xref: /openbmc/linux/drivers/fpga/dfl-fme-main.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for FPGA Management Engine (FME)
4  *
5  * Copyright (C) 2017-2018 Intel Corporation, Inc.
6  *
7  * Authors:
8  *   Kang Luwei <luwei.kang@intel.com>
9  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
10  *   Joseph Grecco <joe.grecco@intel.com>
11  *   Enno Luebbers <enno.luebbers@intel.com>
12  *   Tim Whisonant <tim.whisonant@intel.com>
13  *   Ananda Ravuri <ananda.ravuri@intel.com>
14  *   Henry Mitchel <henry.mitchel@intel.com>
15  */
16 
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/uaccess.h>
22 #include <linux/fpga-dfl.h>
23 
24 #include "dfl.h"
25 #include "dfl-fme.h"
26 
27 static ssize_t ports_num_show(struct device *dev,
28 			      struct device_attribute *attr, char *buf)
29 {
30 	void __iomem *base;
31 	u64 v;
32 
33 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
34 
35 	v = readq(base + FME_HDR_CAP);
36 
37 	return scnprintf(buf, PAGE_SIZE, "%u\n",
38 			 (unsigned int)FIELD_GET(FME_CAP_NUM_PORTS, v));
39 }
40 static DEVICE_ATTR_RO(ports_num);
41 
42 /*
43  * Bitstream (static FPGA region) identifier number. It contains the
44  * detailed version and other information of this static FPGA region.
45  */
46 static ssize_t bitstream_id_show(struct device *dev,
47 				 struct device_attribute *attr, char *buf)
48 {
49 	void __iomem *base;
50 	u64 v;
51 
52 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
53 
54 	v = readq(base + FME_HDR_BITSTREAM_ID);
55 
56 	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
57 }
58 static DEVICE_ATTR_RO(bitstream_id);
59 
60 /*
61  * Bitstream (static FPGA region) meta data. It contains the synthesis
62  * date, seed and other information of this static FPGA region.
63  */
64 static ssize_t bitstream_metadata_show(struct device *dev,
65 				       struct device_attribute *attr, char *buf)
66 {
67 	void __iomem *base;
68 	u64 v;
69 
70 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
71 
72 	v = readq(base + FME_HDR_BITSTREAM_MD);
73 
74 	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
75 }
76 static DEVICE_ATTR_RO(bitstream_metadata);
77 
78 static ssize_t cache_size_show(struct device *dev,
79 			       struct device_attribute *attr, char *buf)
80 {
81 	void __iomem *base;
82 	u64 v;
83 
84 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
85 
86 	v = readq(base + FME_HDR_CAP);
87 
88 	return sprintf(buf, "%u\n",
89 		       (unsigned int)FIELD_GET(FME_CAP_CACHE_SIZE, v));
90 }
91 static DEVICE_ATTR_RO(cache_size);
92 
93 static ssize_t fabric_version_show(struct device *dev,
94 				   struct device_attribute *attr, char *buf)
95 {
96 	void __iomem *base;
97 	u64 v;
98 
99 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
100 
101 	v = readq(base + FME_HDR_CAP);
102 
103 	return sprintf(buf, "%u\n",
104 		       (unsigned int)FIELD_GET(FME_CAP_FABRIC_VERID, v));
105 }
106 static DEVICE_ATTR_RO(fabric_version);
107 
108 static ssize_t socket_id_show(struct device *dev,
109 			      struct device_attribute *attr, char *buf)
110 {
111 	void __iomem *base;
112 	u64 v;
113 
114 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
115 
