xref: /openbmc/linux/drivers/fpga/fpga-mgr.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * FPGA Manager Core
4  *
5  *  Copyright (C) 2013-2015 Altera Corporation
6  *  Copyright (C) 2017 Intel Corporation
7  *
8  * With code from the mailing list:
9  * Copyright (C) 2013 Xilinx, Inc.
10  */
11 #include <linux/firmware.h>
12 #include <linux/fpga/fpga-mgr.h>
13 #include <linux/idr.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/scatterlist.h>
19 #include <linux/highmem.h>
20 
21 static DEFINE_IDA(fpga_mgr_ida);
22 static struct class *fpga_mgr_class;
23 
24 /**
25  * fpga_image_info_alloc - Allocate a FPGA image info struct
26  * @dev: owning device
27  *
28  * Return: struct fpga_image_info or NULL
29  */
30 struct fpga_image_info *fpga_image_info_alloc(struct device *dev)
31 {
32 	struct fpga_image_info *info;
33 
34 	get_device(dev);
35 
36 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
37 	if (!info) {
38 		put_device(dev);
39 		return NULL;
40 	}
41 
42 	info->dev = dev;
43 
44 	return info;
45 }
46 EXPORT_SYMBOL_GPL(fpga_image_info_alloc);
47 
48 /**
49  * fpga_image_info_free - Free a FPGA image info struct
50  * @info: FPGA image info struct to free
51  */
52 void fpga_image_info_free(struct fpga_image_info *info)
53 {
54 	struct device *dev;
55 
56 	if (!info)
57 		return;
58 
59 	dev = info->dev;
60 	if (info->firmware_name)
61 		devm_kfree(dev, info->firmware_name);
62 
63 	devm_kfree(dev, info);
64 	put_device(dev);
65 }
66 EXPORT_SYMBOL_GPL(fpga_image_info_free);
67 
68 /*
69  * Call the low level driver's write_init function.  This will do the
70  * device-specific things to get the FPGA into the state where it is ready to
71  * receive an FPGA image. The low level driver only gets to see the first
72  * initial_header_size bytes in the buffer.
73  */
74 static int fpga_mgr_write_init_buf(struct fpga_manager *mgr,
75 				   struct fpga_image_info *info,
76 				   const char *buf, size_t count)
77 {
78 	int ret;
79 
80 	mgr->state = FPGA_MGR_STATE_WRITE_INIT;
81 	if (!mgr->mops->initial_header_size)
82 		ret = mgr->mops->write_init(mgr, info, NULL, 0);
83 	else
84 		ret = mgr->mops->write_init(
85 		    mgr, info, buf, min(mgr->mops->initial_header_size, count));
86 
87 	if (ret) {
88 		dev_err(&mgr->dev, "Error preparing FPGA for writing\n");
89 		mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR;
90 		return ret;
91 	}
92 
93 	return 0;
94 }
95 
96 static int fpga_mgr_write_init_sg(struct fpga_manager *mgr,
97 				  struct fpga_image_info *info,
98 				  struct sg_table *sgt)
99 {
100 	struct sg_mapping_iter miter;
101 	size_t len;
102 	char *buf;
103 	int ret;
104 
105 	if (!mgr->mops->initial_header_size)
106 		return fpga_mgr_write_init_buf(mgr, info, NULL, 0);
107 
108 	/*
109 	 * First try to use miter to map the first fragment to access the
110 	 * header, this is the typical path.
