xref: /openbmc/linux/drivers/fpga/fpga-mgr.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * FPGA Manager Core
4  *
5  *  Copyright (C) 2013-2015 Altera Corporation
6  *  Copyright (C) 2017 Intel Corporation
7  *
8  * With code from the mailing list:
9  * Copyright (C) 2013 Xilinx, Inc.
10  */
11 #include <linux/firmware.h>
12 #include <linux/fpga/fpga-mgr.h>
13 #include <linux/idr.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/scatterlist.h>
19 #include <linux/highmem.h>
20 
21 static DEFINE_IDA(fpga_mgr_ida);
22 static struct class *fpga_mgr_class;
23 
24 /**
25  * fpga_image_info_alloc - Allocate a FPGA image info struct
26  * @dev: owning device
27  *
28  * Return: struct fpga_image_info or NULL
29  */
30 struct fpga_image_info *fpga_image_info_alloc(struct device *dev)
31 {
32 	struct fpga_image_info *info;
33 
34 	get_device(dev);
35 
36 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
37 	if (!info) {
38 		put_device(dev);
39 		return NULL;
40 	}
41 
42 	info->dev = dev;
43 
44 	return info;
45 }
46 EXPORT_SYMBOL_GPL(fpga_image_info_alloc);
47 
48 /**
49  * fpga_image_info_free - Free a FPGA image info struct
50  * @info: FPGA image info struct to free
51  */
52 void fpga_image_info_free(struct fpga_image_info *info)
53 {
54 	struct device *dev;
55 
56 	if (!info)
57 		return;
58 
59 	dev = info->dev;
60 	if (info->firmware_name)
61 		devm_kfree(dev, info->firmware_name);
62 
63 	devm_kfree(dev, info);
64 	put_device(dev);
65 }
66 EXPORT_SYMBOL_GPL(fpga_image_info_free);
67 
68 /*
69  * Call the low level driver's write_init function.  This will do the
70  * device-specific things to get the FPGA into the state where it is ready to
71  * receive an FPGA image. The low level driver only gets to see the first
72  * initial_header_size bytes in the buffer.
73  */
74 static int fpga_mgr_write_init_buf(struct fpga_manager *mgr,
75 				   struct fpga_image_info *info,
76 				   const char *buf, size_t count)
77 {
78 	int ret;
79 
80 	mgr->state = FPGA_MGR_STATE_WRITE_INIT;
81 	if (!mgr->mops->initial_header_size)
82 		ret = mgr->mops->write_init(mgr, info, NULL, 0);
83 	else
84 		ret = mgr->mops->write_init(
85 		    mgr, info, buf, min(mgr->mops->initial_header_size, count));
86 
87 	if (ret) {
88 		dev_err(&mgr->dev, "Error preparing FPGA for writing\n");
89 		mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR;
90 		return ret;
91 	}
92 
93 	return 0;
94 }
95 
96 static int fpga_mgr_write_init_sg(struct fpga_manager *mgr,
97 				  struct fpga_image_info *info,
98 				  struct sg_table *sgt)
99 {
100 	struct sg_mapping_iter miter;
101 	size_t len;
102 	char *buf;
103 	int ret;
104 
105 	if (!mgr->mops->initial_header_size)
106 		return fpga_mgr_write_init_buf(mgr, info, NULL, 0);
107 
108 	/*
109 	 * First try to use miter to map the first fragment to access the
110 	 * header, this is the typical path.
111 	 */
112 	sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
113 	if (sg_miter_next(&miter) &&
114 	    miter.length >= mgr->mops->initial_header_size) {
115 		ret = fpga_mgr_write_init_buf(mgr, info, miter.addr,
116 					      miter.length);
117 		sg_miter_stop(&miter);
118 		return ret;
119 	}
120 	sg_miter_stop(&miter);
121 
122 	/* Otherwise copy the fragments into temporary memory. */
123 	buf = kmalloc(mgr->mops->initial_header_size, GFP_KERNEL);
124 	if (!buf)
125 		return -ENOMEM;
126 
127 	len = sg_copy_to_buffer(sgt->sgl, sgt->nents, buf,
128 				mgr->mops->initial_header_size);
129 	ret = fpga_mgr_write_init_buf(mgr, info, buf, len);
130 
131 	kfree(buf);
132 
133 	return ret;
134 }
135 
136 /*
137  * After all the FPGA image has been written, do the device specific steps to
138  * finish and set the FPGA into operating mode.