116 	v = readq(base + FME_HDR_CAP);
117 
118 	return sprintf(buf, "%u\n",
119 		       (unsigned int)FIELD_GET(FME_CAP_SOCKET_ID, v));
120 }
121 static DEVICE_ATTR_RO(socket_id);
122 
123 static struct attribute *fme_hdr_attrs[] = {
124 	&dev_attr_ports_num.attr,
125 	&dev_attr_bitstream_id.attr,
126 	&dev_attr_bitstream_metadata.attr,
127 	&dev_attr_cache_size.attr,
128 	&dev_attr_fabric_version.attr,
129 	&dev_attr_socket_id.attr,
130 	NULL,
131 };
132 
133 static const struct attribute_group fme_hdr_group = {
134 	.attrs = fme_hdr_attrs,
135 };
136 
137 static long fme_hdr_ioctl_release_port(struct dfl_feature_platform_data *pdata,
138 				       unsigned long arg)
139 {
140 	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
141 	int port_id;
142 
143 	if (get_user(port_id, (int __user *)arg))
144 		return -EFAULT;
145 
146 	return dfl_fpga_cdev_release_port(cdev, port_id);
147 }
148 
149 static long fme_hdr_ioctl_assign_port(struct dfl_feature_platform_data *pdata,
150 				      unsigned long arg)
151 {
152 	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
153 	int port_id;
154 
155 	if (get_user(port_id, (int __user *)arg))
156 		return -EFAULT;
157 
158 	return dfl_fpga_cdev_assign_port(cdev, port_id);
159 }
160 
161 static long fme_hdr_ioctl(struct platform_device *pdev,
162 			  struct dfl_feature *feature,
163 			  unsigned int cmd, unsigned long arg)
164 {
165 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
166 
167 	switch (cmd) {
168 	case DFL_FPGA_FME_PORT_RELEASE:
169 		return fme_hdr_ioctl_release_port(pdata, arg);
170 	case DFL_FPGA_FME_PORT_ASSIGN:
171 		return fme_hdr_ioctl_assign_port(pdata, arg);
172 	}
173 
174 	return -ENODEV;
175 }
176 
177 static const struct dfl_feature_id fme_hdr_id_table[] = {
178 	{.id = FME_FEATURE_ID_HEADER,},
179 	{0,}
180 };
181 
182 static const struct dfl_feature_ops fme_hdr_ops = {
183 	.ioctl = fme_hdr_ioctl,
184 };
185 
186 #define FME_THERM_THRESHOLD	0x8
187 #define TEMP_THRESHOLD1		GENMASK_ULL(6, 0)
188 #define TEMP_THRESHOLD1_EN	BIT_ULL(7)
189 #define TEMP_THRESHOLD2		GENMASK_ULL(14, 8)
190 #define TEMP_THRESHOLD2_EN	BIT_ULL(15)
191 #define TRIP_THRESHOLD		GENMASK_ULL(30, 24)
192 #define TEMP_THRESHOLD1_STATUS	BIT_ULL(32)		/* threshold1 reached */
193 #define TEMP_THRESHOLD2_STATUS	BIT_ULL(33)		/* threshold2 reached */
194 /* threshold1 policy: 0 - AP2 (90% throttle) / 1 - AP1 (50% throttle) */
195 #define TEMP_THRESHOLD1_POLICY	BIT_ULL(44)
196 
197 #define FME_THERM_RDSENSOR_FMT1	0x10
198 #define FPGA_TEMPERATURE	GENMASK_ULL(6, 0)
199 
200 #define FME_THERM_CAP		0x20
201 #define THERM_NO_THROTTLE	BIT_ULL(0)
202 
203 #define MD_PRE_DEG
204 
205 static bool fme_thermal_throttle_support(void __iomem *base)
206 {
207 	u64 v = readq(base + FME_THERM_CAP);
208 
209 	return FIELD_GET(THERM_NO_THROTTLE, v) ? false : true;
210 }
211 
212 static umode_t thermal_hwmon_attrs_visible(const void *drvdata,
213 					   enum hwmon_sensor_types type,
214 					   u32 attr, int channel)
215 {
216 	const struct dfl_feature *feature = drvdata;
217 
218 	/* temperature is always supported, and check hardware cap for others */
219 	if (attr == hwmon_temp_input)
220 		return 0444;
221 
