31) 88 #define STATUS_DMA_Q_E BIT(30) 89 #define STATUS_PCFG_INIT_MASK BIT(4) 90 91 /* Interrupt Status/Mask Register Bit definitions */ 92 /* DMA command done */ 93 #define IXR_DMA_DONE_MASK BIT(13) 94 /* DMA and PCAP cmd done */ 95 #define IXR_D_P_DONE_MASK BIT(12) 96 /* FPGA programmed */ 97 #define IXR_PCFG_DONE_MASK BIT(2) 98 #define IXR_ERROR_FLAGS_MASK 0x00F0C860 99 #define IXR_ALL_MASK 0xF8F7F87F 100 101 /* Miscellaneous constant values */ 102 103 /* Invalid DMA addr */ 104 #define DMA_INVALID_ADDRESS GENMASK(31, 0) 105 /* Used to unlock the dev */ 106 #define UNLOCK_MASK 0x757bdf0d 107 /* Timeout for polling reset bits */ 108 #define INIT_POLL_TIMEOUT 2500000 109 /* Delay for polling reset bits */ 110 #define INIT_POLL_DELAY 20 111 /* Signal this is the last DMA transfer, wait for the AXI and PCAP before 112 * interrupting 113 */ 114 #define DMA_SRC_LAST_TRANSFER 1 115 /* Timeout for DMA completion */ 116 #define DMA_TIMEOUT_MS 5000 117 118 /* Masks for controlling stuff in SLCR */ 119 /* Disable all Level shifters */ 120 #define LVL_SHFTR_DISABLE_ALL_MASK 0x0 121 /* Enable Level shifters from PS to PL */ 122 #define LVL_SHFTR_ENABLE_PS_TO_PL 0xa 123 /* Enable Level shifters from PL to PS */ 124 #define LVL_SHFTR_ENABLE_PL_TO_PS 0xf 125 /* Enable global resets */ 126 #define FPGA_RST_ALL_MASK 0xf 127 /* Disable global resets */ 128 #define FPGA_RST_NONE_MASK 0x0 129 130 struct zynq_fpga_priv { 131 int irq; 132 struct clk *clk; 133 134 void __iomem *io_base; 135 struct regmap *slcr; 136 137 spinlock_t dma_lock; 138 unsigned int dma_elm; 139 unsigned int dma_nelms; 140 struct scatterlist *cur_sg; 141 142 struct completion dma_done; 143 }; 144 145 static inline void zynq_fpga_write(struct zynq_fpga_priv *priv, u32 offset, 146 u32 val) 147 { 148 writel(val, priv->io_base + offset); 149 } 150 151 static inline u32 zynq_fpga_read(const struct zynq_fpga_priv *priv, 152 u32 offset) 153 { 154 return readl(priv->io_base + offset); 155 } 156 157 #define zynq_fpga_poll_timeout(priv, addr, val, cond, sleep_us, timeout_us) \ 158 readl_poll_timeout(priv->io_base + addr, val, cond, sleep_us, \ 159 timeout_us) 160 161 /* Cause the specified irq mask bits to generate IRQs */ 162 static inline void zynq_fpga_set_irq(struct zynq_fpga_priv *priv, u32 enable) 163 { 164 zynq_fpga_write(priv, INT_MASK_OFFSET, ~enable); 165 } 166 167 /* Must be called with dma_lock held */ 168 static void zynq_step_dma(struct zynq_fpga_priv *priv) 169 { 170 u32 addr; 171 u32 len; 172 bool first; 173 174 first = priv->dma_elm == 0; 175 while (priv->cur_sg) { 176 /* Feed the DMA queue until it is full. */ 177 if (zynq_fpga_read(priv, STATUS_OFFSET) & STATUS_DMA_Q_F) 178 break; 179 180 addr = sg_dma_address(priv->cur_sg); 181 len = sg_dma_len(priv->cur_sg); 182 if (priv->dma_elm + 1 == priv->dma_nelms) { 183 /* The last transfer waits for the PCAP to finish too, 184 * notice this also changes the irq_mask to ignore 185 * IXR_DMA_DONE_MASK which ensures we do not trigger 186 * the completion too early. 