xref: /openbmc/linux/drivers/fpga/dfl-fme-main.c (revision 8d81cd1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for FPGA Management Engine (FME)
4  *
5  * Copyright (C) 2017-2018 Intel Corporation, Inc.
6  *
7  * Authors:
8  *   Kang Luwei <luwei.kang@intel.com>
9  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
10  *   Joseph Grecco <joe.grecco@intel.com>
11  *   Enno Luebbers <enno.luebbers@intel.com>
12  *   Tim Whisonant <tim.whisonant@intel.com>
13  *   Ananda Ravuri <ananda.ravuri@intel.com>
14  *   Henry Mitchel <henry.mitchel@intel.com>
15  */
16 
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/uaccess.h>
22 #include <linux/units.h>
23 #include <linux/fpga-dfl.h>
24 
25 #include "dfl.h"
26 #include "dfl-fme.h"
27 
28 static ssize_t ports_num_show(struct device *dev,
29 			      struct device_attribute *attr, char *buf)
30 {
31 	void __iomem *base;
32 	u64 v;
33 
34 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
35 
36 	v = readq(base + FME_HDR_CAP);
37 
38 	return scnprintf(buf, PAGE_SIZE, "%u\n",
39 			 (unsigned int)FIELD_GET(FME_CAP_NUM_PORTS, v));
40 }
41 static DEVICE_ATTR_RO(ports_num);
42 
43 /*
44  * Bitstream (static FPGA region) identifier number. It contains the
45  * detailed version and other information of this static FPGA region.
46  */
47 static ssize_t bitstream_id_show(struct device *dev,
48 				 struct device_attribute *attr, char *buf)
49 {
50 	void __iomem *base;
51 	u64 v;
52 
53 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
54 
55 	v = readq(base + FME_HDR_BITSTREAM_ID);
56 
57 	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
58 }
59 static DEVICE_ATTR_RO(bitstream_id);
60 
61 /*
62  * Bitstream (static FPGA region) meta data. It contains the synthesis
63  * date, seed and other information of this static FPGA region.
64  */
65 static ssize_t bitstream_metadata_show(struct device *dev,
66 				       struct device_attribute *attr, char *buf)
67 {
68 	void __iomem *base;
69 	u64 v;
70 
71 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
72 
73 	v = readq(base + FME_HDR_BITSTREAM_MD);
74 
75 	return scnprintf(buf, PAGE_SIZE, "0x%llx\n", (unsigned long long)v);
76 }
77 static DEVICE_ATTR_RO(bitstream_metadata);
78 
79 static ssize_t cache_size_show(struct device *dev,
80 			       struct device_attribute *attr, char *buf)
81 {
82 	void __iomem *base;
83 	u64 v;
84 
85 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
86 
87 	v = readq(base + FME_HDR_CAP);
88 
89 	return sprintf(buf, "%u\n",
90 		       (unsigned int)FIELD_GET(FME_CAP_CACHE_SIZE, v));
91 }
92 static DEVICE_ATTR_RO(cache_size);
93 
94 static ssize_t fabric_version_show(struct device *dev,
95 				   struct device_attribute *attr, char *buf)
96 {
97 	void __iomem *base;
98 	u64 v;
99 
100 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
101 
102 	v = readq(base + FME_HDR_CAP);
103 
104 	return sprintf(buf, "%u\n",
105 		       (unsigned int)FIELD_GET(FME_CAP_FABRIC_VERID, v));
106 }
107 static DEVICE_ATTR_RO(fabric_version);
108 
109 static ssize_t socket_id_show(struct device *dev,
110 			      struct device_attribute *attr, char *buf)
111 {
112 	void __iomem *base;
113 	u64 v;
114 