139  */
140 static int fpga_mgr_write_complete(struct fpga_manager *mgr,
141 				   struct fpga_image_info *info)
142 {
143 	int ret;
144 
145 	mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE;
146 	ret = mgr->mops->write_complete(mgr, info);
147 	if (ret) {
148 		dev_err(&mgr->dev, "Error after writing image data to FPGA\n");
149 		mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR;
150 		return ret;
151 	}
152 	mgr->state = FPGA_MGR_STATE_OPERATING;
153 
154 	return 0;
155 }
156 
157 /**
158  * fpga_mgr_buf_load_sg - load fpga from image in buffer from a scatter list
159  * @mgr:	fpga manager
160  * @info:	fpga image specific information
161  * @sgt:	scatterlist table
162  *
163  * Step the low level fpga manager through the device-specific steps of getting
164  * an FPGA ready to be configured, writing the image to it, then doing whatever
165  * post-configuration steps necessary.  This code assumes the caller got the
166  * mgr pointer from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is
167  * not an error code.
168  *
169  * This is the preferred entry point for FPGA programming, it does not require
170  * any contiguous kernel memory.
171  *
172  * Return: 0 on success, negative error code otherwise.
173  */
174 static int fpga_mgr_buf_load_sg(struct fpga_manager *mgr,
175 				struct fpga_image_info *info,
176 				struct sg_table *sgt)
177 {
178 	int ret;
179 
180 	ret = fpga_mgr_write_init_sg(mgr, info, sgt);
181 	if (ret)
182 		return ret;
183 
184 	/* Write the FPGA image to the FPGA. */
185 	mgr->state = FPGA_MGR_STATE_WRITE;
186 	if (mgr->mops->write_sg) {
187 		ret = mgr->mops->write_sg(mgr, sgt);
188 	} else {
189 		struct sg_mapping_iter miter;
190 
191 		sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
192 		while (sg_miter_next(&miter)) {
193 			ret = mgr->mops->write(mgr, miter.addr, miter.length);
194 			if (ret)
195 				break;
196 		}
197 		sg_miter_stop(&miter);
198 	}
199 
200 	if (ret) {
201 		dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
202 		mgr->state = FPGA_MGR_STATE_WRITE_ERR;
203 		return ret;
204 	}
205 
206 	return fpga_mgr_write_complete(mgr, info);
207 }
208 
209 static int fpga_mgr_buf_load_mapped(struct fpga_manager *mgr,
210 				    struct fpga_image_info *info,
211 				    const char *buf, size_t count)
212 {
213 	int ret;
214 
215 	ret = fpga_mgr_write_init_buf(mgr, info, buf, count);
216 	if (ret)
217 		return ret;
218 
219 	/*
220 	 * Write the FPGA image to the FPGA.
221 	 */
222 	mgr->state = FPGA_MGR_STATE_WRITE;
223 	ret = mgr->mops->write(mgr, buf, count);
224 	if (ret) {
225 		dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
226 		mgr->state = FPGA_MGR_STATE_WRITE_ERR;
227 		return ret;
228 	}
229 
230 	return fpga_mgr_write_complete(mgr, info);
231 }
232 
233 /**
234  * fpga_mgr_buf_load - load fpga from image in buffer
235  * @mgr:	fpga manager
236  * @info:	fpga image info
237  * @buf:	buffer contain fpga image
238  * @count:	byte count of buf
239  *
240  * Step the low level fpga manager through the device-specific steps of getting
241  * an FPGA ready to be configured, writing the image to it, then doing whatever
242  * post-configuration steps necessary.  This code assumes the caller got the
243  * mgr pointer from of_fpga_mgr_get() and checked that it is not an error code.