111 	 */
112 	sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
113 	if (sg_miter_next(&miter) &&
114 	    miter.length >= mgr->mops->initial_header_size) {
115 		ret = fpga_mgr_write_init_buf(mgr, info, miter.addr,
116 					      miter.length);
117 		sg_miter_stop(&miter);
118 		return ret;
119 	}
120 	sg_miter_stop(&miter);
121 
122 	/* Otherwise copy the fragments into temporary memory. */
123 	buf = kmalloc(mgr->mops->initial_header_size, GFP_KERNEL);
124 	if (!buf)
125 		return -ENOMEM;
126 
127 	len = sg_copy_to_buffer(sgt->sgl, sgt->nents, buf,
128 				mgr->mops->initial_header_size);
129 	ret = fpga_mgr_write_init_buf(mgr, info, buf, len);
130 
131 	kfree(buf);
132 
133 	return ret;
134 }
135 
136 /*
137  * After all the FPGA image has been written, do the device specific steps to
138  * finish and set the FPGA into operating mode.
139  */
140 static int fpga_mgr_write_complete(struct fpga_manager *mgr,
141 				   struct fpga_image_info *info)
142 {
143 	int ret;
144 
145 	mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE;
146 	ret = mgr->mops->write_complete(mgr, info);
147 	if (ret) {
148 		dev_err(&mgr->dev, "Error after writing image data to FPGA\n");
149 		mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR;
150 		return ret;
151 	}
152 	mgr->state = FPGA_MGR_STATE_OPERATING;
153 
154 	return 0;
155 }
156 
157 /**
158  * fpga_mgr_buf_load_sg - load fpga from image in buffer from a scatter list
159  * @mgr:	fpga manager
160  * @info:	fpga image specific information
161  * @sgt:	scatterlist table
162  *
163  * Step the low level fpga manager through the device-specific steps of getting
164  * an FPGA ready to be configured, writing the image to it, then doing whatever
165  * post-configuration steps necessary.  This code assumes the caller got the
166  * mgr pointer from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is
167  * not an error code.
168  *
169  * This is the preferred entry point for FPGA programming, it does not require
170  * any contiguous kernel memory.
171  *
172  * Return: 0 on success, negative error code otherwise.
173  */
174 static int fpga_mgr_buf_load_sg(struct fpga_manager *mgr,
175 				struct fpga_image_info *info,
176 				struct sg_table *sgt)
177 {
178 	int ret;
179 
180 	ret = fpga_mgr_write_init_sg(mgr, info, sgt);
181 	if (ret)
182 		return ret;
183 
184 	/* Write the FPGA image to the FPGA. */
185 	mgr->state = FPGA_MGR_STATE_WRITE;
186 	if (mgr->mops->write_sg) {
187 		ret = mgr->mops->write_sg(mgr, sgt);
188 	} else {
189 		struct sg_mapping_iter miter;
190 
191 		sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
192 		while (sg_miter_next(&miter)) {
193 			ret = mgr->mops->write(mgr, miter.addr, miter.length);
194 			if (ret)
195 				break;
196 		}
197 		sg_miter_stop(&miter);
198 	}
199 
200 	if (ret) {
201 		dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
202 		mgr->state = FPGA_MGR_STATE_WRITE_ERR;
203 		return ret;
204 	}
205 
206 	return fpga_mgr_write_complete(mgr, info);
207 }
208 
209 static int fpga_mgr_buf_load_mapped(struct fpga_manager *mgr,
210 				    struct fpga_image_info *info,
211 				    const char *buf, size_t count)
212 {
213 	int ret;
214 
215 	ret = fpga_mgr_write_init_buf(mgr, info, buf, count);
216 	if (ret)
217 		return ret;
218 
219 	/*
220 	 * Write the FPGA image to the FPGA.
221 	 */
222 	mgr->state = FPGA_MGR_STATE_WRITE;
223 	ret = mgr->mops->write(mgr, buf, count);
224 	if (ret) {
225 		dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
226 		mgr->state = FPGA_MGR_STATE_WRITE_ERR;
227 		return ret;
228 	}
229 
230 	return fpga_mgr_write_complete(mgr, info);
231 }
232 
233 /**
234  * fpga_mgr_buf_load - load fpga from image in buffer
235  * @mgr:	fpga manager
236  * @info:	fpga image info
237  * @buf:	buffer contain fpga image
238  * @count:	byte count of buf
239  *
240  * Step the low level fpga manager through the device-specific steps of getting
241  * an FPGA ready to be configured, writing the image to it, then doing whatever
242  * post-configuration steps necessary.  This code assumes the caller got the
243  * mgr pointer from of_fpga_mgr_get() and checked that it is not an error code.