187 */ 188 addr |= DMA_SRC_LAST_TRANSFER; 189 priv->cur_sg = NULL; 190 } else { 191 priv->cur_sg = sg_next(priv->cur_sg); 192 priv->dma_elm++; 193 } 194 195 zynq_fpga_write(priv, DMA_SRC_ADDR_OFFSET, addr); 196 zynq_fpga_write(priv, DMA_DST_ADDR_OFFSET, DMA_INVALID_ADDRESS); 197 zynq_fpga_write(priv, DMA_SRC_LEN_OFFSET, len / 4); 198 zynq_fpga_write(priv, DMA_DEST_LEN_OFFSET, 0); 199 } 200 201 /* Once the first transfer is queued we can turn on the ISR, future 202 * calls to zynq_step_dma will happen from the ISR context. The 203 * dma_lock spinlock guarentees this handover is done coherently, the 204 * ISR enable is put at the end to avoid another CPU spinning in the 205 * ISR on this lock. 206 */ 207 if (first && priv->cur_sg) { 208 zynq_fpga_set_irq(priv, 209 IXR_DMA_DONE_MASK | IXR_ERROR_FLAGS_MASK); 210 } else if (!priv->cur_sg) { 211 /* The last transfer changes to DMA & PCAP mode since we do 212 * not want to continue until everything has been flushed into 213 * the PCAP. 214 */ 215 zynq_fpga_set_irq(priv, 216 IXR_D_P_DONE_MASK | IXR_ERROR_FLAGS_MASK); 217 } 218 } 219 220 static irqreturn_t zynq_fpga_isr(int irq, void *data) 221 { 222 struct zynq_fpga_priv *priv = data; 223 u32 intr_status; 224 225 /* If anything other than DMA completion is reported stop and hand 226 * control back to zynq_fpga_ops_write, something went wrong, 227 * otherwise progress the DMA. 228 */ 229 spin_lock(&priv->dma_lock); 230 intr_status = zynq_fpga_read(priv, INT_STS_OFFSET); 231 if (!(intr_status & IXR_ERROR_FLAGS_MASK) && 232 (intr_status & IXR_DMA_DONE_MASK) && priv->cur_sg) { 233 zynq_fpga_write(priv, INT_STS_OFFSET, IXR_DMA_DONE_MASK); 234 zynq_step_dma(priv); 235 spin_unlock(&priv->dma_lock); 236 return IRQ_HANDLED; 237 } 238 spin_unlock(&priv->dma_lock); 239 240 zynq_fpga_set_irq(priv, 0); 241 complete(&priv->dma_done); 242 243 return IRQ_HANDLED; 244 } 245 246 /* Sanity check the proposed bitstream. It must start with the sync word in 247 * the correct byte order, and be dword aligned. The input is a Xilinx .bin 248 * file with every 32 bit quantity swapped. 249 */ 250 static bool zynq_fpga_has_sync(const u8 *buf, size_t count) 251 { 252 for (; count >= 4; buf += 4, count -= 4) 253 if (buf[0] == 0x66 && buf[1] == 0x55 && buf[2] == 0x99 && 254 buf[3] == 0xaa) 255 return true; 256 return false; 257 } 258 259 static int zynq_fpga_ops_write_init(struct fpga_manager *mgr, 260 struct fpga_image_info *info, 261 const char *buf, size_t count) 262 { 263 struct zynq_fpga_priv *priv; 264 u32 ctrl, status; 265 int err; 266 267 priv = mgr->priv; 268 269 err = clk_enable(priv->clk); 270 if (err) 271 return err; 272 273 /* check if bitstream is encrypted & and system's still secure */ 274 if (info->flags & FPGA_MGR_ENCRYPTED_BITSTREAM) { 275 ctrl = zynq_fpga_read(priv, CTRL_OFFSET); 276 if (!