244  *
245  * Return: 0 on success, negative error code otherwise.
246  */
247 static int fpga_mgr_buf_load(struct fpga_manager *mgr,
248 			     struct fpga_image_info *info,
249 			     const char *buf, size_t count)
250 {
251 	struct page **pages;
252 	struct sg_table sgt;
253 	const void *p;
254 	int nr_pages;
255 	int index;
256 	int rc;
257 
258 	/*
259 	 * This is just a fast path if the caller has already created a
260 	 * contiguous kernel buffer and the driver doesn't require SG, non-SG
261 	 * drivers will still work on the slow path.
262 	 */
263 	if (mgr->mops->write)
264 		return fpga_mgr_buf_load_mapped(mgr, info, buf, count);
265 
266 	/*
267 	 * Convert the linear kernel pointer into a sg_table of pages for use
268 	 * by the driver.
269 	 */
270 	nr_pages = DIV_ROUND_UP((unsigned long)buf + count, PAGE_SIZE) -
271 		   (unsigned long)buf / PAGE_SIZE;
272 	pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
273 	if (!pages)
274 		return -ENOMEM;
275 
276 	p = buf - offset_in_page(buf);
277 	for (index = 0; index < nr_pages; index++) {
278 		if (is_vmalloc_addr(p))
279 			pages[index] = vmalloc_to_page(p);
280 		else
281 			pages[index] = kmap_to_page((void *)p);
282 		if (!pages[index]) {
283 			kfree(pages);
284 			return -EFAULT;
285 		}
286 		p += PAGE_SIZE;
287 	}
288 
289 	/*
290 	 * The temporary pages list is used to code share the merging algorithm
291 	 * in sg_alloc_table_from_pages
292 	 */
293 	rc = sg_alloc_table_from_pages(&sgt, pages, index, offset_in_page(buf),
294 				       count, GFP_KERNEL);
295 	kfree(pages);
296 	if (rc)
297 		return rc;
298 
299 	rc = fpga_mgr_buf_load_sg(mgr, info, &sgt);
300 	sg_free_table(&sgt);
301 
302 	return rc;
303 }
304 
305 /**
306  * fpga_mgr_firmware_load - request firmware and load to fpga
307  * @mgr:	fpga manager
308  * @info:	fpga image specific information
309  * @image_name:	name of image file on the firmware search path
310  *
311  * Request an FPGA image using the firmware class, then write out to the FPGA.
312  * Update the state before each step to provide info on what step failed if
313  * there is a failure.  This code assumes the caller got the mgr pointer
314  * from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is not an error
315  * code.
316  *
317  * Return: 0 on success, negative error code otherwise.
318  */
319 static int fpga_mgr_firmware_load(struct fpga_manager *mgr,
320 				  struct fpga_image_info *info,
321 				  const char *image_name)
322 {
323 	struct device *dev = &mgr->dev;
324 	const struct firmware *fw;
325 	int ret;
326 
327 	dev_info(dev, "writing %s to %s\n", image_name, mgr->name);
328 
329 	mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ;
330 
331 	ret = request_firmware(&fw, image_name, dev);
332 	if (ret) {
333 		mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ_ERR;
334 		dev_err(dev, "Error requesting firmware %s\n", image_name);
335 		return ret;
336 	}
337 
338 	ret = fpga_mgr_buf_load(mgr, info, fw->data, fw->size);
339 
340 	release_firmware(fw);
341 
342 	return ret;
343 }
344 
345 /**
346  * fpga_mgr_load - load FPGA from scatter/gather table, buffer, or firmware
347  * @mgr:	fpga manager
348  * @info:	fpga image information.
349  *
350  * Load the FPGA from an image which is indicated in @info.  If successful, the
351  * FPGA ends up in operating mode.
352  *
353  * Return: 0 on success, negative error code otherwise.