244  *
245  * Return: 0 on success, negative error code otherwise.
246  */
247 static int fpga_mgr_buf_load(struct fpga_manager *mgr,
248 			     struct fpga_image_info *info,
249 			     const char *buf, size_t count)
250 {
251 	struct page **pages;
252 	struct sg_table sgt;
253 	const void *p;
254 	int nr_pages;
255 	int index;
256 	int rc;
257 
258 	/*
259 	 * This is just a fast path if the caller has already created a
260 	 * contiguous kernel buffer and the driver doesn't require SG, non-SG
261 	 * drivers will still work on the slow path.
262 	 */
263 	if (mgr->mops->write)
264 		return fpga_mgr_buf_load_mapped(mgr, info, buf, count);
265 
266 	/*
267 	 * Convert the linear kernel pointer into a sg_table of pages for use
268 	 * by the driver.
269 	 */
270 	nr_pages = DIV_ROUND_UP((unsigned long)buf + count, PAGE_SIZE) -
271 		   (unsigned long)buf / PAGE_SIZE;
272 	pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
273 	if (!pages)
274 		return -ENOMEM;
275 
276 	p = buf - offset_in_page(buf);
277 	for (index = 0; index < nr_pages; index++) {
278 		if (is_vmalloc_addr(p))
279 			pages[index] = vmalloc_to_page(p);
280 		else
281 			pages[index] = kmap_to_page((void *)p);
282 		if (!pages[index]) {
283 			kfree(pages);
284 			return -EFAULT;
285 		}
286 		p += PAGE_SIZE;
287 	}
288 
289 	/*
290 	 * The temporary pages list is used to code share the merging algorithm
291 	 * in sg_alloc_table_from_pages
292 	 */
293 	rc = sg_alloc_table_from_pages(&sgt, pages, index, offset_in_page(buf),
294 				       count, GFP_KERNEL);
295 	kfree(pages);
296 	if (rc)
297 		return rc;
298 
299 	rc = fpga_mgr_buf_load_sg(mgr, info, &sgt);
300 	sg_free_table(&sgt);
301 
302 	return rc;
303 }
304 
305 /**
306  * fpga_mgr_firmware_load - request firmware and load to fpga
307  * @mgr:	fpga manager
308  * @info:	fpga image specific information
309  * @image_name:	name of image file on the firmware search path
310  *
311  * Request an FPGA image using the firmware class, then write out to the FPGA.
312  * Update the state before each step to provide info on what step failed if
313  * there is a failure.  This code assumes the caller got the mgr pointer
314  * from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is not an error
315  * code.
316  *
317  * Return: 0 on success, negative error code otherwise.
318  */
319 static int fpga_mgr_firmware_load(struct fpga_manager *mgr,
320 				  struct fpga_image_info *info,
321 				  const char *image_name)
322 {
323 	struct device *dev = &mgr->dev;
324 	const struct firmware *fw;
325 	int ret;
326 
327 	dev_info(dev, "writing %s to %s\n", image_name, mgr->name);
328 
329 	mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ;
330 
331 	ret = request_firmware(&fw, image_name, dev);
332 	if (ret) {
333 		mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ_ERR;
334 		dev_err(dev, "Error requesting firmware %s\n", image_name);
335 		return ret;
336 	}
337 
338 	ret = fpga_mgr_buf_load(mgr, info, fw->data, fw->size);
339 
340 	release_firmware(fw);
341 
342 	return ret;
343 }
344 
345 /**
346  * fpga_mgr_load - load FPGA from scatter/gather table, buffer, or firmware
347  * @mgr:	fpga manager
348  * @info:	fpga image information.