222 	return fme_thermal_throttle_support(feature->ioaddr) ? 0444 : 0;
223 }
224 
225 static int thermal_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
226 			      u32 attr, int channel, long *val)
227 {
228 	struct dfl_feature *feature = dev_get_drvdata(dev);
229 	u64 v;
230 
231 	switch (attr) {
232 	case hwmon_temp_input:
233 		v = readq(feature->ioaddr + FME_THERM_RDSENSOR_FMT1);
234 		*val = (long)(FIELD_GET(FPGA_TEMPERATURE, v) * 1000);
235 		break;
236 	case hwmon_temp_max:
237 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
238 		*val = (long)(FIELD_GET(TEMP_THRESHOLD1, v) * 1000);
239 		break;
240 	case hwmon_temp_crit:
241 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
242 		*val = (long)(FIELD_GET(TEMP_THRESHOLD2, v) * 1000);
243 		break;
244 	case hwmon_temp_emergency:
245 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
246 		*val = (long)(FIELD_GET(TRIP_THRESHOLD, v) * 1000);
247 		break;
248 	case hwmon_temp_max_alarm:
249 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
250 		*val = (long)FIELD_GET(TEMP_THRESHOLD1_STATUS, v);
251 		break;
252 	case hwmon_temp_crit_alarm:
253 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
254 		*val = (long)FIELD_GET(TEMP_THRESHOLD2_STATUS, v);
255 		break;
256 	default:
257 		return -EOPNOTSUPP;
258 	}
259 
260 	return 0;
261 }
262 
263 static const struct hwmon_ops thermal_hwmon_ops = {
264 	.is_visible = thermal_hwmon_attrs_visible,
265 	.read = thermal_hwmon_read,
266 };
267 
268 static const struct hwmon_channel_info *thermal_hwmon_info[] = {
269 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_EMERGENCY |
270 				 HWMON_T_MAX   | HWMON_T_MAX_ALARM |
271 				 HWMON_T_CRIT  | HWMON_T_CRIT_ALARM),
272 	NULL
273 };
274 
275 static const struct hwmon_chip_info thermal_hwmon_chip_info = {
276 	.ops = &thermal_hwmon_ops,
277 	.info = thermal_hwmon_info,
278 };
279 
280 static ssize_t temp1_max_policy_show(struct device *dev,
281 				     struct device_attribute *attr, char *buf)
282 {
283 	struct dfl_feature *feature = dev_get_drvdata(dev);
284 	u64 v;
285 
286 	v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
287 
288 	return sprintf(buf, "%u\n",
289 		       (unsigned int)FIELD_GET(TEMP_THRESHOLD1_POLICY, v));
290 }
291 
292 static DEVICE_ATTR_RO(temp1_max_policy);
293 
294 static struct attribute *thermal_extra_attrs[] = {
295 	&dev_attr_temp1_max_policy.attr,
296 	NULL,
297 };
298 
299 static umode_t thermal_extra_attrs_visible(struct kobject *kobj,
300 					   struct attribute *attr, int index)
301 {
302 	struct device *dev = kobj_to_dev(kobj);
303 	struct dfl_feature *feature = dev_get_drvdata(dev);
304 
305 	return fme_thermal_throttle_support(feature->ioaddr) ? attr->mode : 0;
306 }
307 
308 static const struct attribute_group thermal_extra_group = {
309 	.attrs		= thermal_extra_attrs,
310 	.is_visible	= thermal_extra_attrs_visible,
311 };
312 __ATTRIBUTE_GROUPS(thermal_extra);
313 
314 static int fme_thermal_mgmt_init(struct platform_device *pdev,
315 				 struct dfl_feature *feature)
316 {
317 	struct device *hwmon;
318 
319 	/*
320 	 * create hwmon to allow userspace monitoring temperature and other
321 	 * threshold information.