354  */
355 int fpga_mgr_load(struct fpga_manager *mgr, struct fpga_image_info *info)
356 {
357 	if (info->sgt)
358 		return fpga_mgr_buf_load_sg(mgr, info, info->sgt);
359 	if (info->buf && info->count)
360 		return fpga_mgr_buf_load(mgr, info, info->buf, info->count);
361 	if (info->firmware_name)
362 		return fpga_mgr_firmware_load(mgr, info, info->firmware_name);
363 	return -EINVAL;
364 }
365 EXPORT_SYMBOL_GPL(fpga_mgr_load);
366 
367 static const char * const state_str[] = {
368 	[FPGA_MGR_STATE_UNKNOWN] =		"unknown",
369 	[FPGA_MGR_STATE_POWER_OFF] =		"power off",
370 	[FPGA_MGR_STATE_POWER_UP] =		"power up",
371 	[FPGA_MGR_STATE_RESET] =		"reset",
372 
373 	/* requesting FPGA image from firmware */
374 	[FPGA_MGR_STATE_FIRMWARE_REQ] =		"firmware request",
375 	[FPGA_MGR_STATE_FIRMWARE_REQ_ERR] =	"firmware request error",
376 
377 	/* Preparing FPGA to receive image */
378 	[FPGA_MGR_STATE_WRITE_INIT] =		"write init",
379 	[FPGA_MGR_STATE_WRITE_INIT_ERR] =	"write init error",
380 
381 	/* Writing image to FPGA */
382 	[FPGA_MGR_STATE_WRITE] =		"write",
383 	[FPGA_MGR_STATE_WRITE_ERR] =		"write error",
384 
385 	/* Finishing configuration after image has been written */
386 	[FPGA_MGR_STATE_WRITE_COMPLETE] =	"write complete",
387 	[FPGA_MGR_STATE_WRITE_COMPLETE_ERR] =	"write complete error",
388 
389 	/* FPGA reports to be in normal operating mode */
390 	[FPGA_MGR_STATE_OPERATING] =		"operating",
391 };
392 
393 static ssize_t name_show(struct device *dev,
394 			 struct device_attribute *attr, char *buf)
395 {
396 	struct fpga_manager *mgr = to_fpga_manager(dev);
397 
398 	return sprintf(buf, "%s\n", mgr->name);
399 }
400 
401 static ssize_t state_show(struct device *dev,
402 			  struct device_attribute *attr, char *buf)
403 {
404 	struct fpga_manager *mgr = to_fpga_manager(dev);
405 
406 	return sprintf(buf, "%s\n", state_str[mgr->state]);
407 }
408 
409 static DEVICE_ATTR_RO(name);
410 static DEVICE_ATTR_RO(state);
411 
412 static struct attribute *fpga_mgr_attrs[] = {
413 	&dev_attr_name.attr,
414 	&dev_attr_state.attr,
415 	NULL,
416 };
417 ATTRIBUTE_GROUPS(fpga_mgr);
418 
419 static struct fpga_manager *__fpga_mgr_get(struct device *dev)
420 {
421 	struct fpga_manager *mgr;
422 
423 	mgr = to_fpga_manager(dev);
424 
425 	if (!try_module_get(dev->parent->driver->owner))
426 		goto err_dev;
427 
428 	return mgr;
429 
430 err_dev:
431 	put_device(dev);
432 	return ERR_PTR(-ENODEV);
433 }
434 
435 static int fpga_mgr_dev_match(struct device *dev, const void *data)
436 {
437 	return dev->parent == data;
438 }
439 
440 /**
441  * fpga_mgr_get - Given a device, get a reference to a fpga mgr.
442  * @dev:	parent device that fpga mgr was registered with
443  *
444  * Return: fpga manager struct or IS_ERR() condition containing error code.
445  */
446 struct fpga_manager *fpga_mgr_get(struct device *dev)
447 {
448 	struct device *mgr_dev = class_find_device(fpga_mgr_class, NULL, dev,
449 						   fpga_mgr_dev_match);
450 	if (!mgr_dev)
451 		return ERR_PTR(-ENODEV);
452 
453 	return __fpga_mgr_get(mgr_dev);
454 }
455 EXPORT_SYMBOL_GPL(fpga_mgr_get);
456 
457 static int fpga_mgr_of_node_match(struct device *dev, const void *data)
458 {
459 	return dev->of_node == data;
460 }
461 
462 /**
463  * of_fpga_mgr_get - Given a device node, get a reference to a fpga mgr.