115 	base = dfl_get_feature_ioaddr_by_id(dev, FME_FEATURE_ID_HEADER);
116 
117 	v = readq(base + FME_HDR_CAP);
118 
119 	return sprintf(buf, "%u\n",
120 		       (unsigned int)FIELD_GET(FME_CAP_SOCKET_ID, v));
121 }
122 static DEVICE_ATTR_RO(socket_id);
123 
124 static struct attribute *fme_hdr_attrs[] = {
125 	&dev_attr_ports_num.attr,
126 	&dev_attr_bitstream_id.attr,
127 	&dev_attr_bitstream_metadata.attr,
128 	&dev_attr_cache_size.attr,
129 	&dev_attr_fabric_version.attr,
130 	&dev_attr_socket_id.attr,
131 	NULL,
132 };
133 
134 static const struct attribute_group fme_hdr_group = {
135 	.attrs = fme_hdr_attrs,
136 };
137 
138 static long fme_hdr_ioctl_release_port(struct dfl_feature_platform_data *pdata,
139 				       unsigned long arg)
140 {
141 	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
142 	int port_id;
143 
144 	if (get_user(port_id, (int __user *)arg))
145 		return -EFAULT;
146 
147 	return dfl_fpga_cdev_release_port(cdev, port_id);
148 }
149 
150 static long fme_hdr_ioctl_assign_port(struct dfl_feature_platform_data *pdata,
151 				      unsigned long arg)
152 {
153 	struct dfl_fpga_cdev *cdev = pdata->dfl_cdev;
154 	int port_id;
155 
156 	if (get_user(port_id, (int __user *)arg))
157 		return -EFAULT;
158 
159 	return dfl_fpga_cdev_assign_port(cdev, port_id);
160 }
161 
162 static long fme_hdr_ioctl(struct platform_device *pdev,
163 			  struct dfl_feature *feature,
164 			  unsigned int cmd, unsigned long arg)
165 {
166 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
167 
168 	switch (cmd) {
169 	case DFL_FPGA_FME_PORT_RELEASE:
170 		return fme_hdr_ioctl_release_port(pdata, arg);
171 	case DFL_FPGA_FME_PORT_ASSIGN:
172 		return fme_hdr_ioctl_assign_port(pdata, arg);
173 	}
174 
175 	return -ENODEV;
176 }
177 
178 static const struct dfl_feature_id fme_hdr_id_table[] = {
179 	{.id = FME_FEATURE_ID_HEADER,},
180 	{0,}
181 };
182 
183 static const struct dfl_feature_ops fme_hdr_ops = {
184 	.ioctl = fme_hdr_ioctl,
185 };
186 
187 #define FME_THERM_THRESHOLD	0x8
188 #define TEMP_THRESHOLD1		GENMASK_ULL(6, 0)
189 #define TEMP_THRESHOLD1_EN	BIT_ULL(7)
190 #define TEMP_THRESHOLD2		GENMASK_ULL(14, 8)
191 #define TEMP_THRESHOLD2_EN	BIT_ULL(15)
192 #define TRIP_THRESHOLD		GENMASK_ULL(30, 24)
193 #define TEMP_THRESHOLD1_STATUS	BIT_ULL(32)		/* threshold1 reached */
194 #define TEMP_THRESHOLD2_STATUS	BIT_ULL(33)		/* threshold2 reached */
195 /* threshold1 policy: 0 - AP2 (90% throttle) / 1 - AP1 (50% throttle) */
196 #define TEMP_THRESHOLD1_POLICY	BIT_ULL(44)
197 
198 #define FME_THERM_RDSENSOR_FMT1	0x10
199 #define FPGA_TEMPERATURE	GENMASK_ULL(6, 0)
200 
201 #define FME_THERM_CAP		0x20
202 #define THERM_NO_THROTTLE	BIT_ULL(0)
203 
204 #define MD_PRE_DEG
205 
206 static bool fme_thermal_throttle_support(void __iomem *base)
207 {
208 	u64 v = readq(base + FME_THERM_CAP);
209 
210 	return FIELD_GET(THERM_NO_THROTTLE, v) ? false : true;
211 }
212 
213 static umode_t thermal_hwmon_attrs_visible(const void *drvdata,
214 					   enum hwmon_sensor_types type,
215 					   u32 attr, int channel)
216 {
217 	const struct dfl_feature *feature = drvdata;
218 
219 	/* temperature is always supported, and check hardware cap for others */
220 	if (attr == hwmon_temp_input)
221 		return 0444;