322 	 *
323 	 * temp1_input      -> FPGA device temperature
324 	 * temp1_max        -> hardware threshold 1 -> 50% or 90% throttling
325 	 * temp1_crit       -> hardware threshold 2 -> 100% throttling
326 	 * temp1_emergency  -> hardware trip_threshold to shutdown FPGA
327 	 * temp1_max_alarm  -> hardware threshold 1 alarm
328 	 * temp1_crit_alarm -> hardware threshold 2 alarm
329 	 *
330 	 * create device specific sysfs interfaces, e.g. read temp1_max_policy
331 	 * to understand the actual hardware throttling action (50% vs 90%).
332 	 *
333 	 * If hardware doesn't support automatic throttling per thresholds,
334 	 * then all above sysfs interfaces are not visible except temp1_input
335 	 * for temperature.
336 	 */
337 	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
338 						     "dfl_fme_thermal", feature,
339 						     &thermal_hwmon_chip_info,
340 						     thermal_extra_groups);
341 	if (IS_ERR(hwmon)) {
342 		dev_err(&pdev->dev, "Fail to register thermal hwmon\n");
343 		return PTR_ERR(hwmon);
344 	}
345 
346 	return 0;
347 }
348 
349 static const struct dfl_feature_id fme_thermal_mgmt_id_table[] = {
350 	{.id = FME_FEATURE_ID_THERMAL_MGMT,},
351 	{0,}
352 };
353 
354 static const struct dfl_feature_ops fme_thermal_mgmt_ops = {
355 	.init = fme_thermal_mgmt_init,
356 };
357 
358 #define FME_PWR_STATUS		0x8
359 #define FME_LATENCY_TOLERANCE	BIT_ULL(18)
360 #define PWR_CONSUMED		GENMASK_ULL(17, 0)
361 
362 #define FME_PWR_THRESHOLD	0x10
363 #define PWR_THRESHOLD1		GENMASK_ULL(6, 0)	/* in Watts */
364 #define PWR_THRESHOLD2		GENMASK_ULL(14, 8)	/* in Watts */
365 #define PWR_THRESHOLD_MAX	0x7f			/* in Watts */
366 #define PWR_THRESHOLD1_STATUS	BIT_ULL(16)
367 #define PWR_THRESHOLD2_STATUS	BIT_ULL(17)
368 
369 #define FME_PWR_XEON_LIMIT	0x18
370 #define XEON_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
371 #define XEON_PWR_EN		BIT_ULL(15)
372 #define FME_PWR_FPGA_LIMIT	0x20
373 #define FPGA_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
374 #define FPGA_PWR_EN		BIT_ULL(15)
375 
376 static int power_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
377 			    u32 attr, int channel, long *val)
378 {
379 	struct dfl_feature *feature = dev_get_drvdata(dev);
380 	u64 v;
381 
382 	switch (attr) {
383 	case hwmon_power_input:
384 		v = readq(feature->ioaddr + FME_PWR_STATUS);
385 		*val = (long)(FIELD_GET(PWR_CONSUMED, v) * 1000000);
386 		break;
387 	case hwmon_power_max:
388 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
389 		*val = (long)(FIELD_GET(PWR_THRESHOLD1, v) * 1000000);
390 		break;
391 	case hwmon_power_crit:
392 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
393 		*val = (long)(FIELD_GET(PWR_THRESHOLD2, v) * 1000000);
394 		break;
395 	case hwmon_power_max_alarm:
396 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
397 		*val = (long)FIELD_GET(PWR_THRESHOLD1_STATUS, v);
398 		break;
399 	case hwmon_power_crit_alarm:
400 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
401 		*val = (long)FIELD_GET(PWR_THRESHOLD2_STATUS, v);
402 		break;
403 	default:
404 		return -EOPNOTSUPP;
405 	}
406 
407 	return 0;
408 }
409 
410 static int power_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
411 			     u32 attr, int channel, long val)
412 {
413 	struct dfl_feature_platform_data *pdata = dev_get_platdata(dev->parent);