349  *
350  * Load the FPGA from an image which is indicated in @info.  If successful, the
351  * FPGA ends up in operating mode.
352  *
353  * Return: 0 on success, negative error code otherwise.
354  */
355 int fpga_mgr_load(struct fpga_manager *mgr, struct fpga_image_info *info)
356 {
357 	if (info->sgt)
358 		return fpga_mgr_buf_load_sg(mgr, info, info->sgt);
359 	if (info->buf && info->count)
360 		return fpga_mgr_buf_load(mgr, info, info->buf, info->count);
361 	if (info->firmware_name)
362 		return fpga_mgr_firmware_load(mgr, info, info->firmware_name);
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL_GPL(fpga_mgr_load);
366 
367 static const char * const state_str[] = {
368 	[FPGA_MGR_STATE_UNKNOWN] =		"unknown",
369 	[FPGA_MGR_STATE_POWER_OFF] =		"power off",
370 	[FPGA_MGR_STATE_POWER_UP] =		"power up",
371 	[FPGA_MGR_STATE_RESET] =		"reset",
372 
373 	/* requesting FPGA image from firmware */
374 	[FPGA_MGR_STATE_FIRMWARE_REQ] =		"firmware request",
375 	[FPGA_MGR_STATE_FIRMWARE_REQ_ERR] =	"firmware request error",
376 
377 	/* Preparing FPGA to receive image */
378 	[FPGA_MGR_STATE_WRITE_INIT] =		"write init",
379 	[FPGA_MGR_STATE_WRITE_INIT_ERR] =	"write init error",
380 
381 	/* Writing image to FPGA */
382 	[FPGA_MGR_STATE_WRITE] =		"write",
383 	[FPGA_MGR_STATE_WRITE_ERR] =		"write error",
384 
385 	/* Finishing configuration after image has been written */
386 	[FPGA_MGR_STATE_WRITE_COMPLETE] =	"write complete",
387 	[FPGA_MGR_STATE_WRITE_COMPLETE_ERR] =	"write complete error",
388 
389 	/* FPGA reports to be in normal operating mode */
390 	[FPGA_MGR_STATE_OPERATING] =		"operating",
391 };
392 
393 static ssize_t name_show(struct device *dev,
394 			 struct device_attribute *attr, char *buf)
395 {
396 	struct fpga_manager *mgr = to_fpga_manager(dev);
397 
398 	return sprintf(buf, "%s\n", mgr->name);
399 }
400 
401 static ssize_t state_show(struct device *dev,
402 			  struct device_attribute *attr, char *buf)
403 {
404 	struct fpga_manager *mgr = to_fpga_manager(dev);
405 
406 	return sprintf(buf, "%s\n", state_str[mgr->state]);
407 }
408 
409 static ssize_t status_show(struct device *dev,
410 			   struct device_attribute *attr, char *buf)
411 {
412 	struct fpga_manager *mgr = to_fpga_manager(dev);
413 	u64 status;
414 	int len = 0;
415 
416 	if (!mgr->mops->status)
417 		return -ENOENT;
418 
419 	status = mgr->mops->status(mgr);
420 
421 	if (status & FPGA_MGR_STATUS_OPERATION_ERR)
422 		len += sprintf(buf + len, "reconfig operation error\n");
423 	if (status & FPGA_MGR_STATUS_CRC_ERR)
424 		len += sprintf(buf + len, "reconfig CRC error\n");
425 	if (status & FPGA_MGR_STATUS_INCOMPATIBLE_IMAGE_ERR)
426 		len += sprintf(buf + len, "reconfig incompatible image\n");
427 	if (status & FPGA_MGR_STATUS_IP_PROTOCOL_ERR)
428 		len += sprintf(buf + len, "reconfig IP protocol error\n");
429 	if (status & FPGA_MGR_STATUS_FIFO_OVERFLOW_ERR)
430 		len += sprintf(buf + len, "reconfig fifo overflow error\n");
431 
432 	return len;
433 }
434 
435 static DEVICE_ATTR_RO(name);
436 static DEVICE_ATTR_RO(state);
437 static DEVICE_ATTR_RO(status);
438 
439 static struct attribute *fpga_mgr_attrs[] = {
440 	&dev_attr_name.attr,
441 	&dev_attr_state.attr,
442 	&dev_attr_status.attr,
443 	NULL,
444 };
445 ATTRIBUTE_GROUPS(fpga_mgr);
446 
447 static struct fpga_manager *__fpga_mgr_get(struct device *dev)
448 {
449 	struct fpga_manager *mgr;
450 
451 	mgr = to_fpga_manager(dev);
452 
453 	if (!try_module_get(dev->parent->driver->owner))
454 		goto err_dev;
455 
456 	return mgr;
457 
458 err_dev:
459 	put_device(dev);
460 	return ERR_PTR(-ENODEV);
461 }
462 
463 static int fpga_mgr_dev_match(struct device *dev, const void *data)
464 {
465 	return dev->parent == data;
466 }
467 
468 /**
469  * fpga_mgr_get - Given a device, get a reference to a fpga mgr.