222 
223 	return fme_thermal_throttle_support(feature->ioaddr) ? 0444 : 0;
224 }
225 
226 static int thermal_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
227 			      u32 attr, int channel, long *val)
228 {
229 	struct dfl_feature *feature = dev_get_drvdata(dev);
230 	u64 v;
231 
232 	switch (attr) {
233 	case hwmon_temp_input:
234 		v = readq(feature->ioaddr + FME_THERM_RDSENSOR_FMT1);
235 		*val = (long)(FIELD_GET(FPGA_TEMPERATURE, v) * MILLI);
236 		break;
237 	case hwmon_temp_max:
238 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
239 		*val = (long)(FIELD_GET(TEMP_THRESHOLD1, v) * MILLI);
240 		break;
241 	case hwmon_temp_crit:
242 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
243 		*val = (long)(FIELD_GET(TEMP_THRESHOLD2, v) * MILLI);
244 		break;
245 	case hwmon_temp_emergency:
246 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
247 		*val = (long)(FIELD_GET(TRIP_THRESHOLD, v) * MILLI);
248 		break;
249 	case hwmon_temp_max_alarm:
250 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
251 		*val = (long)FIELD_GET(TEMP_THRESHOLD1_STATUS, v);
252 		break;
253 	case hwmon_temp_crit_alarm:
254 		v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
255 		*val = (long)FIELD_GET(TEMP_THRESHOLD2_STATUS, v);
256 		break;
257 	default:
258 		return -EOPNOTSUPP;
259 	}
260 
261 	return 0;
262 }
263 
264 static const struct hwmon_ops thermal_hwmon_ops = {
265 	.is_visible = thermal_hwmon_attrs_visible,
266 	.read = thermal_hwmon_read,
267 };
268 
269 static const struct hwmon_channel_info * const thermal_hwmon_info[] = {
270 	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_EMERGENCY |
271 				 HWMON_T_MAX   | HWMON_T_MAX_ALARM |
272 				 HWMON_T_CRIT  | HWMON_T_CRIT_ALARM),
273 	NULL
274 };
275 
276 static const struct hwmon_chip_info thermal_hwmon_chip_info = {
277 	.ops = &thermal_hwmon_ops,
278 	.info = thermal_hwmon_info,
279 };
280 
281 static ssize_t temp1_max_policy_show(struct device *dev,
282 				     struct device_attribute *attr, char *buf)
283 {
284 	struct dfl_feature *feature = dev_get_drvdata(dev);
285 	u64 v;
286 
287 	v = readq(feature->ioaddr + FME_THERM_THRESHOLD);
288 
289 	return sprintf(buf, "%u\n",
290 		       (unsigned int)FIELD_GET(TEMP_THRESHOLD1_POLICY, v));
291 }
292 
293 static DEVICE_ATTR_RO(temp1_max_policy);
294 
295 static struct attribute *thermal_extra_attrs[] = {
296 	&dev_attr_temp1_max_policy.attr,
297 	NULL,
298 };
299 
300 static umode_t thermal_extra_attrs_visible(struct kobject *kobj,
301 					   struct attribute *attr, int index)
302 {
303 	struct device *dev = kobj_to_dev(kobj);
304 	struct dfl_feature *feature = dev_get_drvdata(dev);
305 
306 	return fme_thermal_throttle_support(feature->ioaddr) ? attr->mode : 0;
307 }
308 
309 static const struct attribute_group thermal_extra_group = {
310 	.attrs		= thermal_extra_attrs,
311 	.is_visible	= thermal_extra_attrs_visible,
312 };
313 __ATTRIBUTE_GROUPS(thermal_extra);
314 
315 static int fme_thermal_mgmt_init(struct platform_device *pdev,
316 				 struct dfl_feature *feature)
317 {
318 	struct device *hwmon;
319 
320 	/*
321 	 * create hwmon to allow userspace monitoring temperature and other
322 	 * threshold information.