414 	struct dfl_feature *feature = dev_get_drvdata(dev);
415 	int ret = 0;
416 	u64 v;
417 
418 	val = clamp_val(val / 1000000, 0, PWR_THRESHOLD_MAX);
419 
420 	mutex_lock(&pdata->lock);
421 
422 	switch (attr) {
423 	case hwmon_power_max:
424 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
425 		v &= ~PWR_THRESHOLD1;
426 		v |= FIELD_PREP(PWR_THRESHOLD1, val);
427 		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
428 		break;
429 	case hwmon_power_crit:
430 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
431 		v &= ~PWR_THRESHOLD2;
432 		v |= FIELD_PREP(PWR_THRESHOLD2, val);
433 		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
434 		break;
435 	default:
436 		ret = -EOPNOTSUPP;
437 		break;
438 	}
439 
440 	mutex_unlock(&pdata->lock);
441 
442 	return ret;
443 }
444 
445 static umode_t power_hwmon_attrs_visible(const void *drvdata,
446 					 enum hwmon_sensor_types type,
447 					 u32 attr, int channel)
448 {
449 	switch (attr) {
450 	case hwmon_power_input:
451 	case hwmon_power_max_alarm:
452 	case hwmon_power_crit_alarm:
453 		return 0444;
454 	case hwmon_power_max:
455 	case hwmon_power_crit:
456 		return 0644;
457 	}
458 
459 	return 0;
460 }
461 
462 static const struct hwmon_ops power_hwmon_ops = {
463 	.is_visible = power_hwmon_attrs_visible,
464 	.read = power_hwmon_read,
465 	.write = power_hwmon_write,
466 };
467 
468 static const struct hwmon_channel_info *power_hwmon_info[] = {
469 	HWMON_CHANNEL_INFO(power, HWMON_P_INPUT |
470 				  HWMON_P_MAX   | HWMON_P_MAX_ALARM |
471 				  HWMON_P_CRIT  | HWMON_P_CRIT_ALARM),
472 	NULL
473 };
474 
475 static const struct hwmon_chip_info power_hwmon_chip_info = {
476 	.ops = &power_hwmon_ops,
477 	.info = power_hwmon_info,
478 };
479 
480 static ssize_t power1_xeon_limit_show(struct device *dev,
481 				      struct device_attribute *attr, char *buf)
482 {
483 	struct dfl_feature *feature = dev_get_drvdata(dev);
484 	u16 xeon_limit = 0;
485 	u64 v;
486 
487 	v = readq(feature->ioaddr + FME_PWR_XEON_LIMIT);
488 
489 	if (FIELD_GET(XEON_PWR_EN, v))
490 		xeon_limit = FIELD_GET(XEON_PWR_LIMIT, v);
491 
492 	return sprintf(buf, "%u\n", xeon_limit * 100000);
493 }
494 
495 static ssize_t power1_fpga_limit_show(struct device *dev,
496 				      struct device_attribute *attr, char *buf)
497 {
498 	struct dfl_feature *feature = dev_get_drvdata(dev);
499 	u16 fpga_limit = 0;
500 	u64 v;
501 
502 	v = readq(feature->ioaddr + FME_PWR_FPGA_LIMIT);
503 
504 	if (FIELD_GET(FPGA_PWR_EN, v))
505 		fpga_limit = FIELD_GET(FPGA_PWR_LIMIT, v);
506 
507 	return sprintf(buf, "%u\n", fpga_limit * 100000);
508 }
509 
510 static ssize_t power1_ltr_show(struct device *dev,
511 			       struct device_attribute *attr, char *buf)
512 {
513 	struct dfl_feature *feature = dev_get_drvdata(dev);
514 	u64 v;
515 
516 	v = readq(feature->ioaddr + FME_PWR_STATUS);
517 
518 	return sprintf(buf, "%u\n",
519 		       (unsigned int)FIELD_GET(FME_LATENCY_TOLERANCE, v));
520 }
521 
522 static DEVICE_ATTR_RO(power1_xeon_limit);
523 static DEVICE_ATTR_RO(power1_fpga_limit);
524 static DEVICE_ATTR_RO(power1_ltr);
525 
526 static struct attribute *power_extra_attrs[] = {
527 	&dev_attr_power1_xeon_limit.attr,
528 	&dev_attr_power1_fpga_limit.attr,
529 	&dev_attr_power1_ltr.attr,
530 	NULL
531 };
532 
533 ATTRIBUTE_GROUPS(power_extra);