470  * @dev:	parent device that fpga mgr was registered with
471  *
472  * Return: fpga manager struct or IS_ERR() condition containing error code.
473  */
474 struct fpga_manager *fpga_mgr_get(struct device *dev)
475 {
476 	struct device *mgr_dev = class_find_device(fpga_mgr_class, NULL, dev,
477 						   fpga_mgr_dev_match);
478 	if (!mgr_dev)
479 		return ERR_PTR(-ENODEV);
480 
481 	return __fpga_mgr_get(mgr_dev);
482 }
483 EXPORT_SYMBOL_GPL(fpga_mgr_get);
484 
485 /**
486  * of_fpga_mgr_get - Given a device node, get a reference to a fpga mgr.
487  *
488  * @node:	device node
489  *
490  * Return: fpga manager struct or IS_ERR() condition containing error code.
491  */
492 struct fpga_manager *of_fpga_mgr_get(struct device_node *node)
493 {
494 	struct device *dev;
495 
496 	dev = class_find_device_by_of_node(fpga_mgr_class, node);
497 	if (!dev)
498 		return ERR_PTR(-ENODEV);
499 
500 	return __fpga_mgr_get(dev);
501 }
502 EXPORT_SYMBOL_GPL(of_fpga_mgr_get);
503 
504 /**
505  * fpga_mgr_put - release a reference to a fpga manager
506  * @mgr:	fpga manager structure
507  */
508 void fpga_mgr_put(struct fpga_manager *mgr)
509 {
510 	module_put(mgr->dev.parent->driver->owner);
511 	put_device(&mgr->dev);
512 }
513 EXPORT_SYMBOL_GPL(fpga_mgr_put);
514 
515 /**
516  * fpga_mgr_lock - Lock FPGA manager for exclusive use
517  * @mgr:	fpga manager
518  *
519  * Given a pointer to FPGA Manager (from fpga_mgr_get() or
520  * of_fpga_mgr_put()) attempt to get the mutex. The user should call
521  * fpga_mgr_lock() and verify that it returns 0 before attempting to
522  * program the FPGA.  Likewise, the user should call fpga_mgr_unlock
523  * when done programming the FPGA.