323 	 *
324 	 * temp1_input      -> FPGA device temperature
325 	 * temp1_max        -> hardware threshold 1 -> 50% or 90% throttling
326 	 * temp1_crit       -> hardware threshold 2 -> 100% throttling
327 	 * temp1_emergency  -> hardware trip_threshold to shutdown FPGA
328 	 * temp1_max_alarm  -> hardware threshold 1 alarm
329 	 * temp1_crit_alarm -> hardware threshold 2 alarm
330 	 *
331 	 * create device specific sysfs interfaces, e.g. read temp1_max_policy
332 	 * to understand the actual hardware throttling action (50% vs 90%).
333 	 *
334 	 * If hardware doesn't support automatic throttling per thresholds,
335 	 * then all above sysfs interfaces are not visible except temp1_input
336 	 * for temperature.
337 	 */
338 	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
339 						     "dfl_fme_thermal", feature,
340 						     &thermal_hwmon_chip_info,
341 						     thermal_extra_groups);
342 	if (IS_ERR(hwmon)) {
343 		dev_err(&pdev->dev, "Fail to register thermal hwmon\n");
344 		return PTR_ERR(hwmon);
345 	}
346 
347 	return 0;
348 }
349 
350 static const struct dfl_feature_id fme_thermal_mgmt_id_table[] = {
351 	{.id = FME_FEATURE_ID_THERMAL_MGMT,},
352 	{0,}
353 };
354 
355 static const struct dfl_feature_ops fme_thermal_mgmt_ops = {
356 	.init = fme_thermal_mgmt_init,
357 };
358 
359 #define FME_PWR_STATUS		0x8
360 #define FME_LATENCY_TOLERANCE	BIT_ULL(18)
361 #define PWR_CONSUMED		GENMASK_ULL(17, 0)
362 
363 #define FME_PWR_THRESHOLD	0x10
364 #define PWR_THRESHOLD1		GENMASK_ULL(6, 0)	/* in Watts */
365 #define PWR_THRESHOLD2		GENMASK_ULL(14, 8)	/* in Watts */
366 #define PWR_THRESHOLD_MAX	0x7f			/* in Watts */
367 #define PWR_THRESHOLD1_STATUS	BIT_ULL(16)
368 #define PWR_THRESHOLD2_STATUS	BIT_ULL(17)
369 
370 #define FME_PWR_XEON_LIMIT	0x18
371 #define XEON_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
372 #define XEON_PWR_EN		BIT_ULL(15)
373 #define FME_PWR_FPGA_LIMIT	0x20
374 #define FPGA_PWR_LIMIT		GENMASK_ULL(14, 0)	/* in 0.1 Watts */
375 #define FPGA_PWR_EN		BIT_ULL(15)
376 
377 static int power_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
378 			    u32 attr, int channel, long *val)
379 {
380 	struct dfl_feature *feature = dev_get_drvdata(dev);
381 	u64 v;
382 
383 	switch (attr) {
384 	case hwmon_power_input:
385 		v = readq(feature->ioaddr + FME_PWR_STATUS);
386 		*val = (long)(FIELD_GET(PWR_CONSUMED, v) * MICRO);
387 		break;
388 	case hwmon_power_max:
389 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
390 		*val = (long)(FIELD_GET(PWR_THRESHOLD1, v) * MICRO);
391 		break;
392 	case hwmon_power_crit:
393 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
394 		*val = (long)(FIELD_GET(PWR_THRESHOLD2, v) * MICRO);
395 		break;
396 	case hwmon_power_max_alarm:
397 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
398 		*val = (long)FIELD_GET(PWR_THRESHOLD1_STATUS, v);
399 		break;
400 	case hwmon_power_crit_alarm:
401 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
402 		*val = (long)FIELD_GET(PWR_THRESHOLD2_STATUS, v);
403 		break;
404 	default:
405 		return -EOPNOTSUPP;
406 	}
407 
408 	return 0;
409 }
410 
411 static int power_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
412 			     u32 attr, int channel, long val)
413 {
414 	struct dfl_feature_platform_data *pdata = dev_get_platdata(dev->parent);