464  *
465  * @node:	device node
466  *
467  * Return: fpga manager struct or IS_ERR() condition containing error code.
468  */
469 struct fpga_manager *of_fpga_mgr_get(struct device_node *node)
470 {
471 	struct device *dev;
472 
473 	dev = class_find_device(fpga_mgr_class, NULL, node,
474 				fpga_mgr_of_node_match);
475 	if (!dev)
476 		return ERR_PTR(-ENODEV);
477 
478 	return __fpga_mgr_get(dev);
479 }
480 EXPORT_SYMBOL_GPL(of_fpga_mgr_get);
481 
482 /**
483  * fpga_mgr_put - release a reference to a fpga manager
484  * @mgr:	fpga manager structure
485  */
486 void fpga_mgr_put(struct fpga_manager *mgr)
487 {
488 	module_put(mgr->dev.parent->driver->owner);
489 	put_device(&mgr->dev);
490 }
491 EXPORT_SYMBOL_GPL(fpga_mgr_put);
492 
493 /**
494  * fpga_mgr_lock - Lock FPGA manager for exclusive use
495  * @mgr:	fpga manager
496  *
497  * Given a pointer to FPGA Manager (from fpga_mgr_get() or
498  * of_fpga_mgr_put()) attempt to get the mutex. The user should call
499  * fpga_mgr_lock() and verify that it returns 0 before attempting to
500  * program the FPGA.  Likewise, the user should call fpga_mgr_unlock
501  * when done programming the FPGA.
502  *
503  * Return: 0 for success or -EBUSY
504  */
505 int fpga_mgr_lock(struct fpga_manager *mgr)
506 {
507 	if (!mutex_trylock(&mgr->ref_mutex)) {
508 		dev_err(&mgr->dev, "FPGA manager is in use.\n");
509 		return -EBUSY;
510 	}
511 
512 	return 0;
513 }
514 EXPORT_SYMBOL_GPL(fpga_mgr_lock);
515 
516 /**
517  * fpga_mgr_unlock - Unlock FPGA manager after done programming
518  * @mgr:	fpga manager
519  */
520 void fpga_mgr_unlock(struct fpga_manager *mgr)
521 {
522 	mutex_unlock(&mgr->ref_mutex);
523 }
524 EXPORT_SYMBOL_GPL(fpga_mgr_unlock);
525 
526 /**
527  * fpga_mgr_create - create and initialize a FPGA manager struct
528  * @dev:	fpga manager device from pdev
529  * @name:	fpga manager name
530  * @mops:	pointer to structure of fpga manager ops
531  * @priv:	fpga manager private data
532  *
533  * Return: pointer to struct fpga_manager or NULL
534  */
535 struct fpga_manager *fpga_mgr_create(struct device *dev, const char *name,
536 				     const struct fpga_manager_ops *mops,
537 				     void *priv)
538 {
539 	struct fpga_manager *mgr;
540 	int id, ret;
541 
542 	if (!mops || !mops->write_complete || !mops->state ||
543 	    !mops->write_init || (!mops->write && !mops->write_sg) ||
544 	    (mops->write && mops->write_sg)) {
545 		dev_err(dev, "Attempt to register without fpga_manager_ops\n");
546 		return NULL;
547 	}
548 
549 	if (!name || !strlen(name)) {
550 		dev_err(dev, "Attempt to register with no name!\n");
551 		return NULL;
552 	}
553 
554 	mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
555 	if (!mgr)
556 		return NULL;
557 
558 	id = ida_simple_get(&fpga_mgr_ida, 0, 0, GFP_KERNEL);
559 	if (id < 0) {
560 		ret = id;
561 		goto error_kfree;
562 	}
563 
564 	mutex_init(&mgr->ref_mutex);
565 
566 	mgr->name = name;
567 	mgr->mops = mops;
568 	mgr->priv = priv;
569 
570 	device_initialize(&mgr->dev);