524  *
525  * Return: 0 for success or -EBUSY
526  */
527 int fpga_mgr_lock(struct fpga_manager *mgr)
528 {
529 	if (!mutex_trylock(&mgr->ref_mutex)) {
530 		dev_err(&mgr->dev, "FPGA manager is in use.\n");
531 		return -EBUSY;
532 	}
533 
534 	return 0;
535 }
536 EXPORT_SYMBOL_GPL(fpga_mgr_lock);
537 
538 /**
539  * fpga_mgr_unlock - Unlock FPGA manager after done programming
540  * @mgr:	fpga manager
541  */
542 void fpga_mgr_unlock(struct fpga_manager *mgr)
543 {
544 	mutex_unlock(&mgr->ref_mutex);
545 }
546 EXPORT_SYMBOL_GPL(fpga_mgr_unlock);
547 
548 /**
549  * fpga_mgr_create - create and initialize a FPGA manager struct
550  * @dev:	fpga manager device from pdev
551  * @name:	fpga manager name
552  * @mops:	pointer to structure of fpga manager ops
553  * @priv:	fpga manager private data
554  *
555  * The caller of this function is responsible for freeing the struct with
556  * fpga_mgr_free().  Using devm_fpga_mgr_create() instead is recommended.
557  *
558  * Return: pointer to struct fpga_manager or NULL
559  */
560 struct fpga_manager *fpga_mgr_create(struct device *dev, const char *name,
561 				     const struct fpga_manager_ops *mops,
562 				     void *priv)
563 {
564 	struct fpga_manager *mgr;
565 	int id, ret;
566 
567 	if (!mops || !mops->write_complete || !mops->state ||
568 	    !mops->write_init || (!mops->write && !mops->write_sg) ||
569 	    (mops->write && mops->write_sg)) {
570 		dev_err(dev, "Attempt to register without fpga_manager_ops\n");
571 		return NULL;
572 	}
573 
574 	if (!name || !strlen(name)) {
575 		dev_err(dev, "Attempt to register with no name!\n");
576 		return NULL;
577 	}
578 
579 	mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
580 	if (!mgr)
581 		return NULL;
582 
583 	id = ida_simple_get(&fpga_mgr_ida, 0, 0, GFP_KERNEL);
584 	if (id < 0)
585 		goto error_kfree;
586 
587 	mutex_init(&mgr->ref_mutex);
588 
589 	mgr->name = name;
590 	mgr->mops = mops;
591 	mgr->priv = priv;
592 
593 	device_initialize(&mgr->dev);
594 	mgr->dev.class = fpga_mgr_class;
595 	mgr->dev.groups = mops->groups;
596 	mgr->dev.parent = dev;
597 	mgr->dev.of_node = dev->of_node;
598 	mgr->dev.id = id;
599 
600 	ret = dev_set_name(&mgr->dev, "fpga%d", id);
601 	if (ret)
602 		goto error_device;
603 
604 	return mgr;
605 
606 error_device:
607 	ida_simple_remove(&fpga_mgr_ida, id);
608 error_kfree:
609 	kfree(mgr);
610 
611 	return NULL;
612 }
613 EXPORT_SYMBOL_GPL(fpga_mgr_create);
614 
615 /**
616  * fpga_mgr_free - free a FPGA manager created with fpga_mgr_create()
617  * @mgr:	fpga manager struct
618  */
619 void fpga_mgr_free(struct fpga_manager *mgr)
620 {
621 	ida_simple_remove(&fpga_mgr_ida, mgr->dev.id);
622 	kfree(mgr);
623 }
624 EXPORT_SYMBOL_GPL(fpga_mgr_free);
625 
626 static void devm_fpga_mgr_release(struct device *dev, void *res)
627 {
628 	struct fpga_manager *mgr = *(struct fpga_manager **)res;
629 
630 	fpga_mgr_free(mgr);
631 }
632 
633 /**
634  * devm_fpga_mgr_create - create and initialize a managed FPGA manager struct
635  * @dev:	fpga manager device from pdev
636  * @name:	fpga manager name
637  * @mops:	pointer to structure of fpga manager ops
638  * @priv:	fpga manager private data
639  *
640  * This function is intended for use in a FPGA manager driver's probe function.
641  * After the manager driver creates the manager struct with
642  * devm_fpga_mgr_create(), it should register it with fpga_mgr_register().  The
643  * manager driver's remove function should call fpga_mgr_unregister().  The
644  * manager struct allocated with this function will be freed automatically on
645  * driver detach.  This includes the case of a probe function returning error
646  * before calling fpga_mgr_register(), the struct will still get cleaned up.