415 	struct dfl_feature *feature = dev_get_drvdata(dev);
416 	int ret = 0;
417 	u64 v;
418 
419 	val = clamp_val(val / MICRO, 0, PWR_THRESHOLD_MAX);
420 
421 	mutex_lock(&pdata->lock);
422 
423 	switch (attr) {
424 	case hwmon_power_max:
425 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
426 		v &= ~PWR_THRESHOLD1;
427 		v |= FIELD_PREP(PWR_THRESHOLD1, val);
428 		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
429 		break;
430 	case hwmon_power_crit:
431 		v = readq(feature->ioaddr + FME_PWR_THRESHOLD);
432 		v &= ~PWR_THRESHOLD2;
433 		v |= FIELD_PREP(PWR_THRESHOLD2, val);
434 		writeq(v, feature->ioaddr + FME_PWR_THRESHOLD);
435 		break;
436 	default:
437 		ret = -EOPNOTSUPP;
438 		break;
439 	}
440 
441 	mutex_unlock(&pdata->lock);
442 
443 	return ret;
444 }
445 
446 static umode_t power_hwmon_attrs_visible(const void *drvdata,
447 					 enum hwmon_sensor_types type,
448 					 u32 attr, int channel)
449 {
450 	switch (attr) {
451 	case hwmon_power_input:
452 	case hwmon_power_max_alarm:
453 	case hwmon_power_crit_alarm:
454 		return 0444;
455 	case hwmon_power_max:
456 	case hwmon_power_crit:
457 		return 0644;
458 	}
459 
460 	return 0;
461 }
462 
463 static const struct hwmon_ops power_hwmon_ops = {
464 	.is_visible = power_hwmon_attrs_visible,
465 	.read = power_hwmon_read,
466 	.write = power_hwmon_write,
467 };
468 
469 static const struct hwmon_channel_info * const power_hwmon_info[] = {
470 	HWMON_CHANNEL_INFO(power, HWMON_P_INPUT |
471 				  HWMON_P_MAX   | HWMON_P_MAX_ALARM |
472 				  HWMON_P_CRIT  | HWMON_P_CRIT_ALARM),
473 	NULL
474 };
475 
476 static const struct hwmon_chip_info power_hwmon_chip_info = {
477 	.ops = &power_hwmon_ops,
478 	.info = power_hwmon_info,
479 };
480 
481 static ssize_t power1_xeon_limit_show(struct device *dev,
482 				      struct device_attribute *attr, char *buf)
483 {
484 	struct dfl_feature *feature = dev_get_drvdata(dev);
485 	u16 xeon_limit = 0;
486 	u64 v;
487 
488 	v = readq(feature->ioaddr + FME_PWR_XEON_LIMIT);
489 
490 	if (FIELD_GET(XEON_PWR_EN, v))
491 		xeon_limit = FIELD_GET(XEON_PWR_LIMIT, v);
492 
493 	return sprintf(buf, "%u\n", xeon_limit * 100000);
494 }
495 
496 static ssize_t power1_fpga_limit_show(struct device *dev,
497 				      struct device_attribute *attr, char *buf)
498 {
499 	struct dfl_feature *feature = dev_get_drvdata(dev);
500 	u16 fpga_limit = 0;
501 	u64 v;
502 
503 	v = readq(feature->ioaddr + FME_PWR_FPGA_LIMIT);
504 
505 	if (FIELD_GET(FPGA_PWR_EN, v))
506 		fpga_limit = FIELD_GET(FPGA_PWR_LIMIT, v);
507 
508 	return sprintf(buf, "%u\n", fpga_limit * 100000);
509 }
510 
511 static ssize_t power1_ltr_show(struct device *dev,
512 			       struct device_attribute *attr, char *buf)
513 {
514 	struct dfl_feature *feature = dev_get_drvdata(dev);
515 	u64 v;
516 
517 	v = readq(feature->ioaddr + FME_PWR_STATUS);
518 
519 	return sprintf(buf, "%u\n",
520 		       (unsigned int)FIELD_GET(FME_LATENCY_TOLERANCE, v));
521 }
522 
523 static DEVICE_ATTR_RO(power1_xeon_limit);
524 static DEVICE_ATTR_RO(power1_fpga_limit);
525 static DEVICE_ATTR_RO(power1_ltr);
526 
527 static struct attribute *power_extra_attrs[] = {
528 	&dev_attr_power1_xeon_limit.attr,
529 	&dev_attr_power1_fpga_limit.attr,
530 	&dev_attr_power1_ltr.attr,
531 	NULL
532 };
533 
534 ATTRIBUTE_GROUPS(power_extra);