571 	mgr->dev.class = fpga_mgr_class;
572 	mgr->dev.groups = mops->groups;
573 	mgr->dev.parent = dev;
574 	mgr->dev.of_node = dev->of_node;
575 	mgr->dev.id = id;
576 
577 	ret = dev_set_name(&mgr->dev, "fpga%d", id);
578 	if (ret)
579 		goto error_device;
580 
581 	return mgr;
582 
583 error_device:
584 	ida_simple_remove(&fpga_mgr_ida, id);
585 error_kfree:
586 	kfree(mgr);
587 
588 	return NULL;
589 }
590 EXPORT_SYMBOL_GPL(fpga_mgr_create);
591 
592 /**
593  * fpga_mgr_free - deallocate a FPGA manager
594  * @mgr:	fpga manager struct created by fpga_mgr_create
595  */
596 void fpga_mgr_free(struct fpga_manager *mgr)
597 {
598 	ida_simple_remove(&fpga_mgr_ida, mgr->dev.id);
599 	kfree(mgr);
600 }
601 EXPORT_SYMBOL_GPL(fpga_mgr_free);
602 
603 /**
604  * fpga_mgr_register - register a FPGA manager
605  * @mgr:	fpga manager struct created by fpga_mgr_create
606  *
607  * Return: 0 on success, negative error code otherwise.
608  */
609 int fpga_mgr_register(struct fpga_manager *mgr)
610 {
611 	int ret;
612 
613 	/*
614 	 * Initialize framework state by requesting low level driver read state
615 	 * from device.  FPGA may be in reset mode or may have been programmed
616 	 * by bootloader or EEPROM.
617 	 */
618 	mgr->state = mgr->mops->state(mgr);
619 
620 	ret = device_add(&mgr->dev);
621 	if (ret)
622 		goto error_device;
623 
624 	dev_info(&mgr->dev, "%s registered\n", mgr->name);
625 
626 	return 0;
627 
628 error_device:
629 	ida_simple_remove(&fpga_mgr_ida, mgr->dev.id);
630 
631 	return ret;
632 }
633 EXPORT_SYMBOL_GPL(fpga_mgr_register);
634 
635 /**
636  * fpga_mgr_unregister - unregister and free a FPGA manager
637  * @mgr:	fpga manager struct
638  */
639 void fpga_mgr_unregister(struct fpga_manager *mgr)
640 {
641 	dev_info(&mgr->dev, "%s %s\n", __func__, mgr->name);
642 
643 	/*
644 	 * If the low level driver provides a method for putting fpga into
645 	 * a desired state upon unregister, do it.
646 	 */
647 	if (mgr->mops->fpga_remove)
648 		mgr->mops->fpga_remove(mgr);
649 
650 	device_unregister(&mgr->dev);
651 }
652 EXPORT_SYMBOL_GPL(fpga_mgr_unregister);
653 
654 static void fpga_mgr_dev_release(struct device *dev)
655 {
656 	struct fpga_manager *mgr = to_fpga_manager(dev);
657 
658 	fpga_mgr_free(mgr);
659 }
660 
661 static int __init fpga_mgr_class_init(void)
662 {
663 	pr_info("FPGA manager framework\n");
664 
665 	fpga_mgr_class = class_create(THIS_MODULE, "fpga_manager");
666 	if (IS_ERR(fpga_mgr_class))
667 		return PTR_ERR(fpga_mgr_class);
668 
669 	fpga_mgr_class->dev_groups = fpga_mgr_groups;
670 	fpga_mgr_class->dev_release = fpga_mgr_dev_release;
671 
672 	return 0;
673 }
674 
675 static void __exit fpga_mgr_class_exit(void)
676 {
677 	class_destroy(fpga_mgr_class);
678 	ida_destroy(&fpga_mgr_ida);
679 }
680 
681 MODULE_AUTHOR("Alan Tull <atull@kernel.org>");
682 MODULE_DESCRIPTION("FPGA manager framework");
683 MODULE_LICENSE("GPL v2");
684 
685 subsys_initcall(fpga_mgr_class_init);
686 module_exit(fpga_mgr_class_exit);
687