(ctrl & CTRL_SEC_EN_MASK)) { 277 dev_err(&mgr->dev, 278 "System not secure, can't use crypted bitstreams\n"); 279 err = -EINVAL; 280 goto out_err; 281 } 282 } 283 284 /* don't globally reset PL if we're doing partial reconfig */ 285 if (!(info->flags & FPGA_MGR_PARTIAL_RECONFIG)) { 286 if (!zynq_fpga_has_sync(buf, count)) { 287 dev_err(&mgr->dev, 288 "Invalid bitstream, could not find a sync word. Bitstream must be a byte swapped .bin file\n"); 289 err = -EINVAL; 290 goto out_err; 291 } 292 293 /* assert AXI interface resets */ 294 regmap_write(priv->slcr, SLCR_FPGA_RST_CTRL_OFFSET, 295 FPGA_RST_ALL_MASK); 296 297 /* disable all level shifters */ 298 regmap_write(priv->slcr, SLCR_LVL_SHFTR_EN_OFFSET, 299 LVL_SHFTR_DISABLE_ALL_MASK); 300 /* enable level shifters from PS to PL */ 301 regmap_write(priv->slcr, SLCR_LVL_SHFTR_EN_OFFSET, 302 LVL_SHFTR_ENABLE_PS_TO_PL); 303 304 /* create a rising edge on PCFG_INIT. PCFG_INIT follows 305 * PCFG_PROG_B, so we need to poll it after setting PCFG_PROG_B 306 * to make sure the rising edge actually happens. 307 * Note: PCFG_PROG_B is low active, sequence as described in 308 * UG585 v1.10 page 211 309 */ 310 ctrl = zynq_fpga_read(priv, CTRL_OFFSET); 311 ctrl |= CTRL_PCFG_PROG_B_MASK; 312 313 zynq_fpga_write(priv, CTRL_OFFSET, ctrl); 314 315 err = zynq_fpga_poll_timeout(priv, STATUS_OFFSET, status, 316 status & STATUS_PCFG_INIT_MASK, 317 INIT_POLL_DELAY, 318 INIT_POLL_TIMEOUT); 319 if (err) { 320 dev_err(&mgr->dev, "Timeout waiting for PCFG_INIT\n"); 321 goto out_err; 322 } 323 324 ctrl = zynq_fpga_read(priv, CTRL_OFFSET); 325 ctrl &= ~CTRL_PCFG_PROG_B_MASK; 326 327 zynq_fpga_write(priv, CTRL_OFFSET, ctrl); 328 329 err = zynq_fpga_poll_timeout(priv, STATUS_OFFSET, status, 330 !(status & STATUS_PCFG_INIT_MASK), 331 INIT_POLL_DELAY, 332 INIT_POLL_TIMEOUT); 333 if (err) { 334 dev_err(&mgr->dev, "Timeout waiting for !PCFG_INIT\n"); 335 goto out_err; 336 } 337 338 ctrl = zynq_fpga_read(priv, CTRL_OFFSET); 339 ctrl |= CTRL_PCFG_PROG_B_MASK; 340 341 zynq_fpga_write(priv, CTRL_OFFSET, ctrl); 342 343 err = zynq_fpga_poll_timeout(priv, STATUS_OFFSET, status, 344 status & STATUS_PCFG_INIT_MASK, 345 INIT_POLL_DELAY, 346 INIT_POLL_TIMEOUT); 347 if (err) { 348 dev_err(&mgr->dev, "Timeout waiting for PCFG_INIT\n"); 349 goto out_err; 350 } 351 } 352 353 /* set configuration register with following options: 354 * - enable PCAP interface 355 * - set throughput for maximum speed (if bistream not crypted) 356 * - set CPU in user mode 357 */ 358 ctrl = zynq_fpga_read(priv, CTRL_OFFSET); 