535 
536 static int fme_power_mgmt_init(struct platform_device *pdev,
537 			       struct dfl_feature *feature)
538 {
539 	struct device *hwmon;
540 
541 	hwmon = devm_hwmon_device_register_with_info(&pdev->dev,
542 						     "dfl_fme_power", feature,
543 						     &power_hwmon_chip_info,
544 						     power_extra_groups);
545 	if (IS_ERR(hwmon)) {
546 		dev_err(&pdev->dev, "Fail to register power hwmon\n");
547 		return PTR_ERR(hwmon);
548 	}
549 
550 	return 0;
551 }
552 
553 static const struct dfl_feature_id fme_power_mgmt_id_table[] = {
554 	{.id = FME_FEATURE_ID_POWER_MGMT,},
555 	{0,}
556 };
557 
558 static const struct dfl_feature_ops fme_power_mgmt_ops = {
559 	.init = fme_power_mgmt_init,
560 };
561 
562 static struct dfl_feature_driver fme_feature_drvs[] = {
563 	{
564 		.id_table = fme_hdr_id_table,
565 		.ops = &fme_hdr_ops,
566 	},
567 	{
568 		.id_table = fme_pr_mgmt_id_table,
569 		.ops = &fme_pr_mgmt_ops,
570 	},
571 	{
572 		.id_table = fme_global_err_id_table,
573 		.ops = &fme_global_err_ops,
574 	},
575 	{
576 		.id_table = fme_thermal_mgmt_id_table,
577 		.ops = &fme_thermal_mgmt_ops,
578 	},
579 	{
580 		.id_table = fme_power_mgmt_id_table,
581 		.ops = &fme_power_mgmt_ops,
582 	},
583 	{
584 		.id_table = fme_perf_id_table,
585 		.ops = &fme_perf_ops,
586 	},
587 	{
588 		.ops = NULL,
589 	},
590 };
591 
592 static long fme_ioctl_check_extension(struct dfl_feature_platform_data *pdata,
593 				      unsigned long arg)
594 {
595 	/* No extension support for now */
596 	return 0;
597 }
598 
599 static int fme_open(struct inode *inode, struct file *filp)
600 {
601 	struct platform_device *fdev = dfl_fpga_inode_to_feature_dev(inode);
602 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&fdev->dev);
603 	int ret;
604 
605 	if (WARN_ON(!pdata))
606 		return -ENODEV;
607 
608 	mutex_lock(&pdata->lock);
609 	ret = dfl_feature_dev_use_begin(pdata, filp->f_flags & O_EXCL);
610 	if (!ret) {
611 		dev_dbg(&fdev->dev, "Device File Opened %d Times\n",
612 			dfl_feature_dev_use_count(pdata));
613 		filp->private_data = pdata;
614 	}
615 	mutex_unlock(&pdata->lock);
616 
617 	return ret;
618 }
619 
620 static int fme_release(struct inode *inode, struct file *filp)
621 {
622 	struct dfl_feature_platform_data *pdata = filp->private_data;
623 	struct platform_device *pdev = pdata->dev;
624 	struct dfl_feature *feature;
625 
626 	dev_dbg(&pdev->dev, "Device File Release\n");
627 
628 	mutex_lock(&pdata->lock);
629 	dfl_feature_dev_use_end(pdata);
630 
631 	if (!dfl_feature_dev_use_count(pdata))
632 		dfl_fpga_dev_for_each_feature(pdata, feature)
633 			dfl_fpga_set_irq_triggers(feature, 0,
634 						  feature->nr_irqs, NULL);
635 	mutex_unlock(&pdata->lock);
636 
637 	return 0;
638 }
639 
640 static long fme_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
641 {
642 	struct dfl_feature_platform_data *pdata = filp->private_data;
643 	struct platform_device *pdev = pdata->dev;
644 	struct dfl_feature *f;
645 	long ret;
646 
647 	dev_dbg(&pdev->dev, "%s cmd 0x%x\n", __func__, cmd);
648 
649 	switch (cmd) {
650 	case DFL_FPGA_GET_API_VERSION:
651 		return DFL_FPGA_API_VERSION;
652 	case DFL_FPGA_CHECK_EXTENSION:
653 		return fme_ioctl_check_extension(pdata, arg);
654 	default:
655 		/*
656 		 * Let sub-feature's ioctl function to handle the cmd.