534 
535 static int fme_power_mgmt_init(struct platform_device *pdev,
536 			       struct dfl_feature *feature)
537 {
538 	struct device *hwmon;
539 
540 	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
541 						     "dfl_fme_power", feature,
542 						     &power_hwmon_chip_info,
543 						     power_extra_groups);
544 	if (IS_ERR(hwmon)) {
545 		dev_err(&pdev->dev, "Fail to register power hwmon\n");
546 		return PTR_ERR(hwmon);
547 	}
548 
549 	return 0;
550 }
551 
552 static const struct dfl_feature_id fme_power_mgmt_id_table[] = {
553 	{.id = FME_FEATURE_ID_POWER_MGMT,},
554 	{0,}
555 };
556 
557 static const struct dfl_feature_ops fme_power_mgmt_ops = {
558 	.init = fme_power_mgmt_init,
559 };
560 
561 static struct dfl_feature_driver fme_feature_drvs[] = {
562 	{
563 		.id_table = fme_hdr_id_table,
564 		.ops = &fme_hdr_ops,
565 	},
566 	{
567 		.id_table = fme_pr_mgmt_id_table,
568 		.ops = &fme_pr_mgmt_ops,
569 	},
570 	{
571 		.id_table = fme_global_err_id_table,
572 		.ops = &fme_global_err_ops,
573 	},
574 	{
575 		.id_table = fme_thermal_mgmt_id_table,
576 		.ops = &fme_thermal_mgmt_ops,
577 	},
578 	{
579 		.id_table = fme_power_mgmt_id_table,
580 		.ops = &fme_power_mgmt_ops,
581 	},
582 	{
583 		.id_table = fme_perf_id_table,
584 		.ops = &fme_perf_ops,
585 	},
586 	{
587 		.ops = NULL,
588 	},
589 };
590 
591 static long fme_ioctl_check_extension(struct dfl_feature_platform_data *pdata,
592 				      unsigned long arg)
593 {
594 	/* No extension support for now */
595 	return 0;
596 }
597 
598 static int fme_open(struct inode *inode, struct file *filp)
599 {
600 	struct platform_device *fdev = dfl_fpga_inode_to_feature_dev(inode);
601 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&fdev->dev);
602 	int ret;
603 
604 	if (WARN_ON(!pdata))
605 		return -ENODEV;
606 
607 	mutex_lock(&pdata->lock);
608 	ret = dfl_feature_dev_use_begin(pdata, filp->f_flags & O_EXCL);
609 	if (!ret) {
610 		dev_dbg(&fdev->dev, "Device File Opened %d Times\n",
611 			dfl_feature_dev_use_count(pdata));
612 		filp->private_data = pdata;
613 	}
614 	mutex_unlock(&pdata->lock);
615 
616 	return ret;
617 }
618 
619 static int fme_release(struct inode *inode, struct file *filp)
620 {
621 	struct dfl_feature_platform_data *pdata = filp->private_data;
622 	struct platform_device *pdev = pdata->dev;
623 	struct dfl_feature *feature;
624 
625 	dev_dbg(&pdev->dev, "Device File Release\n");
626 
627 	mutex_lock(&pdata->lock);
628 	dfl_feature_dev_use_end(pdata);
629 
630 	if (!dfl_feature_dev_use_count(pdata))
631 		dfl_fpga_dev_for_each_feature(pdata, feature)
632 			dfl_fpga_set_irq_triggers(feature, 0,
633 						  feature->nr_irqs, NULL);
634 	mutex_unlock(&pdata->lock);
635 
636 	return 0;
637 }
638 
639 static long fme_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
640 {
641 	struct dfl_feature_platform_data *pdata = filp->private_data;
642 	struct platform_device *pdev = pdata->dev;
643 	struct dfl_feature *f;
644 	long ret;
645 
646 	dev_dbg(&pdev->dev, "%s cmd 0x%x\n", __func__, cmd);
647 
648 	switch (cmd) {
649 	case DFL_FPGA_GET_API_VERSION:
650 		return DFL_FPGA_API_VERSION;
651 	case DFL_FPGA_CHECK_EXTENSION:
652 		return fme_ioctl_check_extension(pdata, arg);
653 	default:
654 		/*
655 		 * Let sub-feature's ioctl function to handle the cmd.