359 if (info->flags & FPGA_MGR_ENCRYPTED_BITSTREAM) 360 zynq_fpga_write(priv, CTRL_OFFSET, 361 (CTRL_PCAP_PR_MASK | CTRL_PCAP_MODE_MASK 362 | CTRL_PCAP_RATE_EN_MASK | ctrl)); 363 else 364 zynq_fpga_write(priv, CTRL_OFFSET, 365 (CTRL_PCAP_PR_MASK | CTRL_PCAP_MODE_MASK 366 | ctrl)); 367 368 369 /* We expect that the command queue is empty right now. */ 370 status = zynq_fpga_read(priv, STATUS_OFFSET); 371 if ((status & STATUS_DMA_Q_F) || 372 (status & STATUS_DMA_Q_E) != STATUS_DMA_Q_E) { 373 dev_err(&mgr->dev, "DMA command queue not right\n"); 374 err = -EBUSY; 375 goto out_err; 376 } 377 378 /* ensure internal PCAP loopback is disabled */ 379 ctrl = zynq_fpga_read(priv, MCTRL_OFFSET); 380 zynq_fpga_write(priv, MCTRL_OFFSET, (~MCTRL_PCAP_LPBK_MASK & ctrl)); 381 382 clk_disable(priv->clk); 383 384 return 0; 385 386 out_err: 387 clk_disable(priv->clk); 388 389 return err; 390 } 391 392 static int zynq_fpga_ops_write(struct fpga_manager *mgr, struct sg_table *sgt) 393 { 394 struct zynq_fpga_priv *priv; 395 const char *why; 396 int err; 397 u32 intr_status; 398 unsigned long timeout; 399 unsigned long flags; 400 struct scatterlist *sg; 401 int i; 402 403 priv = mgr->priv; 404 405 /* The hardware can only DMA multiples of 4 bytes, and it requires the 406 * starting addresses to be aligned to 64 bits (UG585 pg 212). 407 */ 408 for_each_sg(sgt->sgl, sg, sgt->nents, i) { 409 if ((sg->offset % 8) || (sg->length % 4)) { 410 dev_err(&mgr->dev, 411 "Invalid bitstream, chunks must be aligned\n"); 412 return -EINVAL; 413 } 414 } 415 416 priv->dma_nelms = 417 dma_map_sg(mgr->dev.parent, sgt->sgl, sgt->nents, DMA_TO_DEVICE); 418 if (priv->dma_nelms == 0) { 419 dev_err(&mgr->dev, "Unable to DMA map (TO_DEVICE)\n"); 420 return -ENOMEM; 421 } 422 423 /* enable clock */ 424 err = clk_enable(priv->clk); 425 if (err) 426 goto out_free; 427 428 zynq_fpga_write(priv, INT_STS_OFFSET, IXR_ALL_MASK); 429 reinit_completion(&priv->dma_done); 430 431 /* zynq_step_dma will turn on interrupts */ 432 spin_lock_irqsave(&priv->dma_lock, flags); 433 priv->dma_elm = 0; 434 priv->cur_sg = sgt->sgl; 435 zynq_step_dma(priv); 436 spin_unlock_irqrestore(&priv->dma_lock, flags); 437 438 timeout = wait_for_completion_timeout(&priv->dma_done, 439 msecs_to_jiffies(DMA_TIMEOUT_MS)); 440 441 spin_lock_irqsave(&priv->dma_lock, flags); 442 zynq_fpga_set_irq(priv, 0); 443 priv->cur_sg = NULL; 444 spin_unlock_irqrestore(&priv->dma_lock, flags); 445 446 intr_status = zynq_fpga_read(priv, INT_STS_OFFSET); 447 zynq_fpga_write(priv, INT_STS_OFFSET, IXR_ALL_MASK); 448 449 /* There doesn't seem to be a way to force cancel any DMA, so if 450 * something went wrong we are relying on the hardware to have halted 451 * the DMA before we get here, if there was we could use 452 * wait_for_completion_interruptible too. 453 */ 454 455 if (intr_status & IXR_ERROR_FLAGS_MASK) { 456 why = "DMA reported error"; 457 err = -EIO; 458 goto out_report; 459 } 460 461 if (priv->cur_sg || 462 !