657 		 * Sub-feature's ioctl returns -ENODEV when cmd is not
658 		 * handled in this sub feature, and returns 0 or other
659 		 * error code if cmd is handled.
660 		 */
661 		dfl_fpga_dev_for_each_feature(pdata, f) {
662 			if (f->ops && f->ops->ioctl) {
663 				ret = f->ops->ioctl(pdev, f, cmd, arg);
664 				if (ret != -ENODEV)
665 					return ret;
666 			}
667 		}
668 	}
669 
670 	return -EINVAL;
671 }
672 
673 static int fme_dev_init(struct platform_device *pdev)
674 {
675 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
676 	struct dfl_fme *fme;
677 
678 	fme = devm_kzalloc(&pdev->dev, sizeof(*fme), GFP_KERNEL);
679 	if (!fme)
680 		return -ENOMEM;
681 
682 	fme->pdata = pdata;
683 
684 	mutex_lock(&pdata->lock);
685 	dfl_fpga_pdata_set_private(pdata, fme);
686 	mutex_unlock(&pdata->lock);
687 
688 	return 0;
689 }
690 
691 static void fme_dev_destroy(struct platform_device *pdev)
692 {
693 	struct dfl_feature_platform_data *pdata = dev_get_platdata(&pdev->dev);
694 
695 	mutex_lock(&pdata->lock);
696 	dfl_fpga_pdata_set_private(pdata, NULL);
697 	mutex_unlock(&pdata->lock);
698 }
699 
700 static const struct file_operations fme_fops = {
701 	.owner		= THIS_MODULE,
702 	.open		= fme_open,
703 	.release	= fme_release,
704 	.unlocked_ioctl = fme_ioctl,
705 };
706 
707 static int fme_probe(struct platform_device *pdev)
708 {
709 	int ret;
710 
711 	ret = fme_dev_init(pdev);
712 	if (ret)
713 		goto exit;
714 
715 	ret = dfl_fpga_dev_feature_init(pdev, fme_feature_drvs);
716 	if (ret)
717 		goto dev_destroy;
718 
719 	ret = dfl_fpga_dev_ops_register(pdev, &fme_fops, THIS_MODULE);
720 	if (ret)
721 		goto feature_uinit;
722 
723 	return 0;
724 
725 feature_uinit:
726 	dfl_fpga_dev_feature_uinit(pdev);
727 dev_destroy:
728 	fme_dev_destroy(pdev);
729 exit:
730 	return ret;
731 }
732 
733 static int fme_remove(struct platform_device *pdev)
734 {
735 	dfl_fpga_dev_ops_unregister(pdev);
736 	dfl_fpga_dev_feature_uinit(pdev);
737 	fme_dev_destroy(pdev);
738 
739 	return 0;
740 }
741 
742 static const struct attribute_group *fme_dev_groups[] = {
743 	&fme_hdr_group,
744 	&fme_global_err_group,
745 	NULL
746 };
747 
748 static struct platform_driver fme_driver = {
749 	.driver	= {
750 		.name       = DFL_FPGA_FEATURE_DEV_FME,
751 		.dev_groups = fme_dev_groups,
752 	},
753 	.probe   = fme_probe,
754 	.remove  = fme_remove,
755 };
756 
757 module_platform_driver(fme_driver);
758 
759 MODULE_DESCRIPTION("FPGA Management Engine driver");
760 MODULE_AUTHOR("Intel Corporation");
761 MODULE_LICENSE("GPL v2");
762 MODULE_ALIAS("platform:dfl-fme");
763