647  *
648  * Return: pointer to struct fpga_manager or NULL
649  */
650 struct fpga_manager *devm_fpga_mgr_create(struct device *dev, const char *name,
651 					  const struct fpga_manager_ops *mops,
652 					  void *priv)
653 {
654 	struct fpga_manager **ptr, *mgr;
655 
656 	ptr = devres_alloc(devm_fpga_mgr_release, sizeof(*ptr), GFP_KERNEL);
657 	if (!ptr)
658 		return NULL;
659 
660 	mgr = fpga_mgr_create(dev, name, mops, priv);
661 	if (!mgr) {
662 		devres_free(ptr);
663 	} else {
664 		*ptr = mgr;
665 		devres_add(dev, ptr);
666 	}
667 
668 	return mgr;
669 }
670 EXPORT_SYMBOL_GPL(devm_fpga_mgr_create);
671 
672 /**
673  * fpga_mgr_register - register a FPGA manager
674  * @mgr: fpga manager struct
675  *
676  * Return: 0 on success, negative error code otherwise.
677  */
678 int fpga_mgr_register(struct fpga_manager *mgr)
679 {
680 	int ret;
681 
682 	/*
683 	 * Initialize framework state by requesting low level driver read state
684 	 * from device.  FPGA may be in reset mode or may have been programmed
685 	 * by bootloader or EEPROM.
686 	 */
687 	mgr->state = mgr->mops->state(mgr);
688 
689 	ret = device_add(&mgr->dev);
690 	if (ret)
691 		goto error_device;
692 
693 	dev_info(&mgr->dev, "%s registered\n", mgr->name);
694 
695 	return 0;
696 
697 error_device:
698 	ida_simple_remove(&fpga_mgr_ida, mgr->dev.id);
699 
700 	return ret;
701 }
702 EXPORT_SYMBOL_GPL(fpga_mgr_register);
703 
704 /**
705  * fpga_mgr_unregister - unregister a FPGA manager
706  * @mgr: fpga manager struct
707  *
708  * This function is intended for use in a FPGA manager driver's remove function.
709  */
710 void fpga_mgr_unregister(struct fpga_manager *mgr)
711 {
712 	dev_info(&mgr->dev, "%s %s\n", __func__, mgr->name);
713 
714 	/*
715 	 * If the low level driver provides a method for putting fpga into
716 	 * a desired state upon unregister, do it.
717 	 */
718 	if (mgr->mops->fpga_remove)
719 		mgr->mops->fpga_remove(mgr);
720 
721 	device_unregister(&mgr->dev);
722 }
723 EXPORT_SYMBOL_GPL(fpga_mgr_unregister);
724 
725 static void fpga_mgr_dev_release(struct device *dev)
726 {
727 }
728 
729 static int __init fpga_mgr_class_init(void)
730 {
731 	pr_info("FPGA manager framework\n");
732 
733 	fpga_mgr_class = class_create(THIS_MODULE, "fpga_manager");
734 	if (IS_ERR(fpga_mgr_class))
735 		return PTR_ERR(fpga_mgr_class);
736 
737 	fpga_mgr_class->dev_groups = fpga_mgr_groups;
738 	fpga_mgr_class->dev_release = fpga_mgr_dev_release;
739 
740 	return 0;
741 }
742 
743 static void __exit fpga_mgr_class_exit(void)
744 {
745 	class_destroy(fpga_mgr_class);
746 	ida_destroy(&fpga_mgr_ida);
747 }
748 
749 MODULE_AUTHOR("Alan Tull <atull@kernel.org>");
750 MODULE_DESCRIPTION("FPGA manager framework");
751 MODULE_LICENSE("GPL v2");
752 
753 subsys_initcall(fpga_mgr_class_init);
754 module_exit(fpga_mgr_class_exit);
755