((intr_status & IXR_D_P_DONE_MASK) == IXR_D_P_DONE_MASK)) { 463 if (timeout == 0) 464 why = "DMA timed out"; 465 else 466 why = "DMA did not complete"; 467 err = -EIO; 468 goto out_report; 469 } 470 471 err = 0; 472 goto out_clk; 473 474 out_report: 475 dev_err(&mgr->dev, 476 "%s: INT_STS:0x%x CTRL:0x%x LOCK:0x%x INT_MASK:0x%x STATUS:0x%x MCTRL:0x%x\n", 477 why, 478 intr_status, 479 zynq_fpga_read(priv, CTRL_OFFSET), 480 zynq_fpga_read(priv, LOCK_OFFSET), 481 zynq_fpga_read(priv, INT_MASK_OFFSET), 482 zynq_fpga_read(priv, STATUS_OFFSET), 483 zynq_fpga_read(priv, MCTRL_OFFSET)); 484 485 out_clk: 486 clk_disable(priv->clk); 487 488 out_free: 489 dma_unmap_sg(mgr->dev.parent, sgt->sgl, sgt->nents, DMA_TO_DEVICE); 490 return err; 491 } 492 493 static int zynq_fpga_ops_write_complete(struct fpga_manager *mgr, 494 struct fpga_image_info *info) 495 { 496 struct zynq_fpga_priv *priv = mgr->priv; 497 int err; 498 u32 intr_status; 499 500 err = clk_enable(priv->clk); 501 if (err) 502 return err; 503 504 err = zynq_fpga_poll_timeout(priv, INT_STS_OFFSET, intr_status, 505 intr_status & IXR_PCFG_DONE_MASK, 506 INIT_POLL_DELAY, 507 INIT_POLL_TIMEOUT); 508 509 clk_disable(priv->clk); 510 511 if (err) 512 return err; 513 514 /* for the partial reconfig case we didn't touch the level shifters */ 515 if (!(info->flags & FPGA_MGR_PARTIAL_RECONFIG)) { 516 /* enable level shifters from PL to PS */ 517 regmap_write(priv->slcr, SLCR_LVL_SHFTR_EN_OFFSET, 518 LVL_SHFTR_ENABLE_PL_TO_PS); 519 520 /* deassert AXI interface resets */ 521 regmap_write(priv->slcr, SLCR_FPGA_RST_CTRL_OFFSET, 522 FPGA_RST_NONE_MASK); 523 } 524 525 return 0; 526 } 527 528 static enum fpga_mgr_states zynq_fpga_ops_state(struct fpga_manager *mgr) 529 { 530 int err; 531 u32 intr_status; 532 struct zynq_fpga_priv *priv; 533 534 priv = mgr->priv; 535 536 err = clk_enable(priv->clk); 537 if (err) 538 return FPGA_MGR_STATE_UNKNOWN; 539 540 intr_status = zynq_fpga_read(priv, INT_STS_OFFSET); 541 clk_disable(priv->clk); 542 543 if (intr_status & IXR_PCFG_DONE_MASK) 544 return FPGA_MGR_STATE_OPERATING; 545 546 return FPGA_MGR_STATE_UNKNOWN; 547 } 548 549 static const struct fpga_manager_ops zynq_fpga_ops = { 550 .initial_header_size = 128, 551 .state = zynq_fpga_ops_state, 552 .write_init = zynq_fpga_ops_write_init, 553 .write_sg = zynq_fpga_ops_write, 554 .write_complete = zynq_fpga_ops_write_complete, 555 }; 556 557 static int zynq_fpga_probe(struct platform_device *pdev) 558 { 559 struct device *dev = &pdev->dev; 560 struct zynq_fpga_priv *priv; 561 struct fpga_manager *mgr; 562 struct resource *res; 563 int err; 