656 		 * Sub-feature's ioctl returns -ENODEV when cmd is not
657 		 * handled in this sub feature, and returns 0 or other
658 		 * error code if cmd is handled.
659 		 */
660 		dfl_fpga_dev_for_each_feature(pdata, f) {
661 			if (f->ops && f->ops->ioctl) {
662 				ret = f->ops->ioctl(pdev, f, cmd, arg);
663 				if (ret != -ENODEV)
664 					return ret;
665 			}
666 		}
667 	}
668 
669 	return -EINVAL;
670 }
671 
672 static int fme_dev_init(struct platform_device *pdev)
673 {
674 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
675 	struct dfl_fme *fme;
676 
677 	fme = devm_kzalloc(&pdev->dev, sizeof(*fme), GFP_KERNEL);
678 	if (!fme)
679 		return -ENOMEM;
680 
681 	fme->pdata = pdata;
682 
683 	mutex_lock(&pdata->lock);
684 	dfl_fpga_pdata_set_private(pdata, fme);
685 	mutex_unlock(&pdata->lock);
686 
687 	return 0;
688 }
689 
690 static void fme_dev_destroy(struct platform_device *pdev)
691 {
692 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
693 
694 	mutex_lock(&pdata->lock);
695 	dfl_fpga_pdata_set_private(pdata, NULL);
696 	mutex_unlock(&pdata->lock);
697 }
698 
699 static const struct file_operations fme_fops = {
700 	.owner		= THIS_MODULE,
701 	.open		= fme_open,
702 	.release	= fme_release,
703 	.unlocked_ioctl = fme_ioctl,
704 };
705 
706 static int fme_probe(struct platform_device *pdev)
707 {
708 	int ret;
709 
710 	ret = fme_dev_init(pdev);
711 	if (ret)
712 		goto exit;
713 
714 	ret = dfl_fpga_dev_feature_init(pdev, fme_feature_drvs);
715 	if (ret)
716 		goto dev_destroy;
717 
718 	ret = dfl_fpga_dev_ops_register(pdev, &fme_fops, THIS_MODULE);
719 	if (ret)
720 		goto feature_uinit;
721 
722 	return 0;
723 
724 feature_uinit:
725 	dfl_fpga_dev_feature_uinit(pdev);
726 dev_destroy:
727 	fme_dev_destroy(pdev);
728 exit:
729 	return ret;
730 }
731 
732 static int fme_remove(struct platform_device *pdev)
733 {
734 	dfl_fpga_dev_ops_unregister(pdev);
735 	dfl_fpga_dev_feature_uinit(pdev);
736 	fme_dev_destroy(pdev);
737 
738 	return 0;
739 }
740 
741 static const struct attribute_group *fme_dev_groups[] = {
742 	&fme_hdr_group,
743 	&fme_global_err_group,
744 	NULL
745 };
746 
747 static struct platform_driver fme_driver = {
748 	.driver	= {
749 		.name       = DFL_FPGA_FEATURE_DEV_FME,
750 		.dev_groups = fme_dev_groups,
751 	},
752 	.probe   = fme_probe,
753 	.remove  = fme_remove,
754 };
755 
756 module_platform_driver(fme_driver);
757 
758 MODULE_DESCRIPTION("FPGA Management Engine driver");
759 MODULE_AUTHOR("Intel Corporation");
760 MODULE_LICENSE("GPL v2");
761 MODULE_ALIAS("platform:dfl-fme");
762