564 565 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 566 if (!priv) 567 return -ENOMEM; 568 spin_lock_init(&priv->dma_lock); 569 570 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 571 priv->io_base = devm_ioremap_resource(dev, res); 572 if (IS_ERR(priv->io_base)) 573 return PTR_ERR(priv->io_base); 574 575 priv->slcr = syscon_regmap_lookup_by_phandle(dev->of_node, 576 "syscon"); 577 if (IS_ERR(priv->slcr)) { 578 dev_err(dev, "unable to get zynq-slcr regmap\n"); 579 return PTR_ERR(priv->slcr); 580 } 581 582 init_completion(&priv->dma_done); 583 584 priv->irq = platform_get_irq(pdev, 0); 585 if (priv->irq < 0) { 586 dev_err(dev, "No IRQ available\n"); 587 return priv->irq; 588 } 589 590 priv->clk = devm_clk_get(dev, "ref_clk"); 591 if (IS_ERR(priv->clk)) { 592 dev_err(dev, "input clock not found\n"); 593 return PTR_ERR(priv->clk); 594 } 595 596 err = clk_prepare_enable(priv->clk); 597 if (err) { 598 dev_err(dev, "unable to enable clock\n"); 599 return err; 600 } 601 602 /* unlock the device */ 603 zynq_fpga_write(priv, UNLOCK_OFFSET, UNLOCK_MASK); 604 605 zynq_fpga_set_irq(priv, 0); 606 zynq_fpga_write(priv, INT_STS_OFFSET, IXR_ALL_MASK); 607 err = devm_request_irq(dev, priv->irq, zynq_fpga_isr, 0, dev_name(dev), 608 priv); 609 if (err) { 610 dev_err(dev, "unable to request IRQ\n"); 611 clk_disable_unprepare(priv->clk); 612 return err; 613 } 614 615 clk_disable(priv->clk); 616 617 mgr = fpga_mgr_create(dev, "Xilinx Zynq FPGA Manager", 618 &zynq_fpga_ops, priv); 619 if (!mgr) 620 return -ENOMEM; 621 622 platform_set_drvdata(pdev, mgr); 623 624 err = fpga_mgr_register(mgr); 625 if (err) { 626 dev_err(dev, "unable to register FPGA manager\n"); 627 fpga_mgr_free(mgr); 628 clk_unprepare(priv->clk); 629 return err; 630 } 631 632 return 0; 633 } 634 635 static int zynq_fpga_remove(struct platform_device *pdev) 636 { 637 struct zynq_fpga_priv *priv; 638 struct fpga_manager *mgr; 639 640 mgr = platform_get_drvdata(pdev); 641 priv = mgr->priv; 642 643 fpga_mgr_unregister(mgr); 644 645 clk_unprepare(priv->clk); 646 647 return 0; 648 } 649 650 #ifdef CONFIG_OF 651 static const struct of_device_id zynq_fpga_of_match[] = { 652 { .compatible = "xlnx,zynq-devcfg-1.0", }, 653 {}, 654 }; 655 656 MODULE_DEVICE_TABLE(of, zynq_fpga_of_match); 657 #endif 658 659 static struct platform_driver zynq_fpga_driver = { 660 .probe = zynq_fpga_probe, 661 .remove = zynq_fpga_remove, 662 .driver = { 663 .name = "zynq_fpga_manager", 664 .of_match_table = of_match_ptr(zynq_fpga_of_match), 665 }, 666 }; 667 668 module_platform_driver(zynq_fpga_driver); 669 670 MODULE_AUTHOR("Moritz Fischer <moritz.fischer@ettus.com>"); 671 MODULE_AUTHOR("Michal Simek <michal.simek@xilinx.com>"); 672 MODULE_DESCRIPTION("Xilinx Zynq FPGA Manager"); 673 MODULE_LICENSE("GPL v2"); 674